Genome Editing in Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

Genome Editing in Agriculture Number 60 Issue Paper July 2018 Genome Editing in Agriculture: Methods, Applications, and Governance A paper in the series on The Need for Agricultural Innovation to Sustainably Feed the World by 2050 The power of genome editing suggests that, if conducive social and regulatory conditions are in place, it can substan- tially increase the positive impacts of plant and animal breeding on human welfare and sustainability. (Shutterstock photos from Yaroslava [corn], vchal [gene manipulation], and Shyamalamuralinath [calf].) limitations of the approach. The paper decrease socioeconomic disparities, ABSTRACT also presents an overview of the current mitigate barriers to trade, and moderate Genome editing is the process of landscape of governance of genome edit- political and market dependencies), the making precise, targeted sequence ing, including existing regulations, inter- paper aims to provide a conceptual and changes in the deoxyribonucleic acid national agreements, and standards and knowledge-based foundation for regula- of living cells and organisms. Recent codes of conduct, as well as a discussion tory agencies, policy- and lawmakers, advances have made genome editing of factors that affect governance, includ- private and public research institutions, widely applicable, offering the opportu- ing comparison with other approaches to industry, and the general public. nity to rapidly advance basic and applied genetic modification, environmental and biology. In the face of the mounting animal welfare impacts of specific appli- food, fiber, feed, and fuel needs and the cations, values of producers and con- INTRODUCTION decreasing availability of land and water sumers, and economic impacts, among Twentieth-century advances in plant caused by global population growth, as others. Recognizing both that genome and animal breeding and agricultural well as the challenges climate change editing for crop and livestock improve- practices did much to help meet the poses to agriculture, genome editing ment has the potential to substantially increasing food, fiber, feed, and fuel for crop and livestock improvement is contribute to human welfare and sustain- needs of a burgeoning world population. garnering increasing attention. This issue ability and that successful deployment As population growth continues through paper describes how genome editing of genome editing in agriculture will this century, those needs continue to is performed, the types of “edits” that benefit from science-informed, value- increase while the amount of land and can be made, how the process relates to attentive regulation that promotes both water available for production decreases. traditional breeding and conventional innovation and transparency (alongside In addition, climate change is impacting genetic engineering, and the potential strategies to improve food distribution, land and water availability further and This material is based upon work supported by the U.S. Department of Agriculture’s (USDA) Agricultural Research Service (ARS) and Animal and Plant Health Inspection Service (APHIS) Agreement No. 59-0202-5-002. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of USDA–ARS, USDA–APHIS, any other USDA agency, or the USDA. CAST Issue Paper 60 Task Force Members Task Force Jennifer Kuzma, School of Public and Task Force Reviewers International Affairs, North Carolina Adam J. Bogdanove, Chair, Section State University, Raleigh Val Giddings, Information Tech- of Plant Pathology and Plant-Microbe nology and Innovation Foundation, Biology, School of Integrative Plant Katia Pauwels, Biosafety and Biotech- Washington, D.C. Science, Cornell University, Ithaca, nology, Sciensano, Brussels, Belgium New York Greg Gocal, Research and Develop- Steven H. Strauss, Department of Forest ment, Cibus, San Diego, California David M. Donovan, Animal Biosci- Ecosystems and Society, Oregon State ences and Biotechnology Laboratory, University, Corvallis Joseph F. Petolino, Dow AgroSci- USDA–ARS/NEA, Beltsville, Mary- ences, Indianapolis, Indiana (retired) land (retired) Daniel F. Voytas, Department of Genet- ics, Cell Biology, and Development/Cen- CAST Liaison Estefania Elorriaga, Department of ter for Genome Engineering, University Forest Ecosystems and Society, Or- of Minnesota, Minneapolis David Songstad, Cell Biology, Cibus, egon State University, Corvallis San Diego, California altering the incidence of droughts, floods, cells and organisms. Advances in recent foundation for informed regulatory and and other severe weather events, as well years have made genome editing appli- policy decision-making and for consumer as the distribution and prevalence of cable in many contexts and for many choice. diseases and pests. Meeting the increas- purposes, including plant and animal ing needs of the world population in the improvement. This issue paper describes GENOME EDITING face of these challenges, sustainably, is a how genome editing is performed, the daunting yet essential task. types of “edits” that can be made, how METHODS Continued successes in crop and live- the process compares to traditional breed- Genome editing, as it is most frequent- stock improvement will be critical. Re- ing and conventional genetic engineering, ly practiced, uses reagents that specifi- sistance to pests and diseases, tolerance and the potential limitations of the ap- cally recognize and precisely cleave DNA to adverse environmental conditions, proach. This paper also touches on ways targets within the genomes of living and improved nutritional quality will be in which genome editing can enhance cells (Voytas 2013). These reagents are essential. In addition, adapting plants to related technologies such as the insertion referred to as site-directed nucleases increase their efficacy for environmental of transgenes for genetic modification (SDNs; also called sequence-specific remediation and improving animals for of plants and animals. Following these nucleases or SSNs). SDN-induced DNA use as models for human disease will sections, the paper presents an overview damage is perceived by the cell and be important. Meeting the needs of the of the current landscape of governance of repaired; however, it is possible to direct increasing world population will also genome editing in selected countries, in- the cell’s DNA repair mechanisms to depend on social and engineering innova- cluding existing regulations, international incorporate desired gene edits at or near tions, including changes to improve food agreements, and standards and codes of the break site. In this section, the types distribution, decrease socioeconomic conduct. Gene drives, a new and widely of SDNs that have been developed to disparities, mitigate barriers to trade, and discussed implementation of genome achieve targeted DNA cleavage, as well moderate political and market dependen- editing (Esvelt et al. 2014; Saey 2015; as the variety of targeted DNA modifica- cies. The power of genome editing,1 how- Wade 2015) that can modify the genetics tions that can be realized through their ever, suggests that, if conducive social of a wild population for purposes such as use, are described briefly. and regulatory conditions are in place, pest control, raise a unique and complex it can substantially increase the positive set of biosafety and regulatory issues Gene-targeting Reagents impacts of plant and animal breeding on beyond the scope of this paper and are Three types of SDNs—meganucle- human welfare and sustainability. not discussed. ases, zinc-finger nucleases (ZFNs), and Genome editing is the process of The paper is intended to be a resource transcription activator-like effector making precisely targeted changes in the for U.S. and international regulatory nucleases (TALENs)—recognize their DNA (deoxyribonucleic acid) of living agencies, policy- and lawmakers, private DNA targets through protein/DNA inter- and public research institutions, industry, actions. The DNA recognition domains of 1 Italicized terms (except genus/species names and and the general public. It aims to pro- these reagents are engineered to achieve published material titles) are defined in the Glossary. vide a conceptual and knowledge-based requisite target specificity. 2 COUNCIL FOR AGRICULTURAL SCIENCE AND TECHNOLOGY Meganucleases, produced by many elucidated (Boch et al. 2009; Moscou the mismatch is repaired based on the prokaryotes and algae, typically recog- and Bogdanove 2009), the TAL effec- oligonucleotide sequence, specific base nize and cleave DNA sequence signa- tor DNA recognition domain is used to modifications are made in the genome. tures ranging from 12 to 40 base pairs create targeted nucleases for gene editing Oligonucleotide-directed mutagenesis (bp) in length (Paques and Duchateau (Christian et al. 2010). The TAL effector (ODM) is therefore an alternative to 2007; Smith et al. 2006). Whereas each DNA recognition domain is structurally nuclease-based gene editing. meganuclease has evolved its own DNA modular, with a pair of variable amino sequence specificity, they can be engi- acids in each module specifying a single neered to recognize new DNA target nucleotide in the target DNA sequence. Types of DNA Modifications sites. Engineering meganucleases for ge- Thus TALENs can be readily engineered Created with SDNs nome editing is often challenging because for desired specificity by assembling the Although there are a variety of SDN the amino acids that
Recommended publications
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
    Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface.
    [Show full text]
  • Ep 2522723 B1
    (19) TZZ ¥_T (11) EP 2 522 723 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/22 (2006.01) C12N 15/55 (2006.01) 03.12.2014 Bulletin 2014/49 C12N 15/10 (2006.01) A61K 48/00 (2006.01) A01K 67/027 (2006.01) A01H 1/00 (2006.01) (21) Application number: 12176308.0 (22) Date of filing: 28.01.2004 (54) Custom-made meganuclease and use thereof Maßgeschneiderte Meganuklease und Verwendung davon Méganucléase sur mesure et son utilisation (84) Designated Contracting States: • Paques, Frédéric AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 92340 Bourg-La-Reine (FR) HU IE IT LI LU MC NL PT RO SE SI SK TR •Perez-Michaut, Christophe 75016 Paris (FR) (30) Priority: 28.01.2003 US 442911 P • Smith, Julianne 01.08.2003 US 491535 P 92350 Le Plessis Robinson (FR) • Sourdive, David (43) Date of publication of application: 92300 Levallois Perret (FR) 14.11.2012 Bulletin 2012/46 (74) Representative: Leblois-Préhaud, Hélène Marthe (62) Document number(s) of the earlier application(s) in Georgette et al accordance with Art. 76 EPC: Cabinet Orès 04705873.0 / 1 590 453 36, rue de St Pétersbourg 75008 Paris (FR) (73) Proprietor: Cellectis 75013 Paris (FR) (56) References cited: • LUCAS PATRICK ET AL: "Rapid evolution of the (72) Inventors: DNA-binding site in LAGLIDADG homing • Arnould, Sylvain endonucleases", NUCLEIC ACIDS RESEARCH, 93200 Saint-Denis (FR) OXFORD UNIVERSITY PRESS, SURREY, GB, vol. • Bruneau, Sylvia 29, no.
    [Show full text]
  • New Plant Breeding Techniques 2013 Workshop Report
    NEW PLANT BREEDING TECHNIQUES REPORT OF A WORKSHOP HOSTED BY FOOD STANDARDS AUSTRALIA NEW ZEALAND AUGUST 2013 DISCLAIMER FSANZ disclaims any liability for any loss or injury directly or indirectly sustained by any person as a result of any use of or reliance upon the content of this report. The content of this report is a summary of discussions of an external expert panel and does not necessarily reflect the views of FSANZ or FSANZ staff. The information in this report is provided for information purposes only. No representation is made or warranty given as to the suitability of any of the content for any particular purpose or to the professional qualifications of any person or company referred to therein. The information in this report should not be relied upon as legal advice or used as a substitute for legal advice. You should also exercise your own skill, care and judgement before relying on this information in any important matter and seek independent legal advice, including in relation to compliance with relevant food legislation and the Australia New Zealand Food Standards Code. 1 CONTENTS Disclaimer .......................................................................................................................... 1 EXECUTIVE SUMMARY ................................................................................................... 3 INTRODUCTION AND BACKGROUND ............................................................................. 5 DISCUSSION OF THE TECHNIQUES .............................................................................
    [Show full text]
  • Development of Genome Editing Approaches Against Herpes Simplex Virus Infections
    viruses Review Development of Genome Editing Approaches against Herpes Simplex Virus Infections Isadora Zhang 1, Zoe Hsiao 1,2 and Fenyong Liu 1,3,* 1 School of Public Health, University of California, Berkeley, CA 94720, USA; [email protected] (I.Z.); [email protected] (Z.H.) 2 Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA 3 Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA * Correspondence: [email protected]; Tel.: +1-510-643-2436; Fax: +1-510-643-9955 Abstract: Herpes simplex virus 1 (HSV-1) is a herpesvirus that may cause cold sores or keratitis in healthy or immunocompetent individuals, but can lead to severe and potentially life-threatening complications in immune-immature individuals, such as neonates or immune-compromised patients. Like all other herpesviruses, HSV-1 can engage in lytic infection as well as establish latent infection. Current anti-HSV-1 therapies effectively block viral replication and infection. However, they have little effect on viral latency and cannot completely eliminate viral infection. These issues, along with the emergence of drug-resistant viral strains, pose a need to develop new compounds and novel strategies for the treatment of HSV-1 infection. Genome editing methods represent a promising approach against viral infection by modifying or destroying the genetic material of human viruses. These editing methods include homing endonucleases (HE) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein (Cas) RNA-guided nuclease system. Recent studies have showed that both HE and CRISPR/Cas systems are effective in inhibiting HSV- 1 infection in cultured cells in vitro and in mice in vivo.
    [Show full text]
  • Modern Trends in Plant Genome Editing: an Inclusive Review of the CRISPR/Cas9 Toolbox
    International Journal of Molecular Sciences Review Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox Ali Razzaq 1 , Fozia Saleem 1, Mehak Kanwal 2, Ghulam Mustafa 1, Sumaira Yousaf 2, Hafiz Muhammad Imran Arshad 2, Muhammad Khalid Hameed 3, Muhammad Sarwar Khan 1 and Faiz Ahmad Joyia 1,* 1 Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan 2 Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan 3 School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China * Correspondence: [email protected] Received: 14 June 2019; Accepted: 15 August 2019; Published: 19 August 2019 Abstract: Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing.
    [Show full text]
  • The Regulatory Status of Genome-Edited Crops Jeffrey D
    Agronomy Publications Agronomy 2-2016 The Regulatory Status of Genome-edited Crops Jeffrey D. Wolt Iowa State University, [email protected] Kan Wang Iowa State University, [email protected] Bing Yang Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Genomics Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/95. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Regulatory Status of Genome-edited Crops Abstract Genome editing with engineered nucleases (GEEN) represents a highly specific nda efficient tool for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA-repair pathways that lead to base additions or deletions by non-homologous end joining as well as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes.
    [Show full text]
  • Homing Endonucleases: from Microbial Genetic Invaders to Reagents for Targeted DNA Modification
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure Review Homing Endonucleases: From Microbial Genetic Invaders to Reagents for Targeted DNA Modification Barry L. Stoddard1,* 1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., A3-025, Seattle, WA 98109, USA *Correspondence: [email protected] DOI 10.1016/j.str.2010.12.003 Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 base pairs). They exhibit a wide range of fidelity at individual nucleotide positions in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation, or correction of DNA sequences. Over the past fifteen years, the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications. Endonuclease enzymes are ubiquitous catalysts that are A series of studies conducted in several laboratories over the involved in genomic modification, rearrangement, protection, ensuing years led to the discovery of homing endonucleases and and repair. Their specificity spans at least nine orders of magni- mobile introns and inteins within a wide variety of additional tude, ranging from nonspecific degradative enzymes up to microbial genomes (reviewed in Belfort and Perlman, 1995).
    [Show full text]
  • Implications of the EFSA Scientific Opinion on Site Directed Nucleases
    agronomy Review Implications of the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk Assessment of Genome-Edited Plants in the EU Nils Rostoks 1,2 1 Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia; [email protected] or [email protected] 2 Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia Abstract: Genome editing is a set of techniques for introducing targeted changes in genomes. It may be achieved by enzymes collectively called site-directed nucleases (SDN). Site-specificity of SDNs is provided either by the DNA binding domain of the protein molecule itself or by RNA molecule(s) that direct SDN to a specific site in the genome. In contrast to transgenesis resulting in the insertion of exogenous DNA, genome editing only affects specific endogenous sequences. Therefore, multiple jurisdictions around the world have exempted certain types of genome-edited organisms from national biosafety regulations completely, or on a case-by-case basis. In the EU, however, the ruling of the Court of Justice on the scope of mutagenesis exemption case C-528/16 indicated that the genome-edited organisms are subject to the GMO Directive, but the practical implications for stakeholders wishing to develop and authorize genome-edited products in the EU remain unclear. European Food Safety Authority in response to a request by European Commission has produced a Citation: Rostoks, N. Implications of scientific opinion on plants developed by SDN-1, SDN-2, and oligonucleotide-directed mutagenesis the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk (ODM) genome editing techniques.
    [Show full text]
  • Crystal Structure of I-Dmoi in Complex with Its Target DNA Provides New Insights Into Meganuclease Engineering
    Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering María Jose´ Marcaidaa,1, Jesu´ s Prietob,1, Pilar Redondoa, Alejandro D. Nadrac, Andreu Alibe´ sc, Luis Serranoc,d, Sylvestre Grizote, Philippe Duchateaue, Fre´ de´ ric Paˆ quese, Francisco J. Blancob,f, and Guillermo Montoyaa,2 aMacromolecular Crystallography and bNuclear Magnetic Resonance Groups, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain; cEuropean Molecular Biology Laboratory-Centre for Genomic Regulation Systems Biology Unit, Centre de Regulacio´Geno`mica, Parc de Recerca Biome`dica de Barcelona-Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; dInstitucio´Catalana de Recerca I Estudis Avanc¸ats and fStructural Biology Unit, Centro de Investigacio´n Cooperativa bioGUNE, Parque Tecnolo´gico de Vizcaya, Edificio800, 48160 Derio, Spain; and eCellectis S.A., 102 Route de Noisy 93235 Romainville, France Edited by Marlene Belfort, New York State Department of Health, Albany, NY, and approved September 24, 2008 (received for review May 17, 2008) Homing endonucleases, also known as meganucleases, are sequence- or intermonomer interface. The last acidic residue of this LAGLI- specific enzymes with large DNA recognition sites. These enzymes DADG motif participates in DNA cleavage by a metal ion depen- can be used to induce efficient homologous gene targeting in cells dent mechanism of phosphodiester hydrolysis (4). and plants, opening perspectives for genome engineering with A combinatorial and rational approach (10) has been used for applications in a wide series of fields, ranging from biotechnology engineering the overall specificity of the homodimeric meganucle- to gene therapy.
    [Show full text]
  • (NLS-I-Scei) Efficiently Mediated Mammalian Germline Transgenesis Via Embryo Cytoplasmic Microinjection
    The Meganuclease I-SceI Containing Nuclear Localization Signal (NLS-I-SceI) Efficiently Mediated Mammalian Germline Transgenesis via Embryo Cytoplasmic Microinjection Yong Wang1*., Xiao-Yang Zhou1., Peng-Ying Xiang1, Lu-Lu Wang1, Huan Tang2, Fei Xie1, Liang Li1, Hong Wei1* 1 Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China, 2 China Three Gorges Museum, Chongqing, China Abstract The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I- SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I- SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species.
    [Show full text]
  • Redesign of Extensive Protein–DNA Interfaces of Meganucleases Using Iterative Cycles of in Vitro Compartmentalization
    Redesign of extensive protein–DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization Ryo Takeuchi, Michael Choi, and Barry L. Stoddard1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by David Baker, University of Washington, Seattle, WA, and approved February 13, 2014 (received for review November 8, 2013) LAGLIDADG homing endonucleases (meganucleases) are sequence- residues. Although an industrial-scale engineering pipeline for specific DNA cleavage enzymes used for genome engineering. altering meganuclease specificity has been developed (6), the Recently, meganucleases fused to transcription activator-like effec- specialized knowledge and technology required for that ap- tors have been demonstrated to efficiently introduce targeted proach generally precludes their use by academic laboratories. genome modifications. However, retargeting meganucleases to In addition, a recent study has demonstrated that MegaTALs genomic sequences of interest remains challenging because it usu- (fusions of TAL effector DNA binding regions to meganucleases) ally requires extensive alteration of a large number of amino acid can induce a high level of targeted gene modification in human residues that are situated in and near the DNA interface. Here we cells (21). However, the utility of this platform still depends upon describe an effective strategy to extensively redesign such an the development of efficient strategies to engineer meganucleases extensive biomolecular interface.
    [Show full text]