HST & Beyond Report

Total Page:16

File Type:pdf, Size:1020Kb

HST & Beyond Report HST and Beyond HST and Beyond Exploration and the Search for Origins: A Vision for Ultraviolet-Optical-Infrared Space Astronomy Exploration and the Search for Origins: A Vision for Ultraviolet-Optical-Infrared Space Astronomy THE “HST & BEYOND” COMMITTEE ALAN DRESSLER, CHAIR SHRINIVAS KULKARNI Carnegie Observatories California Institute of Technology ROBERT A. BROWN SIMON J. LILLY Space Telescope Science Institute University of Toronto ARTHUR F. DAVIDSEN BRUCE H. MARGON Johns Hopkins University University of Washington RICHARD S. ELLIS CAROLYN C. PORCO Cambridge University University of Arizona WENDY L. FREEDMAN DOUGLAS O. RICHSTONE Carnegie Observatories University of Michigan RICHARD F. GREEN H. S. (PETER) STOCKMAN National Optical Astronomy Observatories Space Telescope Science Institute MICHAEL G. HAUSER HARLEY A. THRONSON, JR. NASA Goddard Space Flight Center University of Wyoming and currently JOHN L. TONRY Space Telescope Science Institute Massachusetts Institute of Technology ROBERT P. KIRSHNER JAMES TRURAN Harvard University University of Chicago EDWARD J. WEILER NASA Headquarters (ex officio) Exploration and the Search for Origins: A Vision for Ultraviolet- Optical-Infrared Space Astronomy REPORT OF THE “HST & BEYOND” COMMITTEE ALAN DRESSLER, EDITOR Carnegie Observatories MAY , ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY Washington, D.C. The Association of Universities for Research in Astronomy (AURA), a non-profit organization, operates the Space Telescope Science Institute (STScI) under contract for the National Aeronautics and Space Administration (NASA). Association of Universities for Research in Astronomy, Inc. Massachusetts Avenue, N.W. Suite Washington, D.C. CONTENTS The “HST & Beyond” Committee............................................................... ii Preface and Acknowledgements .................................................................. vii Executive Summary ..................................................................................... ix Acronyms .................................................................................................. xiii I. A Vision for the Future of Ultraviolet-Optical-Infrared Astronomy from Space ............................................................................................... 1 1. Astronomy: Its Rewards for Science and Society ................................... 1 2. Goals for the Twenty-First Century: Seeking Our Origins and Exploring the Exotic in Nature ............................................................. 7 2.1 Visiting a Time When Galaxies Were Young.................................... 7 2.2 The Search for Earth-Like Planets and Life ................................... 14 2.3 Tools for the Jobs ........................................................................... 18 II. The Proposed Program .......................................................................... 21 3. Ultraviolet-Optical-Infrared Space Observatories for the New Millennium ................................................................................. 21 3.1 Summary of Recommendations ..................................................... 21 3.2 A Sustained Hubble Space Telescope ............................................. 22 3.3 A Large Infrared-Optimized Space Telescope................................. 23 Addendum: The BMDO/NTOT 4m Telescope ...................................... 26 3.4 Development and Demonstration of Space Interferometry ........... 28 4. Policy Considerations .......................................................................... 29 4.1 Background and Motivation .......................................................... 29 4.2 A Balanced Space Astronomy Program: Observatories, “PI Only” Satellites, and Dedicated Missions ................................ 30 4.3 Breaking the Cost Curve: Major Science Within a Budget ............ 31 4.4 Space Astronomy as an International Adventure ............................ 32 4.5 Sharing the Adventure: Inviting the Public Along ......................... 33 4.6 Maintaining America’s Technological Base ..................................... 34 5. Coda: First Steps Toward a Next Generation Space Telescope and the Searches for Extra-Solar Terrestrial Planets .................................... 35 III. The Scientific Case for the “Origins” Program ..................................... 37 6. Defining the Future: The Landscape of U.S. Space Astronomy in 2005 ................................................................................................ 37 7. Galaxy Formation in the High-Redshift Universe ............................... 43 7.1 Current Capabilities ...................................................................... 43 7.2 Fundamental Questions in High-Redshift Astrophysics ................ 44 7.3 Generic Capabilities That Are Required ........................................ 45 7.4 A Baseline Science Program for Studying Galaxies with z > 2 ........ 47 7.5 The Advantages of Space: Estimated Sensitivities for Future Ground-Based, Airborne, and Space-Based Observatories ............. 50 8. The Search for Earth-Like Planets ....................................................... 55 8.1 Introduction .................................................................................. 55 8.2 Current Scientific Theory of Planet Formation ............................. 55 8.3 Direct and Indirect Discovery ........................................................ 57 8.4 Indirect Detection of Earth-Like Planets ....................................... 58 8.5 Direct Detection of Earth-Like Planets ......................................... 60 8.6 A Space Infrared Interferometer..................................................... 61 8.7 Spectra of Earth-Like Planets ......................................................... 63 8.8 Resolved Pictures of Earth-Like Planets ......................................... 64 Selected Readings ................................................................................ 65 IV. A Broad Scientific Program for Future Space Facilities ......................... 67 9. A General Astrophysics Program for a Large Filled-Aperture, Infrared-Optimized Space Telescope and for the Post-2005 HST ....... 67 9.1 Introduction .................................................................................. 67 9.2 Our Solar System........................................................................... 70 9.3 Extra-Solar Planetary Material and Circumstellar Gas ................... 71 9.4 Transition Objects: Brown Dwarfs ................................................ 71 9.5 The Interstellar Medium and the Birth of Stars ............................. 71 9.6 Stellar Populations ......................................................................... 72 9.7 Stellar Death and Transfiguration .................................................. 74 9.8 Infrared Emission from Normal Galaxies ...................................... 74 9.9 Active Galaxies .............................................................................. 75 9.10 Chemical Evolution of the Interstellar Medium as a Function of Redshift ................................................................... 76 9.11 Galaxy Dynamics in the Early Universe ...................................... 77 9.12 Cosmology.................................................................................. 78 10. Space Interferometry: A Powerful New Tool for Astrophysics ............ 80 10.1 Introduction ............................................................................... 80 10.2 Why Space-Based Interferometers? ............................................. 82 10.3 High Resolution Imaging ........................................................... 84 10.4 High Accuracy Astrometry ......................................................... 85 10.5 Common Requirements for Space-Based Visual and Infrared Interferometers .............................................................. 86 10.6 Current Baseline Description of Space-Based Visual and Infrared Interferometers .............................................................. 87 10.7 Conclusions and Recommendations ........................................... 88 References ................................................................................................... 89 PREFACE AND ACKNOWLEDGEMENTS In September , AURA appointed, at the behest of the Space Telescope Institute Council, and with support from NASA, the HST & Beyond Com- mittee “to study possible missions and programs for UVOIR astronomy in space for the first decades of the twenty-first century” and to “initiate a pro- cess that will produce a new consensus vision of the long term goals of this sci- entific enterprise.” The eighteen committee members were primarily chosen for their interest in and experience with UVOIR observations from space, in- cluding the Hubble Space Telescope (HST), ASTRO, IRAS, and IUE. The focus of the Committee was to be science opportunities, with less em- phasis on technical capabilities. In accordance with our charge, the Commit- tee assumed that NASA’s currently operating and planned major programs in UVOIR astronomy, including HST, SIRTF, and SOFIA, will have been implemented. We have therefore undertaken to find the scientifically compel- ling next steps. Committee meetings were held at Goddard Space Flight Center on April -, , at the University of Michigan on August and September , , and at the Carnegie Observatories on May -, . A subset of
Recommended publications
  • Michael Garcia Hubble Space Telescope Users Committee (STUC)
    Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size.
    [Show full text]
  • REVIEW ARTICLE the NASA Spitzer Space Telescope
    REVIEW OF SCIENTIFIC INSTRUMENTS 78, 011302 ͑2007͒ REVIEW ARTICLE The NASA Spitzer Space Telescope ͒ R. D. Gehrza Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, Minnesota 55455 ͒ T. L. Roelligb NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 ͒ M. W. Wernerc Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͒ G. G. Faziod Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 ͒ J. R. Houcke Astronomy Department, Cornell University, Ithaca, New York 14853-6801 ͒ F. J. Lowf Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ G. H. Riekeg Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ ͒ B. T. Soiferh and D. A. Levinei Spitzer Science Center, MC 220-6, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 ͒ E. A. Romanaj Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͑Received 2 June 2006; accepted 17 September 2006; published online 30 January 2007͒ The National Aeronautics and Space Administration’s Spitzer Space Telescope ͑formerly the Space Infrared Telescope Facility͒ is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope ͑1990͒, the Compton Gamma-Ray Observatory ͑1991–2000͒, and the Chandra X-Ray Observatory ͑1999͒. Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe.
    [Show full text]
  • Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
    Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S.
    [Show full text]
  • Semiconductor Detectors and Focal Plane Arrays for Far-Infrared Imaging
    OPTO−ELECTRONICS REVIEW 21(4), 406–426 DOI: 10.2478/s11772−013−0110−x Semiconductor detectors and focal plane arrays for far-infrared imaging A. ROGALSKI* Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00–908 Warsaw, Poland The detection of far−infrared (far−IR) and sub−mm−wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid ni− trogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging sys− tems in the next decades. This paper presents progress in far−IR and sub−mm−wave semiconductor detector technology of fo− cal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real−time uncooled THz focal plane arrays such as Schottky barrier arrays, field−effect transistor detectors, and micro− bolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolome− ter arrays are considered. Keywords: THz detectors, focal plane arrays, Schottky barrier diodes, semiconductor hot electron bolometers, extrinsic photodetectors, performance limits.
    [Show full text]
  • The Space Infrared Telescope Facility (SIRTF)
    header for SPIE use The Space Infrared Telescope Facility (SIRTF) James Fansona, Giovanni Faziob, James Houckc, Tim Kellyd, George Riekee, Domenick Tenerellif, and Milt Whittenf aJet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109 bSmithsonian Astrophysical Observatory, Cambridge, MA 02138 cCornell University, Ithaca, NY, 14853 dBall Aerospace and Technologies Corp., Boulder, CO 80301 eUniversity of Arizona, Tucson, AZ, 85721 fLockheed Martin Missiles and Space Co., Sunnyvale, CA 94089 ABSTRACT This paper describes the design of the Space Infrared Telescope Facility (SIRTF) as the project enters the detailed design phase. SIRTF is the fourth of NASA’s Great Observatories, and is scheduled for launch in December 2001. SIRTF provides background limited imaging and spectroscopy covering the spectral range from 3 to 180 mm, complementing the capabilities of the other Great Observatories – the Hubble Space Telescope (HST), the Advanced X-ray Astrophysics Facility (AXAF), and the Compton Gamma Ray Observatory (CGRO). SIRTF will be the first mission to combine the high sensitivity achievable from a cryogenic space telescope with the imaging and spectroscopic power of the new generation of infrared detector arrays. The scientific capabilities of this combination are so great that SIRTF was designated the highest priority major mission for all of US astronomy in the 1990s. Keywords: telescope, cryogenic, infrared, astronomy, astrophysics, Great Observatory 1. INTRODUCTION The SIRTF mission has experienced dramatic evolution in both architecture and mission design. Originally conceived as a low Earth orbiting observatory serviced by astronauts from the Space Shuttle, SIRTF passed through a phase in high Earth orbit using first the Titan and later the smaller Atlas launch vehicle, to the current concept of a deep-space mission orbiting the sun, and using the still smaller Delta launch vehicle.
    [Show full text]
  • Find Your Telescope. Your Find Find Yourself
    FIND YOUR TELESCOPE. FIND YOURSELF. FIND ® 2008 PRODUCT CATALOG WWW.MEADE.COM TABLE OF CONTENTS TELESCOPE SECTIONS ETX ® Series 2 LightBridge ™ (Truss-Tube Dobsonians) 20 LXD75 ™ Series 30 LX90-ACF ™ Series 50 LX200-ACF ™ Series 62 LX400-ACF ™ Series 78 Max Mount™ 88 Series 5000 ™ ED APO Refractors 100 A and DS-2000 Series 108 EXHIBITS 1 - AutoStar® 13 2 - AutoAlign ™ with SmartFinder™ 15 3 - Optical Systems 45 FIND YOUR TELESCOPE. 4 - Aperture 57 5 - UHTC™ 68 FIND YOURSEL F. 6 - Slew Speed 69 7 - AutoStar® II 86 8 - Oversized Primary Mirrors 87 9 - Advanced Pointing and Tracking 92 10 - Electronic Focus and Collimation 93 ACCESSORIES Imagers (LPI,™ DSI, DSI II) 116 Series 5000 ™ Eyepieces 130 Series 4000 ™ Eyepieces 132 Series 4000 ™ Filters 134 Accessory Kits 136 Imaging Accessories 138 Miscellaneous Accessories 140 Meade Optical Advantage 128 Meade 4M Community 124 Astrophotography Index/Information 145 ©2007 MEADE INSTRUMENTS CORPORATION .01 RECRUIT .02 ENTHUSIAST .03 HOT ShOT .04 FANatIC Starting out right Going big on a budget Budding astrophotographer Going deeper .05 MASTER .06 GURU .07 SPECIALIST .08 ECONOMIST Expert astronomer Dedicated astronomer Wide field views & images On a budget F IND Y OURSEL F F IND YOUR TELESCOPE ® ™ ™ .01 ETX .02 LIGHTBRIDGE™ .03 LXD75 .04 LX90-ACF PG. 2-19 PG. 20-29 PG.30-43 PG. 50-61 ™ ™ ™ .05 LX200-ACF .06 LX400-ACF .07 SERIES 5000™ ED APO .08 A/DS-2000 SERIES PG. 78-99 PG. 100-105 PG. 108-115 PG. 62-76 F IND Y OURSEL F Astronomy is for everyone. That’s not to say everyone will become a serious comet hunter or astrophotographer.
    [Show full text]
  • The Making of the Chandra X-Ray Observatory: the Project Scientist’S Perspective
    SPECIAL FEATURE: PERSPECTIVE The making of the Chandra X-Ray Observatory: The project scientist’s perspective Martin C. Weisskopf1 National Aeronautics and Space Administration/Marshall Space Flight Center, Huntsville, AL 35805 Edited by Harvey D. Tananbaum, Smithsonian Astrophysical Observatory, Cambridge, MA, and approved January 22, 2010 (received for review December 16, 2009) The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades. historical perspective | x-ray astronomy t is sobering for me to realize that there arescientistswhoareworkingwithdata Ifrom this truly great observatory who were not even born when the founda- tion for what is now the Chandra X-Ray Observatory was laid. Thus, it may surprise many to know that the beginning was suc- cinctly and accurately outlined in a research proposal that Riccardo Giacconi and col- leagues wrote in 1963, a mere 9 months after he and his team’s discovery of the first ex- trasolar x-ray source Scorpius X-1. As im- portant, the data from this rocket flight also indicated the presence of the “diffuse x-ray background.” Fig. 1 illustrates the showpiece of this insightful proposal. It shows a ≈1-m diameter, 10-m focal length, grazing-incidence x-ray telescope. The telescope was of sufficient area and angular resolution to determine the nature of the unresolved x-ray background. We all owe Riccardo an enormous debt of gratitude for his insight, leadership, and, in my case (and I suspect for many others), inspiration.
    [Show full text]
  • Table of Contents
    AAS Newsletter September/October 2012, Issue 166 - Published for the Members of the American Astronomical Society Table of Contents 2 President’s Column 17 Committee on the Status of Women in 4 From the Executive Office Astronomy 5 What Makes an Astronomy Story 18 News from NSF Division of Astronomical Newsworthy? Sciences (AST) 6 Journals Update 20 JWST Update 9 Secretary's Corner 21 HAD News 9 Council Actions 21 Honored Elsewhere 10 The AAS Heeds the Call of the Wild 22 Announcements 16 Committee on Employment 23 Calendar of Events 25 Washington News A A S American Astronomical Society AAS Officers President's Column David J. Helfand, President Debra M. Elmegreen, Past President David J. Helfand, [email protected] Nicholas B. Suntzeff, Vice-President Edward B. Churchwell, Vice-President Paula Szkody, Vice-President Hervey (Peter) Stockman, Treasurer G. Fritz Benedict, Secretary Anne P. Cowley, Publications Board Chair Edward E. Prather, Education Officer At 1:32AM Eastern time on 6 Councilors August, the Mars Science Laboratory Bruce Balick Nancy S. Brickhouse and its charmingly named rover, Eileen D. Friel Curiosity, executed a perfect landing Edward F. Guinan Todd J. Henry in Gale Crater. President Obama Steven D. Kawaler called the highly complex landing Patricia Knezek Robert Mathieu procedure “an unprecedented feat of Angela Speck technology that will stand as a point Executive Office Staff of pride far into the future.” While Kevin B. Marvel, Executive Officer we certainly hope Curiosity’s lifetime Tracy Beale, Registrar & Meeting Coordinator Chris Biemesderfer, Director of Publishing on Mars is a long one, we must all Sherri Brown, Membership Services continue to make the case that we Coordinator Kelly E.
    [Show full text]
  • Will the Real Monster Black Hole Please Stand Up? 8 January 2015
    Will the real monster black hole please stand up? 8 January 2015 how the merging of galaxies can trigger black holes to start feeding, an important step in the evolution of galaxies. "When galaxies collide, gas is sloshed around and driven into their respective nuclei, fueling the growth of black holes and the formation of stars," said Andrew Ptak of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a The real monster black hole is revealed in this new new study accepted for publication in the image from NASA's Nuclear Spectroscopic Telescope Astrophysical Journal. "We want to understand the Array of colliding galaxies Arp 299. In the center panel, mechanisms that trigger the black holes to turn on the NuSTAR high-energy X-ray data appear in various and start consuming the gas." colors overlaid on a visible-light image from NASA's Hubble Space Telescope. The panel on the left shows NuSTAR is the first telescope capable of the NuSTAR data alone, while the visible-light image is pinpointing where high-energy X-rays are coming on the far right. Before NuSTAR, astronomers knew that the each of the two galaxies in Arp 299 held a from in the tangled galaxies of Arp 299. Previous supermassive black hole at its heart, but they weren't observations from other telescopes, including sure if one or both were actively chomping on gas in a NASA's Chandra X-ray Observatory and the process called accretion. The new high-energy X-ray European Space Agency's XMM-Newton, which data reveal that the supermassive black hole in the detect lower-energy X-rays, had indicated the galaxy on the right is indeed the hungry one, releasing presence of active supermassive black holes in Arp energetic X-rays as it consumes gas.
    [Show full text]
  • The Multiwavelength Universe
    Multiwavelength Astronomy Revealing the Universe in All Its Light Almost everything we know about the universe comes from studying the light emitted or refl ected by objects in space. Apart from a few exceptions, such as the collection of Moon rocks returned by Apollo astronauts, astronomers must rely on collecting and analyzing the faint light from distant objects in order to study the cosmos. This fact is even more remarkable when you consider the vastness of space. Light may travel for billions of years before reaching our telescopes. In the science of astronomy, we generally cannot retrieve samples, study objects in a laboratory, or physically enter an environment for detailed study. Fortunately, light carries a lot of information. By detecting and analyzing the light emitted by an object in space, astronomers can learn about its distance, motion, temperature, density, and chemical composition. Since the light from an object takes time to reach us, it also brings us information about the evolution and history of the universe. When we receive light from an object in space, we are actually performing a type of archaeology by studying the object’s appearance as it was when the light was emitted. For example, when astronomers study a galaxy that is 200 million light-years away, they are examining that galaxy as it looked 200 million years ago. To see what it looks like today, we would have to wait another 200 million years. The Electromagnetic Spectrum Radio MicrowaveInfrared Visible Ultraviolet X-ray Gamma Ray 4 2 -2 -5 -6 -8 -10 -12 1010 110 10 10 10 10 10 Wavelength in centimeters About the size of..
    [Show full text]
  • Spectra As Windows Into Exoplanet Atmospheres
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Spectra as windows into exoplanet atmospheres Adam S. Burrows1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved December 2, 2013 (received for review April 11, 2013) Understanding a planet’s atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets. planetary science | characterization The study of exoplanets has increased expo- by no means commensurate with the effort exoplanetology, and this expectation is in part nentially since 1995, a trend that in the short expended. true. The solar system has been a great, per- term shows no signs of abating. Astronomers An important aspect of exoplanets that haps necessary, teacher.
    [Show full text]
  • The Most Dangerous Ieos in STEREO
    EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges.
    [Show full text]