Math 111: Logarithm Scales

Total Page:16

File Type:pdf, Size:1020Kb

Math 111: Logarithm Scales Math 111: Logarithm Scales Earthquakes used to be measured according to a logarithmic scale called the Richter scale which was based on the amplitude of the vibrations from the earthquake. The Richter scale has since been replaced by the Moment Magnitude scale, which is instead based on an estimate of the seismic energy released by the earthquake. The formula is 2 M = log(M ) − 10:7 w 3 0 where M0 is the seismic moment of the earthquake, measured in dyne-cm (a unit of energy). Example 1: The Long Beach earthquake of 1933 released 2 × 1025 dyne-cm of seismic energy. What was the moment magnitude of this earthquake? 2 M = log(2 × 1025) − 10:7 ≈ 6:17 w 3 Example 2: The 2010 Haiti earthquake had a moment magnitude of 7:0. About how much seismic energy was released? 2 3 (7:0+10:7) 26 7:0 = log(M ) − 10:7 ) M = 10 2 ≈ 3:55 × 10 dyne · cm 3 0 0 Example 3: The strongest earthquake since 1900 was the 1960 Valdivia earthquake in Chili. It had a moment magnitude of 9:5. How much stronger was the Valdivia earthquake than the Haitian earthquake of 2010? Well, we could just find the seismic moment of the Valdivia earthquake and compare... 2 3 (9:5+10:7) 30 9:5 = log(M ) − 10:7 ) M = 10 2 ≈ 2:00 × 10 dyne · cm 3 0 0 ...and divide the two. 2 × 1030 ≈ 5634 3:55 × 1026 That means the Valdivia earthquake released more than 5600 times as much energy as the Haitian earthquake. A simpler way to do this is to subtract the two magnitudes and simplify. 2 2 2 9:5 − 7:0 = log(V ) − 10:7 − log(H ) − 10:7 = log(V ) − log(H ) 3 M0 3 M0 3 M0 M0 2 VM0 VM0 3 (2:5) ) 2:5 = log ) = 10 2 ≈ 5623 3 HM0 HM0 ...and again we have that the Valdivia earthquake released more than 5600 times as much energy as the Haitian earthquake. The observed brightness of a star is formally its energy flux or the power per unit area radiated by the star. If measured in a unit like watts per cubic meter, this is a very small number which also varies by many orders of magnitude from star to star. For a more manageable parameter for the brightness of a star, a logarithmic scale called the apparent stellar magnitude is used. It is defined to be p f f m = − 5 100 log ≈ −2:5 log fV fV where f is the energy flux of the star and fV is a reference energy flux which for historical reasons is approximately the energy flux of the bright northern star Vega. Example 4: What is the stellar magnitude of Vega? fV mvega = −2:5 log = −2:5 log(1) = 0 fV In fact, a magnitude 0 star is quite bright! Example 5: What would be the stellar magnitude of a star which is one tenth as bright as Vega? 0:1f m = −2:5 log V = −2:5 log(0:1) = +2:5 fV A star with a positive stellar magnitude is dimmer than Vega. Example 6: The stellar magnitude of the bright star Sirius is -1.47. Which star is brighter, Sirius or Vega? How much brighter? Sirius is brighter than Vega. It is the brightest star in the sky (besides the Sun). fsirius msirius = −1:47 = −2:5 log fV log fsirius = −1:47 = 0:588 fV −2:5 fsirius log 0:588 10 fV = 10 ) fsirius ≈ 3:87fV So Sirius is almost four times brighter than Vega. Example 7: The star Betelgeuse has a magnitude of 0.45 while the star Deneb has a magnitude of 1.26. Which star is brighter? How much brighter is it? Betelgeuse is brighter. 0:45 − 1:26 = −2:5 log fbetel − −2:5 log fdeneb fV fV −0:81 = −2:5 log fbetel − log fdeneb fV fV fbetel −0:81 = log fV −2:5 fdeneb fV 0:324 = log fbetel · fV fV fdeneb fbetel 0:324 log 10 = 10 fdeneb ) fbetel ≈ 2:11fdeneb So Betelgeuse is a little more than twice as bright as Deneb. Math 111 Homework: Logarithm Scales 1. Use the Moment Magnitude scale to answer the following questions about earthquakes. (a) The Kern County earthquake of 1952 released about 2 × 1027 dyne-cm of seismic energy. What was the moment magnitude of the Kern County earthquake? (b) The El Centro earthquake of 1940 had a moment magnitude of 7:0. About how much seismic energy was released? (c) How much more seismic energy was released by the Sumatra earthquake of 2004 (Mw = 9:3) than the San Francisco earthquake of 1906 (Mw = 7:9)? 2. Use the apparent stellar magnitude scale to answer the following questions about stars. (a) How much brighter is the star Canopus (m = −0:72) than Vega? (b) Which is brighter, Aldebaran (m = 0:85) or Fomalhaut (m = 1:16)? How much brighter?.
Recommended publications
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Earthquake Measurements
    EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.
    [Show full text]
  • Energy and Magnitude: a Historical Perspective
    Pure Appl. Geophys. 176 (2019), 3815–3849 Ó 2018 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-018-1994-7 Pure and Applied Geophysics Energy and Magnitude: A Historical Perspective 1 EMILE A. OKAL Abstract—We present a detailed historical review of early referred to as ‘‘Gutenberg [and Richter]’s energy– attempts to quantify seismic sources through a measure of the magnitude relation’’ features a slope of 1.5 which is energy radiated into seismic waves, in connection with the parallel development of the concept of magnitude. In particular, we explore not predicted a priori by simple physical arguments. the derivation of the widely quoted ‘‘Gutenberg–Richter energy– We will use Gutenberg and Richter’s (1956a) nota- magnitude relationship’’ tion, Q [their Eq. (16) p. 133], for the slope of log10 E versus magnitude [1.5 in (1)]. log10 E ¼ 1:5Ms þ 11:8 ð1Þ We are motivated by the fact that Eq. (1)istobe (E in ergs), and especially the origin of the value 1.5 for the slope. found nowhere in this exact form in any of the tra- By examining all of the relevant papers by Gutenberg and Richter, we note that estimates of this slope kept decreasing for more than ditional references in its support, which incidentally 20 years before Gutenberg’s sudden death, and that the value 1.5 were most probably copied from one referring pub- was obtained through the complex computation of an estimate of lication to the next. They consist of Gutenberg and the energy flux above the hypocenter, based on a number of assumptions and models lacking robustness in the context of Richter (1954)(Seismicity of the Earth), Gutenberg modern seismological theory.
    [Show full text]
  • The Moment Magnitude and the Energy Magnitude: Common Roots
    The moment magnitude and the energy magnitude : common roots and differences Peter Bormann, Domenico Giacomo To cite this version: Peter Bormann, Domenico Giacomo. The moment magnitude and the energy magnitude : com- mon roots and differences. Journal of Seismology, Springer Verlag, 2010, 15 (2), pp.411-427. 10.1007/s10950-010-9219-2. hal-00646919 HAL Id: hal-00646919 https://hal.archives-ouvertes.fr/hal-00646919 Submitted on 1 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Click here to download Manuscript: JOSE_MS_Mw-Me_final_Nov2010.doc Click here to view linked References The moment magnitude Mw and the energy magnitude Me: common roots 1 and differences 2 3 by 4 Peter Bormann and Domenico Di Giacomo* 5 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 6 *Now at the International Seismological Centre, Pipers Lane, RG19 4NS Thatcham, UK 7 8 9 Abstract 10 11 Starting from the classical empirical magnitude-energy relationships, in this article the 12 derivation of the modern scales for moment magnitude M and energy magnitude M is 13 w e 14 outlined and critically discussed. The formulas for Mw and Me calculation are presented in a 15 way that reveals, besides the contributions of the physically defined measurement parameters 16 seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical 17 Gutenberg-Richter magnitude-energy relationship.
    [Show full text]
  • The Dot Product
    The Dot Product In this section, we will now concentrate on the vector operation called the dot product. The dot product of two vectors will produce a scalar instead of a vector as in the other operations that we examined in the previous section. The dot product is equal to the sum of the product of the horizontal components and the product of the vertical components. If v = a1 i + b1 j and w = a2 i + b2 j are vectors then their dot product is given by: v · w = a1 a2 + b1 b2 Properties of the Dot Product If u, v, and w are vectors and c is a scalar then: u · v = v · u u · (v + w) = u · v + u · w 0 · v = 0 v · v = || v || 2 (cu) · v = c(u · v) = u · (cv) Example 1: If v = 5i + 2j and w = 3i – 7j then find v · w. Solution: v · w = a1 a2 + b1 b2 v · w = (5)(3) + (2)(-7) v · w = 15 – 14 v · w = 1 Example 2: If u = –i + 3j, v = 7i – 4j and w = 2i + j then find (3u) · (v + w). Solution: Find 3u 3u = 3(–i + 3j) 3u = –3i + 9j Find v + w v + w = (7i – 4j) + (2i + j) v + w = (7 + 2) i + (–4 + 1) j v + w = 9i – 3j Example 2 (Continued): Find the dot product between (3u) and (v + w) (3u) · (v + w) = (–3i + 9j) · (9i – 3j) (3u) · (v + w) = (–3)(9) + (9)(-3) (3u) · (v + w) = –27 – 27 (3u) · (v + w) = –54 An alternate formula for the dot product is available by using the angle between the two vectors.
    [Show full text]
  • Basics of Linear Algebra
    Basics of Linear Algebra Jos and Sophia Vectors ● Linear Algebra Definition: A list of numbers with a magnitude and a direction. ○ Magnitude: a = [4,3] |a| =sqrt(4^2+3^2)= 5 ○ Direction: angle vector points ● Computer Science Definition: A list of numbers. ○ Example: Heights = [60, 68, 72, 67] Dot Product of Vectors Formula: a · b = |a| × |b| × cos(θ) ● Definition: Multiplication of two vectors which results in a scalar value ● In the diagram: ○ |a| is the magnitude (length) of vector a ○ |b| is the magnitude of vector b ○ Θ is the angle between a and b Matrix ● Definition: ● Matrix elements: ● a)Matrix is an arrangement of numbers into rows and columns. ● b) A matrix is an m × n array of scalars from a given field F. The individual values in the matrix are called entries. ● Matrix dimensions: the number of rows and columns of the matrix, in that order. Multiplication of Matrices ● The multiplication of two matrices ● Result matrix dimensions ○ Notation: (Row, Column) ○ Columns of the 1st matrix must equal the rows of the 2nd matrix ○ Result matrix is equal to the number of (1, 2, 3) • (7, 9, 11) = 1×7 +2×9 + 3×11 rows in 1st matrix and the number of = 58 columns in the 2nd matrix ○ Ex. 3 x 4 ॱ 5 x 3 ■ Dot product does not work ○ Ex. 5 x 3 ॱ 3 x 4 ■ Dot product does work ■ Result: 5 x 4 Dot Product Application ● Application: Ray tracing program ○ Quickly create an image with lower quality ○ “Refinement rendering pass” occurs ■ Removes the jagged edges ○ Dot product used to calculate ■ Intersection between a ray and a sphere ■ Measure the length to the intersection points ● Application: Forward Propagation ○ Input matrix * weighted matrix = prediction matrix http://immersivemath.com/ila/ch03_dotprodu ct/ch03.html#fig_dp_ray_tracer Projections One important use of dot products is in projections.
    [Show full text]
  • A Guided Tour to the Plane-Based Geometric Algebra PGA
    A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra.
    [Show full text]
  • Chapter 3 Vectors
    Chapter 3 Vectors 3.1 Vector Analysis ....................................................................................................... 1 3.1.1 Introduction to Vectors ................................................................................... 1 3.1.2 Properties of Vectors ....................................................................................... 1 3.2 Cartesian Coordinate System ................................................................................ 5 3.2.1 Cartesian Coordinates ..................................................................................... 6 3.3 Application of Vectors ............................................................................................ 8 Example 3.1 Vector Addition ................................................................................. 12 Example 3.2 Sinking Sailboat ................................................................................ 13 Example 3.3 Vector Description of a Point on a Line .......................................... 14 Example 3.4 Rotated Coordinate Systems ............................................................ 15 Example 3.5 Vector Description in Rotated Coordinate Systems ...................... 15 Example 3.6 Vector Addition ................................................................................. 17 Chapter 3 Vectors Philosophy is written in this grand book, the universe which stands continually open to our gaze. But the book cannot be understood unless one first learns to comprehend the language and
    [Show full text]
  • History of Mathematics Log of a Course
    History of mathematics Log of a course David Pierce / This work is licensed under the Creative Commons Attribution–Noncommercial–Share-Alike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ CC BY: David Pierce $\ C Mathematics Department Middle East Technical University Ankara Turkey http://metu.edu.tr/~dpierce/ [email protected] Contents Prolegomena Whatishere .................................. Apology..................................... Possibilitiesforthefuture . I. Fall semester . Euclid .. Sunday,October ............................ .. Thursday,October ........................... .. Friday,October ............................. .. Saturday,October . .. Tuesday,October ........................... .. Friday,October ............................ .. Thursday,October. .. Saturday,October . .. Wednesday,October. ..Friday,November . ..Friday,November . ..Wednesday,November. ..Friday,November . ..Friday,November . ..Saturday,November. ..Friday,December . ..Tuesday,December . . Apollonius and Archimedes .. Tuesday,December . .. Saturday,December . .. Friday,January ............................. .. Friday,January ............................. Contents II. Spring semester Aboutthecourse ................................ . Al-Khw¯arizm¯ı, Th¯abitibnQurra,OmarKhayyám .. Thursday,February . .. Tuesday,February. .. Thursday,February . .. Tuesday,March ............................. . Cardano .. Thursday,March ............................ .. Excursus.................................
    [Show full text]
  • AST 112 – Activity #4 the Stellar Magnitude System
    Students: ____________________ _____________________ _____________________ _____________________ AST 112 – Activity #4 The Stellar Magnitude System Purpose To learn how astronomers express the brightnesses of stars Objectives To review the origin of the magnitude system To calculate using base-ten logarithms To set the scale for apparent magnitudes To define absolute magnitude in terms of apparent magnitude and distance To determine the distance to a star given its apparent and absolute magnitudes Introduction The stellar magnitude system ranks stars according to their brightnesses. The original idea came from the ancient Greek scientist Hipparchus (c. 130 B.C.), who proclaimed the brightest stars to be of the first “magnitude”, the next brightest of the second magnitude, and so on down to 6th magnitude for the dimmest stars. Modern astronomers have adopted this general idea, adding specific mathematical and astronomical definitions. We explore how astronomers describe star brightnesses below. Part #1: Stellar magnitude scales 1. Given the information in the introduction, does the number used to represent a star’s magnitude increase or decrease with increasing brightness? 2. Astronomers define a difference of 5 magnitudes to be equivalent to a multiplicative factor of 100 in brightness. How many times brighter is a magnitude + 1 star compared to a magnitude + 6 star? 3. Extrapolate the magnitude system beyond positive numbers: what would be the magnitude of a star 100 times brighter than a magnitude + 3 star? Briefly defend your answer. 4. Suppose you are told a star has a magnitude of zero. Does that make sense? Does this mean the star has no brightness? Table 4-1.
    [Show full text]
  • • Flux and Luminosity • Brightness of Stars • Spectrum of Light • Temperature and Color/Spectrum • How the Eye Sees Color
    Stars • Flux and luminosity • Brightness of stars • Spectrum of light • Temperature and color/spectrum • How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective zone D) Photosphere E) Chromosphere Flux and luminosity • Luminosity - A star produces light – the total amount of energy that a star puts out as light each second is called its Luminosity. • Flux - If we have a light detector (eye, camera, telescope) we can measure the light produced by the star – the total amount of energy intercepted by the detector divided by the area of the detector is called the Flux. Flux and luminosity • To find the luminosity, we take a shell which completely encloses the star and measure all the light passing through the shell • To find the flux, we take our detector at some particular distance from the star and measure the light passing only through the detector. How bright a star looks to us is determined by its flux, not its luminosity. Brightness = Flux. Flux and luminosity • Flux decreases as we get farther from the star – like 1/distance2 • Mathematically, if we have two stars A and B Flux Luminosity Distance 2 A = A B Flux B Luminosity B Distance A Distance-Luminosity relation: Which star appears brighter to the observer? Star B 2L L d Star A 2d Flux and luminosity Luminosity A Distance B 1 =2 = LuminosityB Distance A 2 Flux Luminosity Distance 2 A = A B Flux B Luminosity B DistanceA 1 2 1 1 =2 =2 = Flux = 2×Flux 2 4 2 B A Brightness of stars • Ptolemy (150 A.D.) grouped stars into 6 `magnitude’ groups according to how bright they looked to his eye.
    [Show full text]
  • The Fraction Magnitude Knowledge Through Representations at Students with Mathematics Difficulties
    Advances in Computer Science Research, volume 95 Mathematics, Informatics, Science, and Education International Conference (MISEIC 2019) The Fraction Magnitude Knowledge through Representations at Students with Mathematics Difficulties Yusuf Fuad Ijtihadi Kamilia Amalina Universitas Negeri Surabaya Universitas Negeri Surabaya Surabaya, Indonesia Surabaya, Indonesia [email protected] [email protected] Abstract—Elementary school students’ knowledge of Fraction magnitude knowledge is important to master fraction magnitude may predict their mathematics higher mathematics concept for example algebra [1, 2, 3]. achievement. Students’ mathematics achievement is influenced Moreover, fraction magnitude knowledge is linked to student by their mathematics difficulties. This study exposes students’ mathematics achievement or support each other [12, 13]. representations in estimating fractions to indicate their fraction Poor mathematics achievement can be affected by learning magnitude knowledge. This study is conducted on the 4th grade of elementary students in Surabaya. A class which consists of 10 problems. Two types of learning problems can be girls and 18 boys, had chosen purposively from 3 available distinguished into a learning disability is situated in the classes. All students had to answer two tests, namely the child’s own cognitive, while learning difficulty is situated diagnostic test and the fraction magnitude test. Four volunteer outside the child [14]. Because of these reasons, mathematics students were selected as research subjects which have different difficulty in fraction becomes special attention [15]. and interesting mathematics difficulty in fraction. Semi- structured interview was conducted to all subjects to reveal Although many students understand fractions easily, students’ thinking process when solving diagnostic and fractions fraction magnitude is challenging for students with magnitude tests.
    [Show full text]