The Regulatory Status of Genome-Edited Crops Jeffrey D

Total Page:16

File Type:pdf, Size:1020Kb

The Regulatory Status of Genome-Edited Crops Jeffrey D Agronomy Publications Agronomy 2-2016 The Regulatory Status of Genome-edited Crops Jeffrey D. Wolt Iowa State University, [email protected] Kan Wang Iowa State University, [email protected] Bing Yang Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Genomics Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/95. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Regulatory Status of Genome-edited Crops Abstract Genome editing with engineered nucleases (GEEN) represents a highly specific nda efficient tool for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA-repair pathways that lead to base additions or deletions by non-homologous end joining as well as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes. Addressing ambiguities regarding the regulatory status of genome editing techniques is critical to their application for development of economically useful crop traits. Continued regulatory focus on the process used, rather than the nature of the novel phenotype developed, results in confusion on the part of regulators, product developers, and the public alike and creates uncertainty as of the use of genome engineering tools for crop improvement. Keywords engineered nucleases, site-specific utm agenesis, site-directed nucleases, homology-directed repair, CRISPR/ Cas9, TALEN Disciplines Agricultural Science | Agriculture | Agronomy and Crop Sciences | Genomics | Plant Breeding and Genetics Comments This article is from Plant Biotechnology Journal 14 (2015): 510–518, doi:10.1111/pbi.12444. Posted with permission. Rights This is an open access article under the terms of the Creative Commons Attribution-NonCommercial- NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/agron_pubs/95 Plant Biotechnology Journal (2016) 14, pp. 510–518 doi: 10.1111/pbi.12444 Review article The Regulatory Status of Genome-edited Crops Jeffrey D. Wolt1,2,3,*, Kan Wang1,3 and Bing Yang3,4 1Department of Agronomy, Iowa State University, Ames, IA, USA 2Biosafety Institute for Genetically Modified Agricultural Products, Iowa State University, Ames, IA, USA 3Crop Bioengineering Consortium, Iowa State University, Ames, IA, USA 4Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA Received 30 April 2015; Summary revised 24 June 2015; Genome editing with engineered nucleases (GEEN) represents a highly specific and efficient tool accepted 3 July 2015. for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. *Correspondence (Tel +1 515 294 6899; Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA- fax +1 515 294 2014; repair pathways that lead to base additions or deletions by non-homologous end joining as well email [email protected]) as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes. Addressing ambiguities regarding the regulatory status of genome editing techniques is critical to their application for Keywords: engineered nucleases, development of economically useful crop traits. Continued regulatory focus on the process used, site-specific mutagenesis, site-directed rather than the nature of the novel phenotype developed, results in confusion on the part of nucleases, homology-directed repair, regulators, product developers, and the public alike and creates uncertainty as of the use of CRISPR/Cas9, TALEN. genome engineering tools for crop improvement. Introduction differs from GEEN approaches in that OMM does not deliver a nuclease to the site of action. Optimized OMM trait development Genome editing with engineered nucleases (GEEN) has rapidly systems are resulting in the first genome-edited crops for emerged as a leading tool for investigating gene function and for commercial release (Pratt, 2012). creating genetic variation using site-directed genomic alterations. Recent discoveries and advances in genome editing use site- When applied to economically important plant species, GEEN directed nucleases (SDNs) where engineering of the nuclease additionally provides a highly specific and efficient means to allows for highly specific targeting to any given gene of interest. generate useful novel phenotypes. With the advent of genome The array of SDNs which have been used for genome editing in editing as a readily accessible technology to the research higher plants encompasses engineered meganucleases (EMNs community, the question arises as to how plants expressing also referred to as LAGLIDADG endonucleases or homing unique traits derived by genome editing will be received by the nucleases), zinc finger nucleases (ZFNs), transcriptional activator- public at large and treated within various regulatory domains. like effector nucleases (TALENs) and clustered regularly This question cannot be easily answered from a process interspaced short palindromic repeats in conjunction with the viewpoint, as site-directed genome editing may range from associated Cas9 endonuclease (CRISPR/Cas9) (Gaj et al., 2013; mutations involving a single base change to transgene insertions. Osakabe and Osakabe, 2014). These various GEEN methods Addressing ambiguities regarding the regulatory status of operate in a similar fashion to generate a double strand break genome-edited crops is critical to the application of genome (DSB) at a specific location in the genome and are comprised of editing for developing economically useful crop traits. In this engineered proteins consisting of a DNA binding domain to review, progress in GEEN and related techniques in higher plants confer site specificity and an endonuclease domain to cause the is considered with respect to the current regulatory status for DSB (Curtin et al., 2012). A variety of natural DNA repair genome-edited crops. mechanisms involving nonhomologous end joining (NHEJ) or homologous recombination (HR) can be exploited to allow for Genome editing techniques targeted genome modifications in vivo. When NHEJ rejoins DSBs to repair broken chromosomes, the result is often imprecise, The earliest example of genome editing (Table 1) in higher plants introducing mutations at the cut site that can alter gene function involved oligonucleotide-mediated mutagenesis (OMM) to cause and serve as a source of induced genetic variation. Alternatively, site-specific gene targeting using chemically synthesized oligonu- DSB-induced HR can be used for highly specific gene targeting cleotides with base replacement or addition caused by endoge- (homology-directed repair, HDR) involving either gene replace- nous DNA-repair enzymes (Beetham et al., 1999). The method ment or gene insertion enabling precise genome modification The copyright line for this article was changed on 8 October 2015 after original online publication. 510 ª 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. The Regulatory Status of Genome-edited Crops 511 Table 1 Genome editing acronyms, terms and definitions (Breyer et al., 2009; Kim and Kim, 2014; Osakabe and Osakabe, 2014; de Souza, 2012) CRSPR Clustered Regularly-Interspaced Short Programable nucleases comprised of bacterially derived endonuclease (Cas9) and a single-guide RNA (sgRNA) Paloindromic Repeats DSB Double Strand Break Cleavage in both strands of double-stranded DNA where the two strands have not separated EMN Engineered Mega Nuclease Microbially derived meganucleases that are modified, fused, or rationally designed to cause site-directed DSB. Also referred to as LAGLIDADG endonucleases or homing
Recommended publications
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
    Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface.
    [Show full text]
  • Ep 2522723 B1
    (19) TZZ ¥_T (11) EP 2 522 723 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/22 (2006.01) C12N 15/55 (2006.01) 03.12.2014 Bulletin 2014/49 C12N 15/10 (2006.01) A61K 48/00 (2006.01) A01K 67/027 (2006.01) A01H 1/00 (2006.01) (21) Application number: 12176308.0 (22) Date of filing: 28.01.2004 (54) Custom-made meganuclease and use thereof Maßgeschneiderte Meganuklease und Verwendung davon Méganucléase sur mesure et son utilisation (84) Designated Contracting States: • Paques, Frédéric AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 92340 Bourg-La-Reine (FR) HU IE IT LI LU MC NL PT RO SE SI SK TR •Perez-Michaut, Christophe 75016 Paris (FR) (30) Priority: 28.01.2003 US 442911 P • Smith, Julianne 01.08.2003 US 491535 P 92350 Le Plessis Robinson (FR) • Sourdive, David (43) Date of publication of application: 92300 Levallois Perret (FR) 14.11.2012 Bulletin 2012/46 (74) Representative: Leblois-Préhaud, Hélène Marthe (62) Document number(s) of the earlier application(s) in Georgette et al accordance with Art. 76 EPC: Cabinet Orès 04705873.0 / 1 590 453 36, rue de St Pétersbourg 75008 Paris (FR) (73) Proprietor: Cellectis 75013 Paris (FR) (56) References cited: • LUCAS PATRICK ET AL: "Rapid evolution of the (72) Inventors: DNA-binding site in LAGLIDADG homing • Arnould, Sylvain endonucleases", NUCLEIC ACIDS RESEARCH, 93200 Saint-Denis (FR) OXFORD UNIVERSITY PRESS, SURREY, GB, vol. • Bruneau, Sylvia 29, no.
    [Show full text]
  • New Plant Breeding Techniques 2013 Workshop Report
    NEW PLANT BREEDING TECHNIQUES REPORT OF A WORKSHOP HOSTED BY FOOD STANDARDS AUSTRALIA NEW ZEALAND AUGUST 2013 DISCLAIMER FSANZ disclaims any liability for any loss or injury directly or indirectly sustained by any person as a result of any use of or reliance upon the content of this report. The content of this report is a summary of discussions of an external expert panel and does not necessarily reflect the views of FSANZ or FSANZ staff. The information in this report is provided for information purposes only. No representation is made or warranty given as to the suitability of any of the content for any particular purpose or to the professional qualifications of any person or company referred to therein. The information in this report should not be relied upon as legal advice or used as a substitute for legal advice. You should also exercise your own skill, care and judgement before relying on this information in any important matter and seek independent legal advice, including in relation to compliance with relevant food legislation and the Australia New Zealand Food Standards Code. 1 CONTENTS Disclaimer .......................................................................................................................... 1 EXECUTIVE SUMMARY ................................................................................................... 3 INTRODUCTION AND BACKGROUND ............................................................................. 5 DISCUSSION OF THE TECHNIQUES .............................................................................
    [Show full text]
  • Development of Genome Editing Approaches Against Herpes Simplex Virus Infections
    viruses Review Development of Genome Editing Approaches against Herpes Simplex Virus Infections Isadora Zhang 1, Zoe Hsiao 1,2 and Fenyong Liu 1,3,* 1 School of Public Health, University of California, Berkeley, CA 94720, USA; [email protected] (I.Z.); [email protected] (Z.H.) 2 Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA 3 Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA * Correspondence: [email protected]; Tel.: +1-510-643-2436; Fax: +1-510-643-9955 Abstract: Herpes simplex virus 1 (HSV-1) is a herpesvirus that may cause cold sores or keratitis in healthy or immunocompetent individuals, but can lead to severe and potentially life-threatening complications in immune-immature individuals, such as neonates or immune-compromised patients. Like all other herpesviruses, HSV-1 can engage in lytic infection as well as establish latent infection. Current anti-HSV-1 therapies effectively block viral replication and infection. However, they have little effect on viral latency and cannot completely eliminate viral infection. These issues, along with the emergence of drug-resistant viral strains, pose a need to develop new compounds and novel strategies for the treatment of HSV-1 infection. Genome editing methods represent a promising approach against viral infection by modifying or destroying the genetic material of human viruses. These editing methods include homing endonucleases (HE) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein (Cas) RNA-guided nuclease system. Recent studies have showed that both HE and CRISPR/Cas systems are effective in inhibiting HSV- 1 infection in cultured cells in vitro and in mice in vivo.
    [Show full text]
  • Modern Trends in Plant Genome Editing: an Inclusive Review of the CRISPR/Cas9 Toolbox
    International Journal of Molecular Sciences Review Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox Ali Razzaq 1 , Fozia Saleem 1, Mehak Kanwal 2, Ghulam Mustafa 1, Sumaira Yousaf 2, Hafiz Muhammad Imran Arshad 2, Muhammad Khalid Hameed 3, Muhammad Sarwar Khan 1 and Faiz Ahmad Joyia 1,* 1 Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan 2 Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan 3 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China * Correspondence: [email protected] Received: 14 June 2019; Accepted: 15 August 2019; Published: 19 August 2019 Abstract: Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing.
    [Show full text]
  • Homing Endonucleases: from Microbial Genetic Invaders to Reagents for Targeted DNA Modification
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure Review Homing Endonucleases: From Microbial Genetic Invaders to Reagents for Targeted DNA Modification Barry L. Stoddard1,* 1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., A3-025, Seattle, WA 98109, USA *Correspondence: [email protected] DOI 10.1016/j.str.2010.12.003 Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications. Endonuclease enzymes are ubiquitous catalysts that are A series of studies conducted in several laboratories over the involved in genomic modification, rearrangement, protection, ensuing years led to the discovery of homing endonucleases and and repair. Their specificity spans at least nine orders of magni- mobile introns and inteins within a wide variety of additional tude, ranging from nonspecific degradative enzymes up to microbial genomes (reviewed in Belfort and Perlman, 1995).
    [Show full text]
  • Implications of the EFSA Scientific Opinion on Site Directed Nucleases
    agronomy Review Implications of the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk Assessment of Genome-Edited Plants in the EU Nils Rostoks 1,2 1 Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia; [email protected] or [email protected] 2 Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia Abstract: Genome editing is a set of techniques for introducing targeted changes in genomes. It may be achieved by enzymes collectively called site-directed nucleases (SDN). Site-specificity of SDNs is provided either by the DNA binding domain of the protein molecule itself or by RNA molecule(s) that direct SDN to a specific site in the genome. In contrast to transgenesis resulting in the insertion of exogenous DNA, genome editing only affects specific endogenous sequences. Therefore, multiple jurisdictions around the world have exempted certain types of genome-edited organisms from national biosafety regulations completely, or on a case-by-case basis. In the EU, however, the ruling of the Court of Justice on the scope of mutagenesis exemption case C-528/16 indicated that the genome-edited organisms are subject to the GMO Directive, but the practical implications for stakeholders wishing to develop and authorize genome-edited products in the EU remain unclear. European Food Safety Authority in response to a request by European Commission has produced a Citation: Rostoks, N. Implications of scientific opinion on plants developed by SDN-1, SDN-2, and oligonucleotide-directed mutagenesis the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk (ODM) genome editing techniques.
    [Show full text]
  • Crystal Structure of I-Dmoi in Complex with Its Target DNA Provides New Insights Into Meganuclease Engineering
    Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering María Jose´ Marcaidaa,1, Jesu´ s Prietob,1, Pilar Redondoa, Alejandro D. Nadrac, Andreu Alibe´ sc, Luis Serranoc,d, Sylvestre Grizote, Philippe Duchateaue, Fre´ de´ ric Paˆ quese, Francisco J. Blancob,f, and Guillermo Montoyaa,2 aMacromolecular Crystallography and bNuclear Magnetic Resonance Groups, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain; cEuropean Molecular Biology Laboratory-Centre for Genomic Regulation Systems Biology Unit, Centre de Regulacio´Geno`mica, Parc de Recerca Biome`dica de Barcelona-Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; dInstitucio´Catalana de Recerca I Estudis Avanc¸ats and fStructural Biology Unit, Centro de Investigacio´n Cooperativa bioGUNE, Parque Tecnolo´gico de Vizcaya, Edificio800, 48160 Derio, Spain; and eCellectis S.A., 102 Route de Noisy 93235 Romainville, France Edited by Marlene Belfort, New York State Department of Health, Albany, NY, and approved September 24, 2008 (received for review May 17, 2008) Homing endonucleases, also known as meganucleases, are sequence- or intermonomer interface. The last acidic residue of this LAGLI- specific enzymes with large DNA recognition sites. These enzymes DADG motif participates in DNA cleavage by a metal ion depen- can be used to induce efficient homologous gene targeting in cells dent mechanism of phosphodiester hydrolysis (4). and plants, opening perspectives for genome engineering with A combinatorial and rational approach (10) has been used for applications in a wide series of fields, ranging from biotechnology engineering the overall specificity of the homodimeric meganucle- to gene therapy.
    [Show full text]
  • (NLS-I-Scei) Efficiently Mediated Mammalian Germline Transgenesis Via Embryo Cytoplasmic Microinjection
    The Meganuclease I-SceI Containing Nuclear Localization Signal (NLS-I-SceI) Efficiently Mediated Mammalian Germline Transgenesis via Embryo Cytoplasmic Microinjection Yong Wang1*., Xiao-Yang Zhou1., Peng-Ying Xiang1, Lu-Lu Wang1, Huan Tang2, Fei Xie1, Liang Li1, Hong Wei1* 1 Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China, 2 China Three Gorges Museum, Chongqing, China Abstract The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I- SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I- SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species.
    [Show full text]
  • Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
    Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface.
    [Show full text]
  • Molecular Characterization of Genetically-Modified Crops
    Biotechnology Advances 35 (2017) 302–309 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Molecular characterization of genetically-modified crops: Challenges and strategies Rong Li a,b,1, Sheng Quan a,1,XiaofangYanc, Sukumar Biswas a,DabingZhanga,b,JianxinShia,b,⁎ a Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sci- ences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China b Key Laboratory of Crop Marker Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Jiangsu 223300, China c FuturaGene Biotechnology (Shanghai) Co. Ltd., Shanghai 200233, China article info abstract Article history: Molecular characterization lays a foundation for safety assessment and subsequent monitoring of genetically Received 22 September 2016 modified (GM) crops. Due to the target-specific nature, conventional polymerase chain reaction (PCR)-based Received in revised form 19 January 2017 methods cannot comprehensively detect unintended gene insertions, let alone unknown GM events. As more Accepted 23 January 2017 and more new developed GM crops including new plant breeding technology (NPBT) generated crops are in Available online 26 January 2017 the pipeline for commercialization, alternative -omics
    [Show full text]