Ergatoid Reproductives in the Neotropical Termite Nasutitermes Aquilinus (Holmgren) (Blattaria: Isoptera: Termitidae): Developmental Origin, Fecundity, and Genetics

Total Page:16

File Type:pdf, Size:1020Kb

Ergatoid Reproductives in the Neotropical Termite Nasutitermes Aquilinus (Holmgren) (Blattaria: Isoptera: Termitidae): Developmental Origin, Fecundity, and Genetics Insect Science (2019) 00, 1–12, DOI 10.1111/1744-7917.12727 ORIGINAL ARTICLE Ergatoid reproductives in the Neotropical termite Nasutitermes aquilinus (Holmgren) (Blattaria: Isoptera: Termitidae): developmental origin, fecundity, and genetics Iago Bueno da Silva1 , Ives Haifig2 , Edward L. Vargo3, Fabiana Elaine Casarin4, Marcelo Luiz da Mota5, Juliana Toledo Lima6 and Ana Maria Costa-Leonardo1 1Laboratorio´ de Cupins, Departamento de Biologia, Instituto de Biociencias,ˆ Universidade Estadual Paulista—UNESP, Rio Claro, SP, Brazil; 2Centro de Cienciasˆ Naturais e Humanas, Universidade Federal do ABC, Sao˜ Bernardo do Campo, SP, Brazil; 3Department of Entomology, Texas A&M University, College Station, Texas, USA; 4Departamento de Cienciasˆ Biologicas,´ Universidade Federal de Sao˜ Paulo—UNIFESP, Diadema, SP, Brazil; 5InstitutodeCienciasˆ Agrarias,´ Universidade Federal de Uberlandia—UFU,ˆ Monte Carmelo, MG, Brazil and 6Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil Abstract Termite colonies are usually headed by primary reproductives, which estab- lish nests during the swarming season. However, secondary reproductives may develop in some species and become supplementary or replacement breeders, extending colony lifes- pan. Here we investigate the developmental origin, fecundity and genetic characterization of ergatoid reproductives in the Neotropical termite Nasutitermes aquilinus (Holmgren), using morphometrical and histological techniques, five microsatellite loci and the COI mitochondrial DNA. Twelve measurements performed on 208 apterous individuals of N. aquilinus revealed 10 groups, including ergatoid females, which developed from major workers through two successive molts, and were characterized by the presence of imaginal features such as eyes and wing buds. The differentiation of these features was correlated to physogastric development in these ergatoids. Histology revealed oocytes in all matu- ration stages in worker-derived reproductives of N. aquilinus, presence of nonflagellate spermatozoa inside the spermatheca, and royal fat body. Thus, ergatoid reproductives were reproductively functional. According to the genotypes of 221 individuals from 11 nests, and mitochondrial haplotypes of 43 ergatoids, 73% of the colonies were simple families, whereas 27% were extended families. Despite the occurrence of related reproductives, low inbreeding rates were detected within and among colonies. Such values could be explained given that sib mating itself cannot result in a higher inbreeding rate but depend on several factors discussed in detail. This is the first study to investigate the genetic structure of termite colonies influenced by the development of ergatoids, and further investigations are encouraged to understand the influence of these reproductives on colony lifespan. Key words breeding system; caste differentiation; COI; genotyping; microsatellites; reproduction Introduction Correspondence: Ana Maria Costa-Leonardo, Laboratorio´ Termite colonies are usually headed by primary repro- de Cupins, Departamento de Biologia, Instituto de Biociencias,ˆ ductives, termed king and queen, which establish the new Universidade Estadual Paulista—UNESP,Rio Claro, SP 13.506- colonies after swarming (Roisin, 2000). This event may be 900, Brazil. Tel: +55 19 35264138; fax: +55 19 35264138; influenced by several factors and tend to be synchronized email: [email protected] among colonies, increasing the likelihood of unrelated 1 C 2019 Institute of Zoology, Chinese Academy of Sciences 2 I. B. da Silva et al. partners founding a new nest (Mitchell, 2008). In many The Neotropical termite Nasutitermes aquilinus (Holm- species, the breeding tasks of the colonies are performed gren) is an arboreal nest-building species classified as by secondary reproductives when the primary reproduc- an opportunistic pest in rural buildings (Torales, 1998; tives are absent. These individuals are neotenics when Fontes & Milano, 2002). Colonies of N. aquilinus are gen- differentiated from immatures or adultoids when differ- erally headed by a founding pair but, according to Torales entiated from winged sexuals (Myles, 1999). Neotenic and Coronel (2006), about 20% of the colonies develop reproductives develop from workers, referred to as erga- ergatoid reproductives during their lifecycle. Ergatoid toids, or from nymphs, referred to as nymphoids (Roisin, reproductives may be numerous when present, occurring 2000), and their occurrence is less prominent within the in dozens or even hundreds of individuals, but only their so-called higher termites, in which these individuals are external morphology has been examined in previous re- replaced by adultoid reproductives in some Termitidae search studies (Fontes & Terra, 1981; Torales & Coronel, lineages (Myles, 1999). 2006). Thus, this study aimed to explore the developmen- Sexual reproduction is predominant within Isoptera, tal origin, fecundity and genetics of the ergatoid reproduc- resulting in a higher genetic diversity which has a tives of N. aquilinus, trying to answer the following funda- positive impact on colony survival during environmental mental questions: How do ergatoid females differentiate stress. Some species conditionally alternate from sexual within the apterous line? Are those individuals functional to asexual reproduction, solving this breeding tradeoff reproductives? How are the colonies of N. aquilinus (Matsuura, 2011). Thus, while the genetic diversity is genetically structured? To answer these questions, we maintained through sexual reproduction, the queen may used different methodological approaches, including adopt asexual reproduction to duplicate her genetic morphometry, histology, and genetic analyses using mi- contribution and increase within-colony relatedness crosatellite markers and mitochondrial DNA sequencing. (Matsuura et al., 2009). In both sexual and asexual reproduction, the secondary reproductives may extend Materials and methods the colony lifespan (Vargo, 2019). Termite colonies may be classified into the following Sampling of termites breeding structures: simple families, in which a single pair of monogamous reproductives and its progeny are present; A total of 12 nests (#1 – #12) of N. aquilinus (Holmgren, extended families, in which multiple related reproductives 1910) were collected from urban and agricultural areas descend from a royal couple and perform the reproduc- in the cities of Rio Claro (22°2443.9S47°3634.0W), tive tasks; and mixed families, characterized by the co- Sao˜ Carlos (21°5926.7S47°5258.3W), Corum- existence of unrelated reproductives and their progeny bata´ı(22°1326.2S47°3826.1W), and Itapetininga (Vargo & Husseneder, 2011; Vargo, 2019). In any case, (23°354.1S; 48°159W), State of Sao˜ Paulo, Brazil many factors are responsible for the genetic structure of (Fig.1,Table1). the colonies, including number and relatedness among primary and secondary reproductives, and the number of descendant generations (Thorne et al., 1999; Vargo & Morphometry Husseneder, 2011). The genus Nasutitermes is the most diverse in num- Sampled termites from #1, #2, and #12 were fixed in ber of species within Isoptera and show plentiful variety FAA(formaldehyde, absolute alcohol, and glacial acetic of breeding mechanisms. The occurrence of multiple sec- acid, 1 : 3 : 1) during 24 h and transferred to 80% ethanol. ondary reproductives is common, which exhibit an impor- All the samples were analyzed under stereomicroscope tant role in egg-laying rate and contribute to the population Zeiss Stemi SV11 (Zeiss, Jena, Germany) and 12 different growth (Roisin & Pasteels, 1986, 1987; Lefeuve, 1987; measures were obtained following the methods described Noirot & Thorne, 1988). Few studies have focused on the by Haifig and Costa-Leonardo (2016). In total, 208 genetic structure within Nasutitermes, shedding light on apterous individuals were measured: 45 larvae, 30 minor the origins and relatedness of the reproductives, as well workers, 30 major workers, 15 minor soldiers, 45 major as the inbreeding rate in colonies headed by them (Atkin- soldiers, 30 presoldiers, 3 preneotenics, and 10 ergatoid son & Adams, 1997; Thompson & Hebert, 1998; Adams females. The measures used were: (1) head length (HL), et al., 2007). However, no genetic investigation has fo- including the nasus in the case of soldiers; (2) maximum cused on the ergatoid reproductives, which differentiate head width (HW1); (3) head width at the base of the in about 36% of the Nasutitermes spp. studied up until mandibles (HW2); (4) maximum head height without now (Silva et al., 2018, unpublished data). postmentum (HH); (5) labrum width (LW); (6) pronotum C 2019 Institute of Zoology, Chinese Academy of Sciences, 00, 1–12 Ergatoid reproductives in Nasutitermes aquilinus 3 Fig. 1 (A) Arboreal nest of Nasutitermes aquilinus. (B) Ergatoid females (ef) and major workers (Mw). length (PL); (7) pronotum width (PW); (8) mesonotum based on the cylinder shape. To estimate a correlation be- length (MsL); (9) metanotum length (MtL); (10) tibia tween physogastry and development of imaginal features, length (TL); (11) femur length (FL); and (12) femur width the right anterior wing bud length was also measured, and (FW). Morphometric data were submitted to a principal the data were subjected to the Pearson’scorrelation coeffi- component analysis (PCA). The scores of PC1 and PC2 cient. All statistical tests were performed using R version were analyzed using ANOVA (one-way),
Recommended publications
  • Evolution and Ecology of Termite Nesting Behavior and Its Impact On
    1 Evolution and Ecology of Termite Nesting Behavior and Its Impact on Disease Susceptibility A dissertation presented by Marielle Aimée Postava-Davignon to The Department of Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Biology Northeastern University Boston, Massachusetts April, 2010 2 Evolution and Ecology of Termite Nesting Behavior and Its Impact on Disease Susceptibility by Marielle Aimée Postava-Davignon ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology in the Graduate School of Arts and Sciences of Northeastern University, April, 2010 3 Abstract Termites construct nests that are often structurally species-specific. They exhibit a high diversity of nest structures, but their nest evolution is largely unknown. Current hypotheses for the factors that influenced nest evolution include adaptations that improved nest thermoregulation, defense against predators, and competition for limited nest sites. Studies have shown a lower prevalence of pathogens and parasites in arboreal nesting animal species compared to ground nesters. Nest building behavior is plastic and can adapt to changing environments. As termites can detect and avoid pathogens, I hypothesized that the evolution of arboreal termite nests was an adaptation to avoid infection. To test this, bacteria and fungi from nest cores, trails, and surrounding soils of the arboreal nesting Nasutitermes acajutlae were cultured. Abiotic factors such as temperature, relative humidity, and light were measured to elucidate how they influenced the interactions between termites and microbes. Fungi associated with N. acajutlae were identified to determine the potential pathogenic pressures these termites encounter in their nest as compared to the external environment.
    [Show full text]
  • In Termite Nests (Blattodea: Termitidae) in a Cocoa Plantation in Brazil Biota Neotropica, Vol
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Teixeira Lisboa, Jonathas; Guerreiro Couto, Erminda da Conceição; Pereira Santos, Pollyanna; Charles Delabie, Jacques Hubert; Araujo, Paula Beatriz Terrestrial isopods (Crustacea: Isopoda: Oniscidea) in termite nests (Blattodea: Termitidae) in a cocoa plantation in Brazil Biota Neotropica, vol. 13, núm. 3, julio-septiembre, 2013, pp. 393-397 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199128991039 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 13, no. 3 Terrestrial isopods (Crustacea: Isopoda: Oniscidea) in termite nests (Blattodea: Termitidae) in a cocoa plantation in Brazil Jonathas Teixeira Lisboa1,7, Erminda da Conceição Guerreiro Couto2, Pollyanna Pereira Santos3, Jacques Hubert Charles Delabie4,5 & Paula Beatriz Araujo6 1Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/zoologia 2Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/cursos/pos_graduacao/mestrado/ppsat 3Universidade Federal de Viçosa – UFV, CEP 36570-000 Viçosa, MG, Brasil. www.pos.entomologia.ufv.br 4Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz – UESC, Campus Soane Nazaré de Andrade, Rod. Ilhéus-Itabuna, km 16, CEP 45662-900, Ilhéus, BA, Brasil. www.uesc.br/dcaa/index.php 5Laboratório de Mirmecologia, Convênio UESC/CEPLAC, Centro de Pesquisa do Cacau, CP 7, CEP 45600-000 Itabuna, BA, Brasil.
    [Show full text]
  • Distribution and Population Dynamics of the Asian Cockroach
    DISTRIBUTION AND POPULATION DYNAMICS OF THE ASIAN COCKROACH (BLATTELLA ASAHINIA MIZUKUBO) IN SOUTHERN ALABAMA AND GEORGIA Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. ___________________________________ Edward Todd Snoddy Certificate of Approval: ___________________________ ___________________________ Micky D. Eubanks Arthur G. Appel, Chair Associate Professor Professor Entomology and Plant Pathology Entomology and Plant Pathology ___________________________ ___________________________ Xing Ping Hu George T. Flowers Associate Professor Interim Dean Entomology and Plant Pathology Graduate School DISTRIBUTION AND POPULATION DYNAMICS OF THE ASIAN COCKROACH (BLATTELLA ASAHINIA MIZUKUBO) IN SOUTHERN ALABAMA AND GEORGIA Edward Todd Snoddy A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama May 10, 2007 DISTRIBUTION AND POPULATION DYNAMICS OF THE ASIAN COCKROACH (BLATTELLA ASAHINIA MIZUKUBO) IN SOUTHERN ALABAMA AND GEORGIA Edward Todd Snoddy Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. _______________________ Signature of Author _______________________ Date of Graduation iii VITA Edward Todd Snoddy was born in Auburn, Alabama on February 28, 1964 to Dr. Edward Lewis Snoddy and Lucy Mae Snoddy. He graduated Sheffield High School, Sheffield, Alabama in 1981. He attended Alexander Junior College from 1981 to 1983 at which time he transferred to Auburn University. He married Tracy Smith of Uchee, Alabama in 1984.
    [Show full text]
  • Isoptera Book Chapter
    Isoptera 535 See Also the Following Articles Biodiversity ■ Biogeographical Patterns ■ Cave Insects ■ Introduced Insects Further Reading Carlquist , S. ( 1974 ) . “ Island Biology . ” Columbia University Press , New York and London . Gillespie , R. G. , and Roderick , G. K. ( 2002 ) . Arthropods on islands: Colonization, speciation, and conservation . Annu. Rev. Entomol. 47 , 595 – 632 . Gillespie , R. G. , and Clague , D. A. (eds.) (2009 ) . “ Encyclopedia of Islands. ” University of California Press , Berkeley, CA . Howarth , F. G. , and Mull , W. P. ( 1992 ) . “ Hawaiian Insects and Their Kin . ” University of Hawaii Press , Honolulu, HI . MacArthur , R. H. , and Wilson , E. O. ( 1967 ) . “ The Theory of Island Biogeography . ” Princeton University Press , Princeton, NJ . Wagner , W. L. , and Funk , V. (eds.) ( 1995 ) . “ Hawaiian Biogeography Evolution on a Hot Spot Archipelago. ” Smithsonian Institution Press , Washington, DC . Whittaker , R. J. , and Fern á ndez-Palacios , J. M. ( 2007 ) . “ Island Biogeography: Ecology, Evolution, and Conservation , ” 2nd ed. Oxford University Press , Oxford, U.K . I Isoptera (Termites) Vernard R. Lewis FIGURE 1 Castes for Isoptera. A lower termite group, University of California, Berkeley Reticulitermes, is represented. A large queen is depicted in the center. A king is to the left of the queen. A worker and soldier are he ordinal name Isoptera is of Greek origin and refers to below. (Adapted, with permission from Aventis Environmental the two pairs of straight and very similar wings that termites Science, from The Mallis Handbook of Pest Control, 1997.) Thave as reproductive adults. Termites are small and white to tan or sometimes black. They are sometimes called “ white ants ” and can be confused with true ants (Hymenoptera).
    [Show full text]
  • Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
    www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss.
    [Show full text]
  • Treatise on the Isoptera of the World Kumar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications KRISHNA ET AL.: ISOPTERA OF THE WORLD: 7. REFERENCES AND INDEX7. TREATISE ON THE ISOPTERA OF THE WORLD 7. REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA, AND MICHAEL S. ENGEL A MNH BULLETIN (7) 377 2 013 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY TREATISE ON THE ISOPTERA OF THE WORLD VolUME 7 REFERENCES AND INDEX KUMAR KRISHNA, DAVID A. GRIMALDI, VALERIE KRISHNA Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192 AND MICHAEL S. ENGEL Division of Invertebrate Zoology, American Museum of Natural History Central Park West at 79th Street, New York, New York 10024-5192; Division of Entomology (Paleoentomology), Natural History Museum and Department of Ecology and Evolutionary Biology 1501 Crestline Drive, Suite 140 University of Kansas, Lawrence, Kansas 66045 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 377, 2704 pp., 70 figures, 14 tables Issued April 25, 2013 Copyright © American Museum of Natural History 2013 ISSN 0003-0090 2013 Krishna ET AL.: ISOPtera 2435 CS ONTENT VOLUME 1 Abstract...................................................................... 5 Introduction.................................................................. 7 Acknowledgments . 9 A Brief History of Termite Systematics ........................................... 11 Morphology . 44 Key to the
    [Show full text]
  • Taxonomy, Biogeography, and Notes on Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands
    SYSTEMATICS Taxonomy, Biogeography, and Notes on Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands RUDOLF H. SCHEFFRAHN,1 JAN KRˇ ECˇ EK,1 JAMES A. CHASE,2 BOUDANATH MAHARAJH,1 3 AND JOHN R. MANGOLD Ann. Entomol. Soc. Am. 99(3): 463Ð486 (2006) ABSTRACT Termite surveys of 33 islands of the Bahamas and Turks and Caicos (BATC) archipelago yielded 3,533 colony samples from 593 sites. Twenty-seven species from three families and 12 genera were recorded as follows: Cryptotermes brevis (Walker), Cr. cavifrons Banks, Cr. cymatofrons Schef- Downloaded from frahn and Krˇecˇek, Cr. bracketti n. sp., Incisitermes bequaerti (Snyder), I. incisus (Silvestri), I. milleri (Emerson), I. rhyzophorae Herna´ndez, I. schwarzi (Banks), I. snyderi (Light), Neotermes castaneus (Burmeister), Ne. jouteli (Banks), Ne. luykxi Nickle and Collins, Ne. mona Banks, Procryptotermes corniceps (Snyder), and Pr. hesperus Scheffrahn and Krˇecˇek (Kalotermitidae); Coptotermes gestroi Wasmann, Heterotermes cardini (Snyder), H. sp., Prorhinotermes simplex Hagen, and Reticulitermes flavipes Koller (Rhinotermitidae); and Anoplotermes bahamensis n. sp., A. inopinatus n. sp., Nasuti- termes corniger (Motschulsky), Na. rippertii Rambur, Parvitermes brooksi (Snyder), and Termes http://aesa.oxfordjournals.org/ hispaniolae Banks (Termitidae). Of these species, three species are known only from the Bahamas, whereas 22 have larger regional indigenous ranges that include Cuba, Florida, or Hispaniola and beyond. Recent exotic immigrations for two of the regional indigenous species cannot be excluded. Three species are nonindigenous pests of known recent immigration. IdentiÞcation keys based on the soldier (or soldierless worker) and the winged imago are provided along with species distributions by island. Cr. bracketti, known only from San Salvador Island, Bahamas, is described from the soldier and imago.
    [Show full text]
  • Termites (Isoptera) in the Azores: an Overview of the Four Invasive Species Currently Present in the Archipelago
    Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago MARIA TERESA FERREIRA ET AL. Ferreira, M.T., P.A.V. Borges, L. Nunes, T.G. Myles, O. Guerreiro & R.H. Schef- frahn 2013. Termites (Isoptera) in the Azores: an overview of the four invasive species currently present in the archipelago. Arquipelago. Life and Marine Sciences 30: 39-55. In this contribution we summarize the current status of the known termites of the Azores (North Atlantic; 37-40° N, 25-31° W). Since 2000, four species of termites have been iden- tified in the Azorean archipelago. These are spreading throughout the islands and becoming common structural and agricultural pests. Two termites of the Kalotermitidae family, Cryp- totermes brevis (Walker) and Kalotermes flavicollis (Fabricius) are found on six and three of the islands, respectively. The other two species, the subterranean termites Reticulitermes grassei Clemént and R. flavipes (Kollar) of the Rhinotermitidae family are found only in confined areas of the cities of Horta (Faial) and Praia da Vitória (Terceira) respectively. Due to its location and weather conditions the Azorean archipelago is vulnerable to coloni- zation by invasive species. The fact that there are four different species of termites in the Azores, all of them considered pests, is a matter of concern. Here we present a comparative description of these species, their known distribution in the archipelago, which control measures are being used against them, and what can be done in the future to eradicate and control these pests in the Azores.
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • Intracolonial Demography of the Mound-Building Termite Macrotermes Natalensis (Haviland) (Isoptera, Termitidae) in the Northern Kruger National Park, South Africa
    Insectes soc. 47 (2000) 390–397 0020-1812/00/040390-08 $ 1.50+0.20/0 Insectes Sociaux © Birkhäuser Verlag, Basel, 2000 Research article Intracolonial demography of the mound-building termite Macrotermes natalensis (Haviland) (Isoptera, Termitidae) in the northern Kruger National Park, South Africa V.W. Meyer 1, *, R.M. Crewe 1,L.E.O.Braack2, H.T. Groeneveld 3 and M.J. van der Linde 3 1 Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa, e-mail: [email protected]; [email protected] 2 Department of Conservation Development, Kruger National Park, Skukuza, 1350, South Africa, e-mail: [email protected] 3 Department of Statistics, University of Pretoria, Pretoria, 0002, South Africa, e-mail: [email protected]; [email protected] * Correspondence address: PO Box 1969, Wingate Park, 0153, South Africa Received 14 January 2000; revised 18 September 2000; accepted 26 September 2000. Summary. This paper reports on the number of individuals todeally (from the rectum). Secondly, termites have been in Macrotermes natalensis (Hav.) colonies of different sized shown to fix nitrogen (Curtis and Waller, 1998). If the nitro- mounds in the northern Kruger National Park. Mounds were gen fixation rate per individual termite is known, caste num- fully excavated, termites collected by means of vacuuming, bers and proportions provided by the present study can be and colony size estimated by sub-sampling. The proportion used to accurately derive overall nitrogen fixation, as rates of of termites in the mound (above and underground sections) fixation vary among species and castes via microbes and amounts to more than 70% of the colony; the rest being pre- fungi (e.g., Matsumoto and Abe, 1979; Collins, 1983).
    [Show full text]
  • Complementary Symbiont Contributions to Plant Decomposition in a Fungus-Farming Termite
    Complementary symbiont contributions to plant decomposition in a fungus-farming termite Michael Poulsena,1,2, Haofu Hub,1, Cai Lib,c, Zhensheng Chenb, Luohao Xub, Saria Otania, Sanne Nygaarda, Tania Nobred,3, Sylvia Klaubaufe, Philipp M. Schindlerf, Frank Hauserg, Hailin Panb, Zhikai Yangb, Anton S. M. Sonnenbergh, Z. Wilhelm de Beeri, Yong Zhangb, Michael J. Wingfieldi, Cornelis J. P. Grimmelikhuijzeng, Ronald P. de Vriese, Judith Korbf,4, Duur K. Aanend, Jun Wangb,j, Jacobus J. Boomsmaa, and Guojie Zhanga,b,2 aCentre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; bChina National Genebank, BGI-Shenzen, Shenzhen 518083, China; cCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark; dLaboratory of Genetics, Wageningen University, 6708 PB, Wageningen, The Netherlands; eFungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, NL-3584 CT, Utrecht, The Netherlands; fBehavioral Biology, Fachbereich Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany; gCenter for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; hDepartment of Plant Breeding, Wageningen University and Research Centre, NL-6708 PB, Wageningen, The Netherlands; iDepartment of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria SA-0083, South Africa; and jDepartment of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, and approved August 15, 2014 (received for review October 24, 2013) Termites normally rely on gut symbionts to decompose organic levels-of-selection conflicts that need to be regulated (12).
    [Show full text]
  • Morphology and Gonad Development of Normal Soldiers and Reproductive Soldiers of the Termite Zootermopsis Nevadensis Nevadensis (Isoptera, Archotermopsidae)
    A peer-reviewed open-access journal ZooKeysMorphology 148: 15–30 and(2011) gonad development of normal soldiers and reproductive soldiers of the termite... 15 doi: 10.3897/zookeys.148.1672 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Morphology and gonad development of normal soldiers and reproductive soldiers of the termite Zootermopsis nevadensis nevadensis (Isoptera, Archotermopsidae) Susan E. Johnson1, Nancy L. Breisch1, Bahram Momen2, Barbara L. Thorne1 1 Department of Entomology, University of Maryland, College Park, MD 20742, USA 2 Department of En- vironmental Science & Technology, University of Maryland, College Park, MD 20742, USA Corresponding authors: Barbara L. Thorne ([email protected]), Nancy L. Breisch ([email protected]) Academic editor: Michael Engel | Received 7 June 2011 | Accepted 9 August 2011 | Published 21 November 2011 Citation: Johnson SE, Breisch NL, Momen B, Thorne BL (2011) Morphology and gonad development of normal soldiers and reproductive soldiers of the termite Zootermopsis nevadensis nevadensis (Isoptera, Archotermopsidae). In: Engel MS (Ed) Contributions Celebrating Kumar Krishna. ZooKeys 148: 15–30. doi: 10.3897/zookeys.148.1672 Abstract Reproductive or neotenic soldiers of the Archotermopsid Zootermopsis nevadensis nevadensis (Hagen) are compared to sterile soldiers and primary male reproductives. Several head capsule morphometrics cor- relate significantly with gonad size across all forms and both sexes of soldiers. The easily observed field character of ratio of mandible length to labrum length is a consistent and reliable feature of head capsule external morphology for predicting gonad development and reproductive potential of soldier forms re- gardless of age, sex, or live weight. Keywords evolution of soldier caste, reproductive soldier, neotenic soldier, Zootermopsis, morphometrics Introduction Soldiers are a non-reproductive defensive caste in termites (though they may sometimes have other roles (Traniello 1981) and are not always the exclusive defensive caste in a colony (e.g.
    [Show full text]