Trophic Implications of Light Reductions for Amphibolis Griffithii Seagrass Fauna

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Implications of Light Reductions for Amphibolis Griffithii Seagrass Fauna Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2010 Trophic implications of light reductions for Amphibolis Griffithii seagrass fauna Adam Gartner Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Gartner, A. (2010). Trophic implications of light reductions for Amphibolis Griffithii seagrass fauna. https://ro.ecu.edu.au/theses/134 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/134 Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2010 Trophic implications of light reductions for Amphibolis Griffithii ase grass fauna Adam Gartner Edith Cowan University Recommended Citation Gartner, A. (2010). Trophic implications of light reductions for Amphibolis Griffithii seagrass fauna. Retrieved from http://ro.ecu.edu.au/ theses/134 This Thesis is posted at Research Online. http://ro.ecu.edu.au/theses/134 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. TROPHIC IMPLICATIONS OF LIGHT REDUCTIONS FOR AMPHIBOLIS GRIFFITHII SEAGRASS FAUNA Adam Gartner Bachelor of Science (Hons) This thesis is presented in fulfilment of the requirements for the degree of Doctorate of Philosophy (Environmental Science/Management) Faculty of Computing, Health and Science Edith Cowan University May 2010 1 USE OF THESIS The Use of Thesis statement is not included in this version of the thesis. ABSTRACT The ongoing threat of seagrass loss from reduced light availability, coupled with our lack of knowledge of associated trophic responses has motivated this characterization of the flow-on effects of light reductions to Amphibolis griffithii seagrass fauna. Recently, field manipulations of varying light reductions, induced disturbances in a A. griffithii seagrass meadow that have been shown to effect potential food resources and the structural complexity of seagrass habitats for macroinvertebrates. This offered the opportunity to assess the flow-on effects to seagrass for fauna, a topic that has seldom been examined. This study investigated the effects of different light reduction intensity (high: ~92% reduction; moderate: ~84% reduction), duration (3, 6 and 9 mo) and timing (post-winter and post-summer) on the density, biomass and community composition of macroinvertebrate epifauna within an A. griffithii seagrass ecosystem (Western Australia). Shade structures, placed within a healthy A. griffithii meadow, were used to create the light reduction treatments. Following shading, there were significant interactions between all three light reduction factors, and generally there was decline in the density and biomass of fauna (between 38% and 89% in density) and the number of families with increasing duration and intensity of light reduction (between 11 and 53% fewer families in light reduction treatments). There was also an effect of time, with taxa abundance and family composition Post-summer differing to Post-winter. However, not all fauna responded consistently, with gastropods appearing to be most sensitive to the shading treatments, while bivalves the least. Ten months after the removal of the light reduction treatments, plots shaded for three months were re-examined to test the resilience of the macroinvertebrate assemblage (in terms of their densities and biomass). No differences were detected among the impacted and control treatments, suggesting where moderate impacts occur in seagrasses, macroinvertebrate fauna have the capacity for recovery. Changes in the epifaunal assemblage were largely associated with declines in algal biomass, leaf variables and stem biomass, indicating food and habitat limitations. To better understand the underlying processes driving these changes, we also tested (using artificial seagrass units) whether the importance of the different structural components of seagrasses for macroinvertebrate fauna was consistent between types of seagrass meadows with naturally different complexity (A. griffithii, Posidonia sinuosa, Cymodocea nodosa ). We concluded from these experiments that the effect of highly 3 complex structural components of the seagrass canopy (for example, that provided by algal epiphytes) is more important than overall seagrass form, however, this effect is likely moderated by available seagrass canopy surface area, which when limited, may result in structural complexity having lower effect than seagrass species with high surface area available. Unfortunately, our ability to predict the effects of the complex interactions of light reductions on higher trophic orders is considerably limited (due to experimental constraints). Qualitative and quantitative modelling techniques, however, offer an effective alternative approach. We used Loop analysis and Ecopath with Ecosim to estimate the flow-on effects of reduced primary productivity of A. griffithii seagrass meadow on macrograzers, omnivores, invertivores and piscivorous fish. The results of modelling predict that there will be a lower overall net biomass in these fish taxa with increasing duration and intensity of disturbance. However, the effect of disturbances on piscivores is likely to lag for approximately 2 years, but once their population biomass declines, they would be unlikely recover. 4 DECLARATION I certify that this thesis does not, to the best of my knowledge and belief: (i) incorporate without acknowledgment any material previously submitted for a degree or diploma in any institution of higher education. (ii) contain any material previously published or written by another person except where due reference is made in the text; or (iii) contain any defamatory material. I also grant permission for the Library at Edith Cowan University to make duplicate copies of my thesis as required. Signature: … ……. Date: 21 May 2010 5 ACKNOWLEDGEMENTS First and foremost I would like to give many thanks to my supervisors, who often and with great patience, guided my through the post-graduate journey. Firstly Paul Lavery, who somewhat dubiously turned around my career aspirations from becoming a coral reef ecologist to focus on seagrasses, I now wholly appreciate the opportunity you gave me for the involvement in this unique project. Beyond the wisdom, enthusiasm and guidance Paul imparted, I would also like to acknowledge the extra opportunities that he afforded during my studies, which have advantaged me immensely now that I am looking forward in my career. Kathryn McMahon, who in addition to enormously adding to my understanding of seagrass ecosystems, ruled the Jurien Bay field studies like no other and kept myself and my project on track daily. Her insight, encouragement and patience saw many a field trip over the line often under trying conditions. Anne Brearley, is there a seagrass critter that you do not know of or love? Thank-you for the great conversations in the lab, and all of the advice you shared in identifying seagrass fauna. And finally Hector Lozano-Montes for making my Jurien Seagrass model a reality. I am entirely indebted to all of those people who helped out with the mountain of usually strenuous field work involved in this study. This work could not have been done without you. Among many, I would like to single out Helen Barwick, Andrew Tennyson, Paul Mackey, Peter Quintana and Michael Mulligan. The two-year intensive field program required numerous divers working in challenging field conditions, thank-you to all who assisted. I also wish to make a special acknowledgment to Johan Eckloff, who’s advice and foresight saw me do numerous trips to Jurien Bay, when I only had one planned, but saved certain collapse of my caging experiment. During my studies, I had the pleasure of attending the 43 rd European Marine Biology Symposium, followed up by a short research trip to the Canary Islands. Firstly in that regard I wish to acknowledge the support of my colleague and dear friend Dr Fernando Tuya, as well as the Department of Biology, University of Las Palmas for an amazing trip from which I gained a wealth of insight and had a ball. I also wish to acknowledge Paul Lavery, The School of Natural Sciences at Edith Cowan University 6 and the Holsworth Wildlife Research fund for generously supporting this trip financially. Thank you to the Strategic Research Fund for the Marine Environment for funding support and for providing the opportunity for so many students to undertake relevant
Recommended publications
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Spatial and Temporal Variability in the Effects of Fish Predation on Macrofauna in Relation to Habitat Complexity and Cage Effects
    MARINE ECOLOGY PROGRESS SERIES Vol. 224: 231–250, 2001 Published December 19 Mar Ecol Prog Ser Spatial and temporal variability in the effects of fish predation on macrofauna in relation to habitat complexity and cage effects Jeremy S. Hindell1, 2,*, Gregory P. Jenkins3, Michael J. Keough1 1Department of Zoology, University of Melbourne, Parkville, Victoria 3010, Australia 2Queenscliff Marine Station, PO Box 138, Queenscliff, Victoria 3225, Australia 3Marine and Freshwater Research Institute, Weeroona Parade, Queenscliff, Victoria 3225, Australia ABSTRACT: The effects of predation by fishes, in relation to habitat complexity and periodicity of sampling, on abundances of fishes and macroinvertebrates were investigated using controlled caging experiments during summer 1999/2000 at multiple locations (Blairgowrie, Grand Scenic, and Kilgour) in Port Phillip Bay, Australia. A second experiment evaluated biological and physical cage effects. Sites and habitats, but not caging treatments, could generally be differentiated by the assem- blage structure of fishes. Regardless of species, small fishes were generally more abundant in seagrass than unvegetated sand, although the nature of this pattern was site- and time-specific. Depending on the site, abundances of fishes varied between cage treatments in ways that were con- sistent with neither cage nor predation effects (Grand Scenic), strong cage effects (Kilgour) or strong predation or cage effects (Blairgowrie). The abundance of syngnathids varied inconsistently between caging treatments and habitats within sites through time. Although they were generally more abun- dant in seagrass, whether or not predation or cage effects were observed depended strongly on the time of sampling. Atherinids and clupeids generally occurred more commonly over seagrass. In this habitat, atherinids varied between cage treatments in a manner consistent with strong cage effects, while clupeids varied amongst predator treatments in a way that could be explained either by cage or predation effects.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Marine Ecology
    Appendix T Appendix T Marine ecology January 2020 Roads and Maritime Services Western Harbour Tunnel and Warringah Freeway Upgrade Technical working paper: Marine ecology January 2020 Prepared for Roads and Maritime Prepared by Cardno (NSW/ACT) Pty Ltd © Roads and Maritime The concepts and information contained in this document are the property of Roads and Maritime Services. You must not reproduce any part of this document without the prior written approval of Roads and Maritime Services. Table of Contents Executive Summary 1 1 Introduction 11 1.1 Overview 11 1.2 The project 11 1.3 Key construction activities 16 1.4 Project location 19 1.5 Purpose of this report 19 1.6 Secretary’s environmental assessment requirements 19 1.7 Avoid and minimise 19 1.8 Legislative context 20 1.9 Previous investigations for the project 21 1.10 Other project investigations 21 1.11 Definitions 22 2 Methods 24 2.1 Overview 24 2.2 Personnel 25 2.3 Background research 26 2.4 Field survey 26 2.5 Data analyses 31 2.6 Limitations 32 2.7 Impact assessment (including risk analysis) 33 3 Existing environment overview 36 3.1 Geology and socio-economics 36 3.2 Coastal processes and hydrology 36 3.3 Sediment properties 36 3.4 Water quality 38 3.5 Marine habitat types and communities 39 3.6 Threatened ecological communities 67 3.7 Critical habitat 67 3.8 Threatened marine species and endangered populations 67 3.9 Protected marine species 72 3.10 Matters of National Environmental Significance (MNES) 74 3.11 Wetlands and conservation areas 75 3.12 Key threatening processes
    [Show full text]
  • Phylogeography of the Pipefish, Urocampus Carinirostris, Suggests Secondary Intergradation of Ancient Lineages
    Marine Biology (2002) 141: 541–547 DOI 10.1007/s00227-002-0836-3 S.F. Chenoweth Æ J.M. Hughes Æ R.C. Connolly Phylogeography of the pipefish, Urocampus carinirostris, suggests secondary intergradation of ancient lineages Received: 19 April 2001 / Accepted: 1 February 2002 / Published online: 16 August 2002 Ó Springer-Verlag 2002 Abstract We assayed the pattern of mitochondrial DNA speciation. Particularly noteworthy is the undeniable evolution in the live bearing, seagrass specialist pipefish, influence of historical environmental changes on pat- Urocampus carinirostris, in eastern Australia. These life terns of gene flow among conspecific populations (Avise history attributes were predicted to result in strong 1994). Extrinsic forces such as glaciation and sea level phylogeographic structure in U. carinirostris. Phyloge- changes appear to have affected the pattern of neutral netic analysis of cytochrome b sequences detected two molecular evolution in many codistributed species in monophyletic mtDNA clades that differed by 8.69% similar ways regardless of subtle differences in intrinsic sequence divergence – a large level of intraspecific di- life history characteristics (e.g. Australia’s wet tropics: vergence for a marine fish. The geographical distribution Schneider and Moritz 1999; and coastal marine taxa in of clades was non-random and resembled clinal sec- the southeastern United States: Avise 1994). However, ondary intergradation over a 130-km stretch of coast- there are exceptions where life history attributes appear line. Contrary to phylogeographic predictions, this large to be the predominant factor leading to genetic differ- phylogeographic break does not occur across a tradi- ences among populations. For example, very strong tionally recognised biogeographic boundary.
    [Show full text]
  • Marine Ecology Progress Series 456:43
    Vol. 456: 43–51, 2012 MARINE ECOLOGY PROGRESS SERIES Published June 7 doi: 10.3354/meps09647 Mar Ecol Prog Ser One species of seagrass cannot act as a surrogate for others in relation to providing habitat for other taxa B. M. Hamilton1,2,*, P. G. Fairweather1,2, B. McDonald2 1School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia 2Marine Parks Project, Department of Environment and Natural Resources, GPO Box 1047, Adelaide, South Australia 5001, Australia ABSTRACT: Epibiotic assemblages provide an important source of primary and secondary production in seagrass habitats. Surrogates for biodiversity, such as broad-scale habitat types, have been used in selecting marine park boundaries and zones. As a preliminary test of one assumption of surrogacy that in effect treats all seagrass species as equal, the epibiotic assem- blages of pairs of seagrass species, including the regionally rare Posidonia coriacea, were sampled between homogeneous or heterospecific patches at 3 separate locations in South Australia. Three seagrass species, each with distinct morphology, had distinguishable epifaunal assemblages. Free-living epifauna showed clear selection between seagrass species with movement likely over small scales within heterospecific patches, but no such distinction was shown when the same sea- grass species pair was separated rather than intermingled. Epiphytic sessile species showed less well-defined specificity among seagrass species, but there were still significant differences in epi- phytic species richness. The results of this preliminary study suggest that marine conservation planning needs to consider seagrass habitat on a species-by-species basis, including how they are arranged within localised patches.
    [Show full text]
  • The Responses of Amphibolis Griffithii to Reduced Light Availability Kathryn
    The responses of Amphibolis griffithii to reduced light availability A report on the outcomes of the SRFME Collaborative Research Project: Ecophysiology of benthic primary producers Final Report to SRFME / WAMSI and Geraldton Port Authority Kathryn McMahon and Paul Lavery Centre for Marine Ecosystems Research Edith Cowan University Report No. 2008-01 This report has been prepared to summarise the findings and management implications of the SRFME Collaborative Research Project: Ecophysiology of benthic primary producers. No portion of this material may be reproduced or communicated without the permission of ECU, unless the reproduction or communication is authorised by law. ECU 2008. The responses of Amphibolis griffithii to reduced light availability Final Report on the SRFME Collaborative Research Project: Ecophysiology of benthic primary producers. Kathryn McMahon and Paul Lavery Centre for Marine Ecosystems Research Edith Cowan University 100 Joondalup Dr, Joondalup, WA Australia Cite as: McMahon, K. and Lavery, P.S. (2007). The responses of Amphibolis griffithii to reduced light availability. Final Report on the Strategic Research Fund for the Marine Environment (SRFME) Collaborative Research Project: Ecophysiology of benthic primary producers. 148 p. Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia. iii iv ii. Table of Contents i. Preface..................................................................................................................................................................
    [Show full text]
  • Targeted Fauna Assessment.Pdf
    APPENDIX H BORR North and Central Section Targeted Fauna Assessment (Biota, 2019) Bunbury Outer Ring Road Northern and Central Section Targeted Fauna Assessment Prepared for GHD December 2019 BORR Northern and Central Section Fauna © Biota Environmental Sciences Pty Ltd 2020 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 1463 Prepared by: V. Ford, R. Teale J. Keen, J. King Document Quality Checking History Version: Rev A Peer review: S. Ford Director review: M. Maier Format review: S. Schmidt, M. Maier Approved for issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx 3 BORR Northern and Central Section Fauna 4 Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx BORR Northern and Central Section Fauna BORR Northern and Central Section Fauna Contents 1.0 Executive Summary 9 1.1 Introduction 9 1.2 Methods
    [Show full text]
  • Full Text in Pdf Format
    MARINE ECOLOGY PROGRESS SERIES Vol. 176: 49-62, 1999 Published January 18 Mar Ecol Prog Ser Displacement of diverse ichthyoplankton assemblages by a coastal upwelling event on the Sydney shelf Kimberley A. Smith*, Iain M. Suthers School of Biological Science, University of New South Wales, Sydney, New South Wales 2052, Australia ABSTRACT: The influences of upwelling-favourable winds and thermocline displacement on the dis- tribution of temperate/tropical lchthyoplankton assemblages were determined from vertically stratified plankton hauls across the Sydney shelf, southeastern Australia. Five stations were sampled along a shore-normal transect off Sydney. Australia, on 3 or 4 consecutive nights during January and April 1994. High taxonomic diversity (111 ichthyoplankton families) was attributed to the convergence of temperate and tropical waters in this region. Total larval abundance was higher in January than in April, reflecting the spawning times of many coastal taxa. In both months, hlghest larval density and taxononlic diversity were associated with the interface between the mixed layer and the thermocline. In April, a period of upwelling-favourable winds resulted in the offshore displacement of the nearshore mixed layer, as well as numerous shelf-spawned larvae (e.g. Centroberyx affinis, Chromis hypsilepsis, Arnpis trutta) from the nearshore region, and coincided with the injection of deeply distributed mesopelagic larvae into the nearshore zone (e g Scopelosaurus sp., Melamphaes sp.). Shelf-spawned larvae were d~splacedto the outer shelf, where they were still associated with the mixed layer/thermo- cline interface. Dynamic ichthyoplankton distributions are interpretable, at least at a scale of weeks, by considering larvae as tracers of the local hydrography.
    [Show full text]