Thermodynamic Analysis of Catalytic Cracking Reactions As the First Stage in the Development of Mathematical Description

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Analysis of Catalytic Cracking Reactions As the First Stage in the Development of Mathematical Description Available online at www.sciencedirect.com ScienceDirect Procedia Chemistry 15 ( 2015 ) 342 – 349 16th International Scientific Conference “Chemistry and Chemical Engineering in XXI century” dedicated to Professor L.P. Kulyov, CCE 2015 Thermodynamic analysis of catalytic cracking reactions as the first stage in the development of mathematical description Galina Nazarova a*, Emiliya Ivanchina a, Elena Ivashkina a, Svetlana Kiseleva a, Valeria a Stebeneva a Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russia Abstract In this work thermodynamic analysis of catalytic cracking reaction involving the high molecular weight hydrocarbons was carried out using quantum chemical method of calculation realized in Gaussian software. The method of calculation is DFT (Density Functional Theory), theoretical approximation is B3LYP model, 3-21G basis. The list of catalytic cracking reactions for calculation was prepared on the basis of the theoretical data about catalytic cracking, laboratory and experimental data from the industrial unit. The enthalpy and Gibbs energy values of the main catalytic cracking reactions are presented under the process conditions. The results of this work will be used to develop a kinetic model of catalytic cracking of petroleum feedstock. ©© 2015 2015 The The Authors. Authors. Published Published by byElsevier Elsevier B.V. B.V. This is an open access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of Tomsk Polytechnic). University. Peer-review under responsibility of Tomsk Polytechnic University Keywords: advanced petroleum refining, catalytic cracking, high molecular weight hydrocarbons, enthalpy and Gibbs energy , kinetic model. 1. Introduction Increased proportion of extracted heavy oil dictates a need to improve existing oil refining installations and orients the industrial sector on the resource efficient use of petroleum feedstock, improvement of the environment on a global scale, while the fuel requirement (gasoline and diesel fuel) is increasing every year. * Galina Nazarova. Tel.: +7-952-181-8788 E-mail address: [email protected] 1876-6196 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of Tomsk Polytechnic University doi: 10.1016/j.proche.2015.10.054 Galina Nazarova et al. / Procedia Chemistry 15 ( 2015 ) 342 – 349 343 Catalytic cracking is important processes providing advanced petroleum refining. This process is aimed at manufacturing of light oil products such as gasoline from heavy fraction of petroleum feedstock. The proportion of catalytic cracking at the Russian refinery is not more than 10%, while the foreign indicators are 27-30%. In order to create competitive refining and petrochemical sector corresponding to the modern level of foreign refineries (the depth of oil refining is 85-95%), construction of facilities for oil refining (including catalytic cracking) is organized at the domestic enterprises for increasing the raw materials conversion level up to 82–85% by 2020 1. During operation of industrial oil installations, it is important to consider the multifold factors that equally influence composition, quantity, and quality of the main products 2,3,4. The problem of improving the energy and resource efficiency of catalytic cracking can be solved by the development of adequate mathematical model based on physical and chemical regularities of catalytic cracking reactions with a high predictive ability in the advanced petroleum refining. Approaches to formalization of the chemical reaction mechanism at the modelling of advanced petroleum process feedstock are known. The main ones are: the formation of pseudocomponent groups at the fractional composition5- 9 and combined models that take into account the interactions of pseudocomponents – product streams (gasoline, light and heavy gasoil, liquid and dry gas) and the conversion of the main group components of the feedstock (paraffins, naphthenes, aromatics) 10-14. One of the first stages in mathematical description development of the refining process is the thermodynamic analysis of the alleged reactions15,16. Determination of the thermodynamic regularities of catalytic cracking is possible to perform with the quantum chemical methods of calculation. At present, software for quantum chemical calculation implementation is submitted by numerous domestic and foreign computer products with different technical possibilities. The quantum calculations, in particular via density functional theory (DFT), are an essential tool in many branches of chemical research 17. Quantum chemical methods are used for describing the alkane adsorption in nanoporous crystalline and ordered acid catalysts with different pore geometry, enthalpy of alkane adsorption and its relation with the activation energy for the monomolecular cracking of n-paraffins18. Also such methods are used to establish the mechanism of substances formation on the catalyst surface and the stages of transition states formation19,20. The aim of the work is establishment of thermodynamic regularities of catalytic cracking of petroleum feedstock using quantum chemical methods of calculation for development of catalytic cracking kinetic model. Nomenclature ∆Н enthalpy change during a chemical reaction, kJ/mol ΔG Gibbs energy change during a chemical reaction, kJ/mol T temperature, K P pressure, MPa 2. Introduction Heavy fraction of petroleum feedstock such as vacuum distillate or residues mixture from the secondary manufacturing processes with the boiling point about 350-560 °C is used as catalytic cracking feedstock. The technological process is implemented in the riser reactor. The main characterized parameters of the reactor operation are the consumption of feedstock (160-365 m3/h), the pressure in the reactor sediment chamber (0.8-1.5) kg/cm2), the temperature of the feedstock entering the reactor (240-350 °C), the temperature of the products at the outlet from the ballistic separator (495-535°C). The products from the catalytic cracking unit are rich in gas and gasoline fractions, light gasoil (fraction of 195 - 310 °C), heavy gas oil (fraction of 310 - 420 °C). Chemical conversions of hydrocarbon feedstock are carried on carbonium ion mechanism through chemisorption of hydrocarbon molecules to the microsphere zeolite catalyst surface 21. This list includes: x cracking of high molecular weight n-paraffins and isoparafins C13–C40; x cracking of medium weight n-paraffins and isoparaffins C5–C12 ; 344 Galina Nazarova et al. / Procedia Chemistry 15 ( 2015 ) 342 – 349 x isomerization of medium weight paraffins С5-С12; x cracking of olefins; x hydrogen transfer; x dealkylation of naphthenes; x dealkylation of aromatic hydrocarbons; x dehydrogenation of naphthenes; x condensation of aromatic compounds; x coke formation; x cyclization of olefins to naphthenes. The list of the reactions was composed using the theoretical data about catalytic cracking, experimental data from the industrial plant and laboratory and experimental data from the industrial unit. 3. Approaches and Methods Thermodynamic analysis of the catalytic cracking reaction is one of the first stages in mathematical model developing which allows establishing the possibility of catalytic cracking reactions. Calculations to determine thermodynamic parameters of individual hydrocarbons involved in the catalytic cracking reactions of petroleum feedstock were performed using the quantum chemical methods. The values of Gibbs energy (ΔG) reaction characterize the probability of reaction, and the value is necessary for formalization of the hydrocarbon chemical conversion scheme, which will be the foundation to the catalytic cracking kinetic model. But there are some difficulties: since the catalytic cracking is an advanced refining process of petroleum feedstock, the thermodynamic parameters of the reactions involving the high molecular weight hydrocarbons are virtually absent in the directory. It is also important to take into account the real operating conditions of the industrial unit for calculation of the reaction thermodynamic parameters, as well as the interaction effects of hydrocarbon molecules with reaction mixture molecules. The software which implements the quantum chemical methods of calculation of the molecule electronic structure Gaussian and provides adequacy and sufficient accuracy of calculations for chemical reaction simulation of refinery processes was used to solve these difficulties. Comparison of quantum chemical calculation methods: ab initio methods (DFT, B3LYP) and semi-empirical (PM3) was conducted in this work. PM3 is a semi-empirical method, which uses parameters obtained from the experimental data to simplify the calculations. Thus the Schrodinger equation is solved with a certain approximation using the appropriate parameters of the systems studied. Different methods are characterized by different sets of parameters. The ab initio (non-empirical) method of DFT implemented in Gaussian software was used for the evaluation of each individual hydrocarbon formation thermodynamic properties. Theoretical approximation was B3LYP model (Becke’s DFT (B3) with theoretical approach using Lee, Yang and Parr electron correlation (LYP), 3-21G basis. The model substances participated in the chemical transformations were built in GaussView software. Also the choice of this theory (DFT) can be explained
Recommended publications
  • APPENDIX M SUMMARY of MAJOR TYPES of Carfg2 REFINERY
    APPENDIX M SUMMARY OF MAJOR TYPES OF CaRFG2 REFINERY MODIFICATIONS Appendix M: Summan/ of Major Types of CaRFG2 Refinery Modifications: Alkylation Units A process unit that combines small-molecule hydrocarbon gases produced in the FCCU with a branched chain hydrocarbon called isobutane, producing a material called alkylate, which is blended into gasoline to raise the octane rating. Alkylate is a high octane, low vapor pressure gasoline blending component that essentially contains no olefins, aromatics, or sulfur. This plant improves the ultimate gasoline-making ability of the FCC plant. Therefore, many California refineries built new or modified existing units to increase alkylate production to blend and to produce greater amounts of CaRFG2. Alkylate is produced by combining C3, C4, and C5 components with isobutane (nC4). The process of alkylation is the reverse of cracking. Olefins (such as butenes and propenes) and isobutane are used as feedstocks and combined to produce alkylate. This process enables refiners to utilize lighter components that otherwise could not be blended into gasoline due to their high vapor pressures. Feed to alkylation unit can include pentanes from light cracked gasoline treaters, isobutanes from butane isomerization unit, and C3/C4 streams from delayed coking units. Isomerization Units - C4/C5/C6 A refinery that has an alkylation plant is not likely to have exactly enough is-butane to match the proplylene and butylene (olefin) feeds. The refiner usually has two choices - buy iso-butane or make it in a butane isomerization (Bl) plant. Isomerization is the rearrangement of straight chain hydrocarbon molecules to form branched chain products or to convert normal paraffins to their isomer.
    [Show full text]
  • Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected]
    University of Dayton eCommons History Faculty Publications Department of History 1991 Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/hst_fac_pub Part of the History Commons eCommons Citation Heitmann, John Alfred, "Burton Introduces Thermal Cracking for Refining Petroleum" (1991). History Faculty Publications. 92. https://ecommons.udayton.edu/hst_fac_pub/92 This Encyclopedia Entry is brought to you for free and open access by the Department of History at eCommons. It has been accepted for inclusion in History Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. 573 BURTON INTRODUCES THERMAL CRACKING FOR REFINING PETROLEUM Category of event: Chemistry Time: January, 1913 Locale: Whiting, Indiana Employing high temperatures and pressures, Burton developed a large-scale chem­ ical cracking process, thus pioneering a method that met the need for more fuel Principal personages: WILLIAM MERRIAM BURTON (1865-1954), a chemist who developed a commercial method to convert high boiling petroleum fractions to gas­ oline by "cracking" large organic molecules into more useful and marketable smaller units ROBERT E. HUMPHREYS, a chemist who collaborated with Burton WILLIAM F. RODGERS, a chemist who collaborated with Burton EUGENE HOUDRY, an industrial scientist who developed a procedure us­ ing catalysts to speed the conversion process, which resulted in high­ octane gasoline Summary of Event In January, 1913, William Merriam Burton saw the first battery of twelve stills used in the thermal cracking of petroleum products go into operation at Standard Oil of Indiana's Whiting refinery.
    [Show full text]
  • Optimization of Refining Alkylation Process Unit Using Response
    Optimization of Refining Alkylation Process Unit using Response Surface Methods By Jose Bird, Darryl Seillier, Michael Teders, and Grant Jacobson - Valero Energy Corporation Abstract This paper illustrates a methodology to optimize the operations of an alkylation unit based on response surface methods. Trial based process optimization requires the unit to be operated across a wide range of conditions. This approach tends to be opposed by refinery operations as it can disrupt the normal operations of a process unit. Using the methods presented in this paper, the general direction of process improvement is first identified using a first order profit response surface built from available operating data. The performance of the unit is then evaluated at the refinery by making systematic changes to the key factors in the projected direction of process improvement. The operating results are then used to build a localized second order profit response surface to generate a revised set of optimum targets. Multiple linear regression models are used to predict alkylate yield, alkylate octane and Iso-stripper or De-Isobutanizer reboiler duty as a function of key process variables. These models are then used to generate a profit response surface for selection of an optimum target region for step testing at the refinery prior to implementation of the unit targets. 1. Introduction An alkylation unit takes a feed stream with a high olefin content, typically originating from a fluid catalytic cracking (FCC) unit, and adds isobutane (IC4) which reacts with the olefins to produce a high octane alkylate product. Either hydrofluoric or sulfuric acid is used as a catalyst for the alkylation reaction.
    [Show full text]
  • Invention and Innovation in the Petroleum Refining Industry
    This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: The Rate and Direction of Inventive Activity: Economic and Social Factors Volume Author/Editor: Universities-National Bureau Committee for Economic Research, Committee on Economic Growth of the Social Science Research Council Volume Publisher: Princeton University Press Volume ISBN: 0-87014-304-2 Volume URL: http://www.nber.org/books/univ62-1 Publication Date: 1962 Chapter Title: Invention and Innovation in the Petroleum Refining Industry Chapter Author: John L. Enos Chapter URL: http://www.nber.org/chapters/c2124 Chapter pages in book: (p. 299 - 322) Invention and Innovation in the Petroleum Refining Industry JOHN L. ENOS MASSACHUSETTS INSTITUTE OF TECHNOLOGY AN INNOVATION is the combination of many different activities. Gener- ally an invention is made and recognized, capital is obtained, plant is acquired, managers and workers are hired, markets are developed, and production and distribution take place. As the innovation proceeds the original conception may be altered to make it more amenable to commercial realities. Accomplishing these activities consumes re- sources. At any point in the sequence failure may occur, delaying or even frustrating the innovation. In studying the petroleum refining industry I observed several pro- cessing innovations following one another in time and generating technological progress.' I then sought their origins in terms of the original ideas and the men who conceived them. In this paper I shall discuss the relations between the inventions and the subsequent inno- vations, focusing on the intervals between them, the returns to the inventors and innovators, and the changes in the proportions in which the factors of production in petroleum processing were combined.
    [Show full text]
  • Cracking (Chemistry)
    Cracking (chemistry) In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large alkane into smaller, more useful alkenes. Simply put, hydrocarbon cracking is the process of breaking a long chain of hydrocarbons into short ones. This process requires high temperatures.[1] More loosely, outside the field of petroleum chemistry, the term "cracking" is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis. Fluid catalytic cracking produces a high yield of petrol and LPG, while hydrocracking is a major source of jet fuel, Diesel fuel, naphtha, and again yields LPG. Contents History and patents Cracking methodologies Thermal cracking Steam cracking Fluid Catalytic cracking Hydrocracking Fundamentals See also Refinery using the Shukhov cracking References process, Baku, Soviet Union, 1934. External links History and patents Among several variants of thermal cracking methods (variously known as the "Shukhov cracking process", "Burton cracking process", "Burton-Humphreys cracking process", and "Dubbs cracking process") Vladimir Shukhov, a Russian engineer, invented and patented the first in 1891 (Russian Empire, patent no. 12926, November 7, 1891).[2] One installation was used to a limited extent in Russia, but development was not followed up. In the first decade of the 20th century the American engineers William Merriam Burton and Robert E.
    [Show full text]
  • Knowledge Check Worksheet
    Knowledge check Subject area: Organic chemistry Level: 14–16 years (Higher) Topic: Cracking hydrocarbons Source: rsc.li/2SCxbLL 1. Ashley and Diane carry out an experiment to crack some liquid paraffin. Liquid paraffin is a mixture of straight chain alkane hydrocarbons containing between 5 and 15 carbon atoms in each molecule. Their equipment is shown below. Answer: Catalyst or broken pot. Answer: Product gas. Answer: Ceramic wool soaked in paraffin. a) Label the diagram by filling in the boxes. See answers above. Organic chemistry in context: © Royal Society of Chemistry Cracking hydrocarbons (H) edu.rsc.org Page 1 of 4 b) Which of the following statements are true or false about this experiment? Write your answers into the box as ‘T’ for true, or ‘F’ for false. i) A molecule of formula C6H12 could be present in the liquid TF paraffin. ii) A catalyst is added to increase the rate or speed of reaction T iii) The paraffin solidifies during the experiment. F iv) The product gas contains smaller molecules than those in T the paraffin oil. v) A Bunsen burner is used to decompose hydrocarbon T molecules. vi) A molecule of formula C2H4 could be present in the product T gas. vii) The process taking place is exothermic. F Organic chemistry in context: © Royal Society of Chemistry Cracking hydrocarbons (H) edu.rsc.org Page 2 of 4 2. The following sentences are about cracking as an industrial process. Which of the following statements are true or false about this process? Write your answers into the box as ‘T’ for true, or ‘F’ for false.
    [Show full text]
  • Steam Cracking: Chemical Engineering
    Steam Cracking: Kinetics and Feed Characterisation João Pedro Vilhena de Freitas Moreira Thesis to obtain the Master of Science Degree in Chemical Engineering Supervisors: Professor Doctor Henrique Aníbal Santos de Matos Doctor Štepánˇ Špatenka Examination Committee Chairperson: Professor Doctor Carlos Manuel Faria de Barros Henriques Supervisor: Professor Doctor Henrique Aníbal Santos de Matos Member of the Committee: Specialist Engineer André Alexandre Bravo Ferreira Vilelas November 2015 ii The roots of education are bitter, but the fruit is sweet. – Aristotle All I am I owe to my mother. – George Washington iii iv Acknowledgments To begin with, my deepest thanks to Professor Carla Pinheiro, Professor Henrique Matos and Pro- fessor Costas Pantelides for allowing me to take this internship at Process Systems Enterprise Ltd., London, a seven-month truly worthy experience for both my professional and personal life which I will certainly never forget. I would also like to thank my PSE and IST supervisors, who help me to go through this final journey as a Chemical Engineering student. To Stˇ epˇ an´ and Sreekumar from PSE, thank you so much for your patience, for helping and encouraging me to always keep a positive attitude, even when harder problems arose. To Prof. Henrique who always showed availability to answer my questions and to meet in person whenever possible. Gostaria tambem´ de agradecer aos meus colegas de casa e de curso Andre,´ Frederico, Joana e Miguel, com quem partilhei casa. Foi uma experienciaˆ inesquec´ıvel que atravessamos´ juntos e cer- tamente que a vossa presenc¸a diaria´ apos´ cada dia de trabalho ajudou imenso a aliviar as saudades de casa.
    [Show full text]
  • 5.1 Petroleum Refining1
    5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations and terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery's processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3.Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4.Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5.Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d.
    [Show full text]
  • C6 Organic Chemistry Fact Sheet
    C6 ORGANIC CHEMISTRY FACT SHEET Crude oil, hydrocarbons and alkanes 1. Is crude oil an element, compound or mixture? Mixture 2. What is crude oil? A mixture of hydrocarbons 3. What is crude oil the remains of? Ancient biomass, mainly plankton 4. Name the elements in a hydrocarbon Carbon and hydrogen 5. Which of the following are hydrocarbons? C2H6, C2H6, C30H60, C23H48 C30H60, C2H5OH, C3H7Cl, C23H48 6. What are most of the hydrocarbons in crude oil? alkanes 7. What type of compound are alkanes? hydrocarbons 8. Name the elements in alkanes Hydrogen and carbon 9. Name the first 4 alkanes. Methane, ethane, propane, butane 10. What is the formula for methane? CH4 11. What is the formula for ethane? C2H6 12. What is the formula for propane? C3H8 13. What is the formula for butane? C4H10 14. Draw the structure of ethane. 15. What is the general formula for an alkane? CnH2n+2 16. Are alkanes saturated or unsaturated? Saturated Properties of hydrocarbons and combustion 17. What happens to flammability (how easily it will Decrease burn) as alkanes get longer? 18. What happens to the boiling point as alkanes get Increase longer? 19. What happens to the viscosity (how thick it is) as Increase alkanes get longer? 20. What is the scientific word for burning? Combustion 21. Name the gas a fuel reacts with during Oxygen combustion 22. Is combustion exothermic or endothermic? Exothermic 23. What happens to the carbon and oxygen in a fuel They are oxidised when it burns? 24. Name the 2 product of complete combustion of Carbon dioxide a hydrocarbon Water 25.
    [Show full text]
  • Properties of C-C Bonds in N-Alkanes: Relevance to Cracking Mechanisms
    1346 J. Phys. Chem. A 2002, 106, 1346-1356 Properties of C-C Bonds in n-Alkanes: Relevance to Cracking Mechanisms Ken C. Hunter and Allan L. L. East* Department of Chemistry and Biochemistry, UniVersity of Regina, Regina, Saskatchewan S4S 0A2, Canada ReceiVed: July 26, 2001; In Final Form: October 11, 2001 The slight variations among the proton affinities and bond strengths of the C-C bonds in straight-chain n-alkanes have been determined to 1 kcal mol-1 accuracy for the first time, using computational quantum chemistry. Four computational methods (B3LYP, MP2, CCSD(T), and G2) were used to study n-alkanes (up to C20H42 with B3LYP), including computations on the related alkyl radicals, carbenium ions, and carbonium ions. The proton affinities of the C-C bonds vary from 142 to over 166 kcal mol-1, are highest for the center C-C bond, and decrease monotonically toward the end bonds. Bond strength, unlike proton affinity, is very constant (88 kcal mol-1), except for the R and â bonds (89 and 87 kcal mol-1, respectively). For thermal cracking, the results suggest that the most favored initiation step is the breaking of the â bond of the alkane to create an ethyl radical. For Bronsted-acid-catalyzed cracking of straight-chain paraffins, if the initiation mechanism is via carbonium ions, then the results indicate that the central C-C bonds of n-alkanes will be most attractive to the Bronsted proton. However, for direct protolysis (Bronsted-mediated fission) of an n-alkane via a carbonium intermediate, the net exothermicities do not strongly discern among the C-C bonds.
    [Show full text]
  • Effects of Catalyst Properties on Hydrodesulfurization of Fluid
    The Pennsylvania State University The Graduate School Department of Energy and Mineral Engineering EFFECTS OF CATALYST PROPERTIES ON HYDRODESULFURIZATION OF FLUID CATALYTIC CRACKING DECANT OILS AS FEEDSTOCK FOR NEEDLE COKE A Thesis in Energy and Mineral Engineering by Joseph P. Abrahamson © 2015 Joseph P. Abrahamson Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2015 The thesis of Joseph P. Abrahamson was reviewed and approved* by the following: Semih Eser Professor of Energy and Geo-Environmental Engineering Thesis Advisor Jonathan P. Mathews Associate Professor of Energy and Mineral Engineering Caroline Burgess Clifford Senior Research Associate Luis F. Ayala H. Associate Professor of Petroleum and Natural Gas Engineering Associate Department Head for Graduate Education *Signatures are on file in the Graduate School ii ABSTRACT This thesis investigates hydrodesulfurization of fluid catalytic cracking decant oils and its impact on carbonaceous mesophase development during carbonization. Delayed Coking of decant oils leads to the development of carbonaceous mesophase, a liquid crystalline phase, that is responsible for the structural anisotropy of needle coke. Because of its anisotropic microstructure, needle coke is used as the filler along with a coal tar pitch binder for manufacturing graphite electrodes for electric-arc furnaces. When sulfur content of the filler needle coke is high (>0.8 wt. %) an irreversible volume expansion (puffing) takes place when extruded electrodes are subjected to graphitization heat treatment. Puffing in needle coke results primarily from the evolution of sulfur in the form of CS2 and H2S. Puffing causes the formation of mico-cracks reducing the quality of electrodes.
    [Show full text]
  • Isomerization and Properties of Isomers of Carbocyanine Dyes
    Review Isomerization and Properties of Isomers of Carbocyanine Dyes Pavel Pronkin * and Alexander Tatikolov N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-495-939-7171 Received: 20 November 2018; Accepted: 26 November 2018; First Version Published: 29 November 2018 (doi:10.3390/sci1010005.v1) Second Version Published: 20 March 2019 (doi:10.3390/sci1010019) Abstract: One of the important features of polymethine (cyanine) dyes is isomerization about one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomerization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocyanine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,30-dimethyl-9-phenylthiacarbocyanine and 3,30-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be explained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric effect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes complexed with DNA and chondroitin-4-sulfate; for 3,30-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents).
    [Show full text]