Advanced Editing of the Nuclear and Plastid Genomes in Plants T ⁎ Agnieszka A

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Editing of the Nuclear and Plastid Genomes in Plants T ⁎ Agnieszka A Plant Science 273 (2018) 42–49 Contents lists available at ScienceDirect Plant Science journal homepage: www.elsevier.com/locate/plantsci ☆ Advanced editing of the nuclear and plastid genomes in plants T ⁎ Agnieszka A. Piateka, Scott C. Lenaghanb,c, C. Neal Stewart Jr.a, a Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA b Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA c Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA ARTICLE INFO ABSTRACT Keywords: Genome editing is a powerful suite of technologies utilized in basic and applied plant research. Both nuclear and Synthetic biology plastid genomes have been genetically engineered to alter traits in plants. While the most frequent molecular CRISPR outcome of gene editing has been knockouts resulting in a simple deletion of an endogenous protein of interest Synplastome from the host’s proteome, new genes have been added to plant genomes and, in several instances, the sequence Metabolic engineering of endogenous genes have been targeted for a few coding changes. Targeted plant characteristics for genome Genome editing editing range from single gene targets for agronomic input traits to metabolic pathways to endow novel plant function. In this paper, we review the fundamental approaches to editing nuclear and plastid genomes in plants with an emphasis on those utilizing synthetic biology. The differences between the eukaryotic-type nuclear genome and the prokaryotic-type plastid genome (plastome) in plants has profound consequences in the ap- proaches employed to transform, edit, select transformants, and indeed, nearly all aspects of genetic engineering procedures. Thus, we will discuss the two genomes targeted for editing in plants, the toolbox used to make edits, along with strategies for future editing approaches to transform crop production and sustainability. While CRISPR/Cas9 is the current method of choice in editing nuclear genomes, the plastome is typically edited using homologous recombination approaches. A particularly promising synthetic biology approach is to replace the endogenous plastome with a ‘synplastome’ that is computationally designed, and synthesized and assembled in the lab, then installed into chloroplasts. The editing strategies, transformation methods, characteristics of the novel plant also affect how the genetically engineered plant may be governed and regulated. Each of these components and final products of gene editing affect the future of biotechnology and farming. 1. Introduction contrast, the plastid genome (plastome) is of prokaryotic nature. Its genes can be expressed from operons with untranslated regions playing Editing the genome housed in the plant nucleus, as well as the much an important role in gene expression. Foreign DNA is typically bom- smaller genome housed in the plastid have tremendous potential to barded into chloroplasts using the gene gun and integrated into a target accelerate crop improvement to meet global environmental and agri- locus in the plastome by homologous recombination (HR). The choice cultural challenges. Modern genetic engineering and sequencing tech- of genome for editing depends on the research or product. For instance, nologies have provided key insight on how DNA modification can im- single-gene encoded phenotypic traits (as resistance to herbicides), pact cellular functions and the subsequent phenotypes. Such achieved through knockout or knock-in are better suited for nuclear information is critical to understanding how we can improve crop engineering whereas plastomes are better targets for manipulating quality and yield to meet the growing global food production needs. metabolic pathways or high-level production of recombinant proteins. There are vast differences in the characteristics of nuclear and A transformational breakthrough in genome editing occurred with plastid genomes, which lead to different engineering and editing ap- the discovery of programmable nucleases (also called site-specific nu- proaches (Table 1). The nuclear genome of eukaryotes, including an- cleases, SSNs, or site-directed nucleases-SDNs) [1,2]. Meganucleases, giosperms, has eukaryotic gene architecture, regulation and processing. zinc finger nucleases (ZFNs), transcription activator-like effector nu- Most often, ‘foreign’ DNA is randomly inserted into the plant nuclear cleases (TALENs), and more recently, the clustered regularly inter- genome using Agrobacterium-mediated transformation. Monocistronic spaced short palindromic repeats (CRISPR)/CRISPR associated protein gene structure is the rule, i.e., each gene has its own promoter. In 9 (Cas9) have been used in crop molecular breeding. SSNs, in general, ☆ This article is part of a special issue entitled “Synthetic biology meets plant metabolism”, published in the journal Plant Science 273, 2018. ⁎ Corresponding author. E-mail address: [email protected] (C. Neal Stewart). https://doi.org/10.1016/j.plantsci.2018.02.025 Received 14 December 2017; Received in revised form 24 February 2018; Accepted 26 February 2018 Available online 03 March 2018 0168-9452/ © 2018 Elsevier B.V. All rights reserved. A.A. Piatek et al. Plant Science 273 (2018) 42–49 Table 1 A comparison of the characteristics between plant genomes housed in the nucleus and those housed in plastids from an genetic engineering perspective. The features of interest range from the differences in molecular genetics inherent in each genome to the particular constraints in available biotechnological and synthetic biology tools. Nuclear genome features Plastid genome features Targeted mutations introduced predominantly through NHEJ, or HR when an external DNA template Mutations and transgenes introduced at defined loci through the prevalent is provided HR mechanism Genes are structured as monocistrons, i.e., each gene has its own promoter and terminator A single promoter can drive the expression of one-to-several transgenes as an operon Low relative gene expression High transgene copy number leads to silencing and increase likelihood Very high expression is possible High transgene copy is certain with no of deleterious position effects Proteins can be targeted to a number of organelles—alternative silencing or position effects. Proteins accumulate only in plastids targeting is feasible Relatively quick estimates can be made for gene expression and protein targeting Currently there are no rapid transgene expression assays available Transformation performed predominantly via Agrobacterium, also PEG and biolistic mediated vector Transformation performed typically via biolistic vector delivery delivery Possible transgene escape via pollen Maternal inheritance in most species, i.e., no transgene flow via pollen have tremendous utility to introduce mutations in genomes at various the mutation is in a regulatory region (promoter, 5′ untranslated region efficiencies. Certainly CRISPR/Cas9 has emerged as a game changer in (UTR), and 3′UTR). crop molecular breeding as evidenced by step-changes of peer-reviewed papers in recent years using this technique [3]. 2.1. Genome editing or genome vandalism? By far, most efforts in plant genetic engineering, have focused on the nuclear genome; however, the mitochondrial and plastid genomes Typically, the use of SSNs is referred to as genome editing. But, are essential to plants, contain non-redundant genes and metabolic George Church refers to simple protein knockouts as “genome vand- pathways, and are much smaller. Arguably the most important of all alism” (Stat News: https://www.statnews.com/2016/04/20/clever- plastome genes codes for the Rubisco large subunit (rbcL). It is neces- crispr-advance-unveiled/), akin to ripping pages out of a book. sary for carbon fixation and is the most abundant protein on Earth. CRISPR-induced indel formation within the coding region typically Utilizing genome editing to increase carboxylation of Rubisco, while leaves a gene non-functional, thus, knock-out experiments are the most decreasing photooxidation would improve the carbon fixation effi- frequent use of genome “editing”. ciency and photosynthetic capacity, which, in turn, would drastically – increase crop yield [4 6]. 2.2. A brief history of SSN development and utilization in plants While SSNs have been used to genome edit in vitro human cell mitochondria [7], there are no reports on the use of this technology to Chronologically, meganucleases were the first platform used for target the plastid genome. One challenge in SSN-mediated genome site-specific genome editing. Meganucleases are natural DNA nucleases editing plastomes is reaching homoplasmy without transplastomic su- [12], and have been engineered to recognize user-defined DNA se- fl fi per uous DNA (e.g., selection markers or target sites for site-speci c quences and introduce mutations within the genome [13,14]. Specifi- recombinases) [8]. Despite the dearth of SSN research for plastid cally for plants, new meganuclease delivery systems have been estab- genome engineering, the possibility for large-scale production of lished via biolistics for nanoparticle delivery [15] and through RNA pharmaceuticals, industrial enzymes, biomaterials, and biofuels within viruses [16]. In contrast to meganucleases, ZFNs are chimeric nucleases plastids necessitates further research into this area. Thus, in this review that bind DNA through multiple zinc finger domains [17,18] and cut we explore recent advances in nuclear and plastid genome engineering, using
Recommended publications
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
    Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface.
    [Show full text]
  • Ep 2522723 B1
    (19) TZZ ¥_T (11) EP 2 522 723 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/22 (2006.01) C12N 15/55 (2006.01) 03.12.2014 Bulletin 2014/49 C12N 15/10 (2006.01) A61K 48/00 (2006.01) A01K 67/027 (2006.01) A01H 1/00 (2006.01) (21) Application number: 12176308.0 (22) Date of filing: 28.01.2004 (54) Custom-made meganuclease and use thereof Maßgeschneiderte Meganuklease und Verwendung davon Méganucléase sur mesure et son utilisation (84) Designated Contracting States: • Paques, Frédéric AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 92340 Bourg-La-Reine (FR) HU IE IT LI LU MC NL PT RO SE SI SK TR •Perez-Michaut, Christophe 75016 Paris (FR) (30) Priority: 28.01.2003 US 442911 P • Smith, Julianne 01.08.2003 US 491535 P 92350 Le Plessis Robinson (FR) • Sourdive, David (43) Date of publication of application: 92300 Levallois Perret (FR) 14.11.2012 Bulletin 2012/46 (74) Representative: Leblois-Préhaud, Hélène Marthe (62) Document number(s) of the earlier application(s) in Georgette et al accordance with Art. 76 EPC: Cabinet Orès 04705873.0 / 1 590 453 36, rue de St Pétersbourg 75008 Paris (FR) (73) Proprietor: Cellectis 75013 Paris (FR) (56) References cited: • LUCAS PATRICK ET AL: "Rapid evolution of the (72) Inventors: DNA-binding site in LAGLIDADG homing • Arnould, Sylvain endonucleases", NUCLEIC ACIDS RESEARCH, 93200 Saint-Denis (FR) OXFORD UNIVERSITY PRESS, SURREY, GB, vol. • Bruneau, Sylvia 29, no.
    [Show full text]
  • New Plant Breeding Techniques 2013 Workshop Report
    NEW PLANT BREEDING TECHNIQUES REPORT OF A WORKSHOP HOSTED BY FOOD STANDARDS AUSTRALIA NEW ZEALAND AUGUST 2013 DISCLAIMER FSANZ disclaims any liability for any loss or injury directly or indirectly sustained by any person as a result of any use of or reliance upon the content of this report. The content of this report is a summary of discussions of an external expert panel and does not necessarily reflect the views of FSANZ or FSANZ staff. The information in this report is provided for information purposes only. No representation is made or warranty given as to the suitability of any of the content for any particular purpose or to the professional qualifications of any person or company referred to therein. The information in this report should not be relied upon as legal advice or used as a substitute for legal advice. You should also exercise your own skill, care and judgement before relying on this information in any important matter and seek independent legal advice, including in relation to compliance with relevant food legislation and the Australia New Zealand Food Standards Code. 1 CONTENTS Disclaimer .......................................................................................................................... 1 EXECUTIVE SUMMARY ................................................................................................... 3 INTRODUCTION AND BACKGROUND ............................................................................. 5 DISCUSSION OF THE TECHNIQUES .............................................................................
    [Show full text]
  • Development of Genome Editing Approaches Against Herpes Simplex Virus Infections
    viruses Review Development of Genome Editing Approaches against Herpes Simplex Virus Infections Isadora Zhang 1, Zoe Hsiao 1,2 and Fenyong Liu 1,3,* 1 School of Public Health, University of California, Berkeley, CA 94720, USA; [email protected] (I.Z.); [email protected] (Z.H.) 2 Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA 3 Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA * Correspondence: [email protected]; Tel.: +1-510-643-2436; Fax: +1-510-643-9955 Abstract: Herpes simplex virus 1 (HSV-1) is a herpesvirus that may cause cold sores or keratitis in healthy or immunocompetent individuals, but can lead to severe and potentially life-threatening complications in immune-immature individuals, such as neonates or immune-compromised patients. Like all other herpesviruses, HSV-1 can engage in lytic infection as well as establish latent infection. Current anti-HSV-1 therapies effectively block viral replication and infection. However, they have little effect on viral latency and cannot completely eliminate viral infection. These issues, along with the emergence of drug-resistant viral strains, pose a need to develop new compounds and novel strategies for the treatment of HSV-1 infection. Genome editing methods represent a promising approach against viral infection by modifying or destroying the genetic material of human viruses. These editing methods include homing endonucleases (HE) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein (Cas) RNA-guided nuclease system. Recent studies have showed that both HE and CRISPR/Cas systems are effective in inhibiting HSV- 1 infection in cultured cells in vitro and in mice in vivo.
    [Show full text]
  • Modern Trends in Plant Genome Editing: an Inclusive Review of the CRISPR/Cas9 Toolbox
    International Journal of Molecular Sciences Review Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox Ali Razzaq 1 , Fozia Saleem 1, Mehak Kanwal 2, Ghulam Mustafa 1, Sumaira Yousaf 2, Hafiz Muhammad Imran Arshad 2, Muhammad Khalid Hameed 3, Muhammad Sarwar Khan 1 and Faiz Ahmad Joyia 1,* 1 Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan 2 Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan 3 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China * Correspondence: [email protected] Received: 14 June 2019; Accepted: 15 August 2019; Published: 19 August 2019 Abstract: Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing.
    [Show full text]
  • The Regulatory Status of Genome-Edited Crops Jeffrey D
    Agronomy Publications Agronomy 2-2016 The Regulatory Status of Genome-edited Crops Jeffrey D. Wolt Iowa State University, [email protected] Kan Wang Iowa State University, [email protected] Bing Yang Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Genomics Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/95. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Regulatory Status of Genome-edited Crops Abstract Genome editing with engineered nucleases (GEEN) represents a highly specific nda efficient tool for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA-repair pathways that lead to base additions or deletions by non-homologous end joining as well as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes.
    [Show full text]
  • Homing Endonucleases: from Microbial Genetic Invaders to Reagents for Targeted DNA Modification
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure Review Homing Endonucleases: From Microbial Genetic Invaders to Reagents for Targeted DNA Modification Barry L. Stoddard1,* 1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., A3-025, Seattle, WA 98109, USA *Correspondence: [email protected] DOI 10.1016/j.str.2010.12.003 Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications. Endonuclease enzymes are ubiquitous catalysts that are A series of studies conducted in several laboratories over the involved in genomic modification, rearrangement, protection, ensuing years led to the discovery of homing endonucleases and and repair. Their specificity spans at least nine orders of magni- mobile introns and inteins within a wide variety of additional tude, ranging from nonspecific degradative enzymes up to microbial genomes (reviewed in Belfort and Perlman, 1995).
    [Show full text]
  • Implications of the EFSA Scientific Opinion on Site Directed Nucleases
    agronomy Review Implications of the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk Assessment of Genome-Edited Plants in the EU Nils Rostoks 1,2 1 Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia; [email protected] or [email protected] 2 Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia Abstract: Genome editing is a set of techniques for introducing targeted changes in genomes. It may be achieved by enzymes collectively called site-directed nucleases (SDN). Site-specificity of SDNs is provided either by the DNA binding domain of the protein molecule itself or by RNA molecule(s) that direct SDN to a specific site in the genome. In contrast to transgenesis resulting in the insertion of exogenous DNA, genome editing only affects specific endogenous sequences. Therefore, multiple jurisdictions around the world have exempted certain types of genome-edited organisms from national biosafety regulations completely, or on a case-by-case basis. In the EU, however, the ruling of the Court of Justice on the scope of mutagenesis exemption case C-528/16 indicated that the genome-edited organisms are subject to the GMO Directive, but the practical implications for stakeholders wishing to develop and authorize genome-edited products in the EU remain unclear. European Food Safety Authority in response to a request by European Commission has produced a Citation: Rostoks, N. Implications of scientific opinion on plants developed by SDN-1, SDN-2, and oligonucleotide-directed mutagenesis the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk (ODM) genome editing techniques.
    [Show full text]
  • Crystal Structure of I-Dmoi in Complex with Its Target DNA Provides New Insights Into Meganuclease Engineering
    Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering María Jose´ Marcaidaa,1, Jesu´ s Prietob,1, Pilar Redondoa, Alejandro D. Nadrac, Andreu Alibe´ sc, Luis Serranoc,d, Sylvestre Grizote, Philippe Duchateaue, Fre´ de´ ric Paˆ quese, Francisco J. Blancob,f, and Guillermo Montoyaa,2 aMacromolecular Crystallography and bNuclear Magnetic Resonance Groups, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain; cEuropean Molecular Biology Laboratory-Centre for Genomic Regulation Systems Biology Unit, Centre de Regulacio´Geno`mica, Parc de Recerca Biome`dica de Barcelona-Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; dInstitucio´Catalana de Recerca I Estudis Avanc¸ats and fStructural Biology Unit, Centro de Investigacio´n Cooperativa bioGUNE, Parque Tecnolo´gico de Vizcaya, Edificio800, 48160 Derio, Spain; and eCellectis S.A., 102 Route de Noisy 93235 Romainville, France Edited by Marlene Belfort, New York State Department of Health, Albany, NY, and approved September 24, 2008 (received for review May 17, 2008) Homing endonucleases, also known as meganucleases, are sequence- or intermonomer interface. The last acidic residue of this LAGLI- specific enzymes with large DNA recognition sites. These enzymes DADG motif participates in DNA cleavage by a metal ion depen- can be used to induce efficient homologous gene targeting in cells dent mechanism of phosphodiester hydrolysis (4). and plants, opening perspectives for genome engineering with A combinatorial and rational approach (10) has been used for applications in a wide series of fields, ranging from biotechnology engineering the overall specificity of the homodimeric meganucle- to gene therapy.
    [Show full text]
  • (NLS-I-Scei) Efficiently Mediated Mammalian Germline Transgenesis Via Embryo Cytoplasmic Microinjection
    The Meganuclease I-SceI Containing Nuclear Localization Signal (NLS-I-SceI) Efficiently Mediated Mammalian Germline Transgenesis via Embryo Cytoplasmic Microinjection Yong Wang1*., Xiao-Yang Zhou1., Peng-Ying Xiang1, Lu-Lu Wang1, Huan Tang2, Fei Xie1, Liang Li1, Hong Wei1* 1 Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China, 2 China Three Gorges Museum, Chongqing, China Abstract The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I- SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I- SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species.
    [Show full text]
  • Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
    Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface.
    [Show full text]