This Article Was Published in an Elsevier Journal. the Attached Copy

Total Page:16

File Type:pdf, Size:1020Kb

This Article Was Published in an Elsevier Journal. the Attached Copy This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy ecological indicators 8 (2008) 564–572 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ecolind Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI) Di Zhu a,b,c,1, Jianbo Chang a,b,c,* a Institute of Hydrobiology, Chinese Academy of Sciences, 7# Southern Road of East Lake, Wuhan, Hubei Province, 430072 China b Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, 578# Xiongchu Avenue, Wuhan, Hubei Province, 430079 China c The Graduate School of the Chinese Academy of Sciences, Beijing 100039 China article info abstract Article history: Adaptive modification and use of Karr’s index of biotic integrity (IBI) for the upper Yangtze Received 15 February 2007 River, including 12 metrics in five categories, have typically occurred in line with the data Received in revised form collected by 6-year commercial fisheries investigation. These investigations were under- 24 May 2007 taken annually in four sections of the Upper Yangtze main channel between 1997 and 2002. Accepted 19 July 2007 These four monitoring sections (Yibin – YB, Hejiang – HJ, Mudong – MD, and Yichang – YC) were selected because they represent the part of the river that will be covering a 1000 km stretch that includes the future Three Gorges Reservoir (TGR), upstream of the Three Gorges Keywords: Dam (TGD), an area influenced by the construction of TGD. In addition, historical data were Fish assemblages used to show changes in the watershed by comparison with field investigations recently. Index biotic integrity (IBI) The biotic integrity of the four sections were calculated and classified into different levels Three Gorges Dam (TGD) annually for recognizing its spatial and temporal variations. It was observed that IBI scores Upper Yangtze River were becoming lower diminishingly since 1997 in all the four sections. Because all the data were collected before the impoundment of the Three Gorges Reservoir, it is obvious that human activities, especially over-fishing, must be crucial factor instead of damming in the upper Yangtze River in that period. # 2008 Published by Elsevier Ltd. 1. Introduction Van Dolah et al., 1999). Fish assemblages were considered to be an appropriate end-point for assessing stream integrity due to The index of biological integrity (IBI) originally developed by their high public visibility, their position in the food chain and Karr (1981) and established by Karr et al. (1986) had previously high sensitivity to water quality (Karr, 1981; Karr et al., 1986). been used in the United States (Karr, 1999a; Karr et al., 1986; Human influences, such as changes in water chemistry or Karr, 1999b) and became increasingly adaptive elsewhere, e.g. physical habitat modifications, could alter fish assemblages by in Europe (Simon and Sanders, 1999). Many groups of disrupting their structures and functions (Fig. 1). Varieties in organisms had been used as indicators to estimate environ- fish assemblage could be detected through changes in mental quality. Algae, benthic invertebrates and fish were components of the community, functional groups, species typical species in biological monitoring (Matthews et al., 1982; diversity, and relative abundance (Wootton, 1990). The fish-IBI * Corresponding author at: Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, 578# Xiongchu Avenue, Wuhan, Hubei Province, 430079 China; Tel.: +86 27 8718 9023. E-mail address: [email protected] (J. Chang). 1 Main research fields: Ecology of Fishes and Conservation Biology, Aquatic Ecosystem Health Assessment. 1470-160X/$ – see front matter # 2008 Published by Elsevier Ltd. doi:10.1016/j.ecolind.2007.07.004 Author's personal copy ecological indicators 8 (2008) 564–572 565 Fig. 1 – Aftermath of river basin environmental structure changes. was commonly used and accepted worldwide as a reliable tool Dam was constructed in 1981 and has led to sharp declines in to assess water condition now (Novotny et al., 2005). The IBI the populations of migratory fish previously occurring in great had become a family of multi-metric indices that were numbers in the upper Yangtze River, especially the three regionally adapted and calibrated, because rivers of different endemic ancient fish species, Chinese sturgeon (Acipenser regions, as well as their fish communities, were distinctive sinensis), River sturgeon (A. dabryanus), and Chinese paddlefish (Kesminas and Virbickas, 2000). (Psephurus gladius)(Dudgeon, 2000; Xie, 2003; Young, 2003). The Despite many outstanding works on IBI had already been Three Gorges Dam (TGD) (38 km upstream from the TGD) is done (Novotny et al., 2005; Simon et al., 2000), it was still of going to a massive human intervention which will fragment utmost importance for us to continue this work in Chinese an area of about 58,000 km2 with the formation of a reservoir Yangtze River basin. The objectives of this study were to: (a) of 1080 km2 in an area of the former Yangtze River bed. develop potential metrics of fish indicator for the upper This study reach of the river is influenced by TGD and is Yangtze River; (b) quantify fish assemblage differences in the 1040 km long, including the main channel of the upper early 6 years of Three Gorges Dam (TGD) construction; and (c) Yangtze River. Four monitoring stations were set up at provide a baseline for future water quality assessment in the different reaches, from the upper to the lower reach. These upper Yangtze River. were at Yibing (YB), Hejiang (HJ), Mudong (MD) and Yichang (YC), respectively (Fig. 2). The Yibin (YB) station was located in Yibin county, covering a monitoring stretch of 21 km, 2. Materials and methods including the lower reach of the Jinsha River. The Mudong (MD) station was located in Mudong town in a distance of 2.1. Study area 50 km from ChongQin City. The station represented a location at the deepest part of the TGD Reservoir. The monitoring reach The River is the third longest river in the world; its total length covered a stretch of 30 km. The Hejiang (HJ) station was is about 6300 km with a basin area of about 180,000 km2. The located in Hejiang county of the Sichuan Province with a river is distinctive in its species diversity and abundance, monitoring stretch of 60 km. Finally, the Yichang (YC) station while comprising the largest components of the fish resources was located in Yichang City, with a monitoring reach of 25 km in China (Chang, 1999; Wu, 2003; Young, 2003). However, the from Gezhouba Dam to Gulaobei. Yangtze River has experienced major changes over the past decades (Chang, 1999). Most of the water resources are 2.2. Data collection methods and analyses disproportionately degraded by human activities such as water pollution, agricultural land use and irrigation farming, Fishery investigations had been conducted in Yangtze River dam construction and over-fishing (Chang, 1995; Young, 2003). from 1950s till 2002 covering different reaches, together with These man-made impacts are now of highest concern with the field investigations, these data provided very important regard to the disruption of the integrity of Chinese inland baseline information, which were of tremendous value for waters (J.B. Chang, 1999; Chang, 1999). River damming is the assessment of ecological effects of human activities. The most dramatic anthropogenic factor affecting freshwater biological data (1997–2002) were obtained from the TGD environments (Baxter, 1997; Dudgeon, 2000). The Gezhouba monitoring database of the Institute of Hydrobiology (IHB), Author's personal copy 566 ecological indicators 8 (2008) 564–572 Fig. 2 – Study areas selected in the upper Yangtze River and distribution of four monitoring stations: Yibing (YB), Hejiang (HJ), Mudong (MD) and Yichang (YC). (TGD represent the location of Three Gorges Dam and GZD represent the location of Gezhouba Dam). Chinese Academy of Sciences (CAS). Most of the data were represent the best physical, chemical, and biological condi- obtained by field investigations and others were derived from tions. We modified the index and developed biological literatures. Twice investigations were conducted in May–July expectation for the upper Yangtze River fish assemblages. and September–December from 1997 to 2002 at the four These expectations were developed with the assumption that monitoring stations. The duration of investigation was 20 days ‘‘least impact’’ conditions would emerge from the cumulative every time. The catches were collected from fishing boats and data set. fish markets, the commercial fishing boats were sampled Yangtze Rivers has been dammed, channeled and dredged. according to the principle of random sampling at each station. Also, it is home to large urban areas and numerous point
Recommended publications
  • Volume Lviii, 1928-1929
    BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME LVIII, 1928-1929 BOONE BRADLEY AND BEQUAERT CHAPMAN NICHOLS CURRAN NOBLE ELFTMAN STUNKARD GUDGER WATERMAN NEW YORK PUBLISHED BY ORDER OF THE TRUSTEES 1929 EDITED BY ETHEL J. TIMONIER B U LLETI N OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME LVIII, 1928 59.7,5 (51) Article 1.-CHINESE FRESH-WATER FISHES IN THE AMERICAN MUSEUM OF NATURAL HISTORY'S COLLECTIONS' A PROVISIONAL CHECK-LIST OF THE FRESH-WATER FISHES OF CHINA2 BY J. T. NICHOLS Incident to study of the Museum's recently acquired Asiatic collec- tions, a number of new species and races of Chinese fresh-water fishes have been described. A somewhat more complete report on Chinese material to hand may now appropriately be made by listing all the species examined. Much more study is necessary before an authoritative check- list of the fishes of this area can be drawn up, but it should be helpful to others working to that end to list, with species contained in our collec- tions, those encountered in the literature which offhand appear to be valid. The asterisk (*) signifies a specimen in The American Museum of Natural History. Only strictly fresh-water fishes are included in this list, marine forms, the occurrence of which in fresh water is fortuitous, are not included; nor are representatives of essentially marine groups, even when such species occur regularly in fresh as well as in salt water. The area is restricted to old China from the outer limits of Chihli Province on the northeast to the outer.
    [Show full text]
  • Diploid Hybrid Fish Derived from the Cross Between Female Bleeker's
    Li et al. BMC Genetics (2019) 20:80 https://doi.org/10.1186/s12863-019-0781-5 RESEARCH ARTICLE Open Access Diploid hybrid fish derived from the cross between female Bleeker’s yellow tail and male topmouth culter, two cyprinid fishes belonging to different subfamilies Shengnan Li1,2†, Lihua Xie1,2†, Jun Xiao1,2, Liujiao Yuan1,2, Tian Zhou1,2, Kaikun Luo1,2, Chun Zhang1,2, Rurong Zhao1,2, Min Tao1,2* and Shaojun Liu1,2* Abstract Background: Bleeker’s yellow tail (Xenocypris davidi Bleeker, YT) and topmouth culter (Culter alburnus Basilewsky, TC) are both famous and important economic freshwater fish in China. YT, a kind of omnivorous fish, has strong resistance. TC, a kind of carnivorous fish, has high-quality meat but poor resistance. Distant hybridization can integrate the advantages of both parents. There has been no previous report regarding hybrid fish derived from female YT × male TC. It is expected that hybridization of these two kinds of fish will result in F1 hybrids with improved characteristics, such as faster growth rate, stronger resistance, and high-quality meat, which are of great significance in fish genetic breeding. Results: In this study, we investigated the main biological characteristics of diploid hybrid fish derived from female YT × male TC. The hybrids had an intermediate number of upper lateral line scales between those for YT and TC. The hybrids were diploids with 48 chromosomes and had the same karyotype formula as their parents. The hybrids generated variations in 5S rDNA (designated class IV: 212 bp) and lost specific 5S rDNA derived from the maternal parent (designated class II: 221 bp), which might be related to hybridization.
    [Show full text]
  • Chanodichthys Recurviceps (A Fish, No Common Name) Ecological Risk Screening Summary
    Chanodichthys recurviceps (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2016 Web Version, 6/18/2018 Photo: H. T. Cheng. Licensed under CC BY-NC. Available: http://naturewatch.org.nz/taxa/187285-Culter-recurviceps. (November 2016). 1 Native Range and Status in the United States Native Range From Zhao and Cui (2011): “Known from Zhu Jiang River (Pearl River) in Guangdong and Guanxi Provinces, and Hainan Province in China.” Status in the United States This species has not been reported in the United States. 1 Means of Introductions in the United States This species has not been reported in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2016): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Culter Basilewsky, 1855 Species Culter recurviceps (Richardson, 1846)” From Eschmeyer et al. (2016): “recurviceps, Leuciscus Richardson [J.] 1846:295 [Report of the British Association for the Advancement of Science 15th meeting [1845] […]] Canton, China. No types known. Based solely on an illustration by Reeves (see Whitehead 1970:210, Pl. 17a […]). •Valid as Erythroculter recurviceps (Richardson 1846) -- (Lu in Pan et al. 1991:93 […]). •Questionably the same as Culter alburnus Basilewsky 1855 -- (Bogutskaya & Naseka 1996:24 […], Naseka 1998:75 […]). •Valid as Culter recurviceps (Richardson 1846) -- (Luo & Chen in Chen et al. 1998:188 […], Zhang et al. 2016:59 […]). •Valid as Chanodichthys recurviceps (Richardson 1846) -- (Kottelat 2013:87 […]).
    [Show full text]
  • Coexistence of Two Closely Related Cyprinid Fishes (Hemiculter Bleekeri and Hemiculter Leucisculus) in the Upper Yangtze River, China
    diversity Article Coexistence of Two Closely Related Cyprinid Fishes (Hemiculter bleekeri and Hemiculter leucisculus) in the Upper Yangtze River, China Wen Jing Li 1,2, Xin Gao 1,*, Huan Zhang Liu 1 and Wen Xuan Cao 1 1 The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (W.J.L.); [email protected] (H.Z.L.); [email protected] (W.X.C.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-27-6878-0723 Received: 17 June 2020; Accepted: 16 July 2020; Published: 19 July 2020 Abstract: Species coexistence is one of the most important concepts in ecology for understanding how biodiversity is shaped and changed. In this study, we investigated the mechanism by which two small cyprinid fishes (H. leucisculus and H. bleekeri) coexist by analyzing their niche segregation and morphological differences in the upper Yangtze River. Morphological analysis indicated that H. leucisculus has posteriorly located dorsal fins, whereas H. bleekeri has a more slender body, bigger eyes, longer anal fin base, and a higher head. Niche segregation analysis showed spatial and trophic niche segregation between these two species: on the spatial scale, H. leucisculus was more widely distributed than H. bleekeri, indicating that H. leucisculus is more of a generalist in the spatial dimension; on the trophic scale, H. bleekeri had a wider niche than H. leucisculus. Therefore, these two species adopt different adaptation mechanisms to coexist Keywords: biodiversity; species coexistence; spatial niche segregation; trophic niche segregation; morphology 1.
    [Show full text]
  • Beta Diversity Patterns of Fish and Conservation Implications in The
    A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains.
    [Show full text]
  • Family-Cyprinidae-Gobioninae-PDF
    SUBFAMILY Gobioninae Bleeker, 1863 - gudgeons [=Gobiones, Gobiobotinae, Armatogobionina, Sarcochilichthyna, Pseudogobioninae] GENUS Abbottina Jordan & Fowler, 1903 - gudgeons, abbottinas [=Pseudogobiops] Species Abbottina binhi Nguyen, in Nguyen & Ngo, 2001 - Cao Bang abbottina Species Abbottina liaoningensis Qin, in Lui & Qin et al., 1987 - Yingkou abbottina Species Abbottina obtusirostris (Wu & Wang, 1931) - Chengtu abbottina Species Abbottina rivularis (Basilewsky, 1855) - North Chinese abbottina [=lalinensis, psegma, sinensis] GENUS Acanthogobio Herzenstein, 1892 - gudgeons Species Acanthogobio guentheri Herzenstein, 1892 - Sinin gudgeon GENUS Belligobio Jordan & Hubbs, 1925 - gudgeons [=Hemibarboides] Species Belligobio nummifer (Boulenger, 1901) - Ningpo gudgeon [=tientaiensis] Species Belligobio pengxianensis Luo et al., 1977 - Sichuan gudgeon GENUS Biwia Jordan & Fowler, 1903 - gudgeons, biwas Species Biwia springeri (Banarescu & Nalbant, 1973) - Springer's gudgeon Species Biwia tama Oshima, 1957 - tama gudgeon Species Biwia yodoensis Kawase & Hosoya, 2010 - Yodo gudgeon Species Biwia zezera (Ishikawa, 1895) - Biwa gudgeon GENUS Coreius Jordan & Starks, 1905 - gudgeons [=Coripareius] Species Coreius cetopsis (Kner, 1867) - cetopsis gudgeon Species Coreius guichenoti (Sauvage & Dabry de Thiersant, 1874) - largemouth bronze gudgeon [=platygnathus, zeni] Species Coreius heterodon (Bleeker, 1865) - bronze gudgeon [=rathbuni, styani] Species Coreius septentrionalis (Nichols, 1925) - Chinese bronze gudgeon [=longibarbus] GENUS Coreoleuciscus
    [Show full text]
  • Research on the Influencing Factors of the Construction of Tourism and Leisure Characteristic Towns in Sichuan Province Under Th
    2021 International Conference on Education, Humanity and Language, Art (EHLA 2021) ISBN: 978-1-60595-137-9 Research on the Influencing Factors of the Construction of Tourism and Leisure Characteristic Towns in Sichuan Province under the Background of New Urbanization Yi-ping WANG1,a,* and Xian-li ZHANG2,b 1,2School of Business, Southwest Jiaotong University Hope College, Chengdu, Sichuan, China [email protected], [email protected] *Corresponding author Keywords: Tourism and leisure characteristic towns, Influencing factors, New urbanization. Abstract. Promoting the construction of characteristic towns under the background of new urbanization is an important way for my country to break the bottleneck of economic development and realize economic transformation and upgrading. In recent years, although the construction of characteristic towns in Sichuan Province has achieved remarkable results and a large number, especially tourist and leisure characteristic towns accounted for the largest proportion, they still face urgent problems such as avoiding redundant construction, achieving scientific development, and overall planning. This study takes 20 cultural tourism characteristic towns selected by the first batch of Sichuan Province as the research object, combined with field research and tourist questionnaire surveys, and screened out relevant influencing factors of characteristic towns from different aspects such as transportation, economy, industry, ecology, historical and cultural heritage. Analyze the correlation with the development level of characteristic towns in order to find out the key factors affecting the development of characteristic towns of this type, provide a policy basis for the scientific development and overall planning of reserve characteristic towns in our province, and contribute to the construction of new urbanization And provide advice and suggestions on the development of tourism industry in our province.
    [Show full text]
  • Chanodichthys Flavipinnis) Ecological Risk Screening Summary
    Yellowfin Culter (Chanodichthys flavipinnis) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2012 Revised, March 2019 Web Version, 10/17/2019 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Asia: Annam, Viet Nam.” From Huckstorf and Freyhof (2012): “The species is known from Red River basin in northern Viet Nam and southern China (Chu and Chen 1989, Nguyen and Ngo 2001) and the Huong, Quang Tri, Giang and Lam river basins in Central Viet Nam (J. Freyhof pers. com. 2010 [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin]).” Status in the United States Chanodichthys flavipinnis has not been documented in trade or in the wild in the United States. Means of Introductions in the United States Chanodichthys flavipinnis has not been documented in the wild in the United States. 1 Remarks Both the current valid name, Chanodichthys flavipinnis and the previous valid name Culter flavipinnis were used to conduct research. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2019): “Current status: Valid as Chanodichthys flavipinnis (Tirant 1883).” From ITIS (2019): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Chanodichthys Species Chanodichthys flavipinnis (Tirant, 1883)” Size, Weight, and Age Range No information was found on size, weight or age for Chanodichthys flavipinnis. Environment From Froese and Pauly (2019): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2019): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2019): “Asia: Annam, Viet Nam.” From Huckstorf and Freyhof (2012): “The species is known from Red River basin in northern Viet Nam and southern China (Chu and Chen 1989, Nguyen and Ngo 2001) and the Huong, Quang Tri, Giang and Lam river basins in Central Viet Nam (J.
    [Show full text]
  • Sichuan Province
    Directory of Important Bird Areas in China (Mainland): Key Sites for Conservation Editors SIMBA CHAN (Editor-in-chief) MIKE CROSBY , SAMSON SO, WANG DEZHI , FION CHEUNG and HUA FANGYUAN Principal compilers and data contributors Prof. Zhang Zhengwang (Beijing Normal University), Prof. Chang Jiachuan (Northeast Forestry University), the late Prof. Zhao Zhengjie (Forestry Institute of Jilin Province), Prof. Xing Lianlian (University of Nei Menggu), Prof. Ma Ming (Ecological and Geographical Institute, Chinese Academy of Sciences, Xinjiang), Prof. Lu Xin (Wuhan University), Prof. Liu Naifa (Lanzhou University), Prof. Yu Zhiwei (China West Normal University), Prof. Yang Lan (Kunming Institute for Zoology), Prof. Wang Qishan (Anhui University), Prof. Ding Changqing (Beijing Forestry University), Prof. Ding Ping (Zhejiang University), the late Prof. Gao Yuren (South China Institute for Endangered Animals), Prof. Zhou Fang (Guangxi University), Prof. Hu Hongxing (Wuhan University), Prof. Chen Shuihua (Zhejiang Natural History Museum), Tsering (Tibet University), Prof. Ma Zhijun (Fudan University), Prof. Guo Yumin (Capital Normal University), Dai Nianhua (Institute of Sciences, Jiangxi), Prof. Han Lianxian (Southwest Forestry University), Yang Xiaojun (Kunming Institute for Zoology), Prof. Wang Zijiang (Kunming Ornithological Association), Prof. Li Zhumei (Institute of Biology, Guizhou), Ma Chaohong (Management Office of Yellow River Wetland National Nature Reserve, Henan), Shen You (Chengdu Bird Watching Society), Wei Qian (Chengdu Bird Watching Society), Zhang Yu (Wild Bird Society of Jiangsu), Kang Hongli (Wild Bird Society of Shanghai). Information on Important Bird Areas in China was compiled with the support of the World Bank using consultant trust funds from the Government of Japan. Surveys of IBAs in western China were funded by Keidanren Nature Conservation Fund (Japan) and the Sekisui Chemical Co.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Research Article Reproductive Biology of the Invasive Sharpbelly
    Iran. J. Ichthyol. (March 2019), 6(1): 31-40 Received: August 17, 2018 © 2019 Iranian Society of Ichthyology Accepted: November 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v6i1.285 http://www.ijichthyol.org Research Article Reproductive biology of the invasive sharpbelly, Hemiculter leucisculus (Basilewsky, 1855), from the southern Caspian Sea basin Hamed MOUSAVI-SABET*1,2, Adeleh HEIDARI1, Meysam SALEHI3 1Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran. 2The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran. 3Abzi-Exir Aquaculture Co., Agriculture Section, Kowsar Economic Organization, Tehran, Iran. *Email: [email protected] Abstract: The sharpbelly, Hemiculter leucisculus, an invasive species, has expanded its range throughout much of Asia and into the Middle East. However, little is known of its reproductive information regarding spawning pattern and season that could possibly explain its success as an invasive species. This research is the first presentation of its reproductive characteristics, which was conducted based on 235 individuals collected monthly throughout a year from Sefid River, in the southern Caspian Sea basin. Age, sex ratio, fecundity, oocytes diameter and gonado-somatic index were calculated. Regression analyses were used to find relations among fecundity and fish size, gonad weight (Wg) and age. The mature males and females were longer than 93.0 and 99.7mm in total length, respectively (+1 in age). The average egg diameter ranged from 0.4mm (April) to 1.1mm (August). Spawning took place in August, when the water temperature was 23 to 26°C.
    [Show full text]
  • Ecological Effects of the First Dam on Yangtze Main Stream and Future Conservation Recommendations: a Review of the Past 60 Years
    Zhang et al.: Ecological effects of the first dam on Yangtze main stream - 2081 - ECOLOGICAL EFFECTS OF THE FIRST DAM ON YANGTZE MAIN STREAM AND FUTURE CONSERVATION RECOMMENDATIONS: A REVIEW OF THE PAST 60 YEARS ZHANG, H.1 – LI, J. Y.1 – WU, J. M.1 – WANG, C. Y.1 – DU, H.1 – WEI, Q. W.1* – KANG, M.2* 1Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei Province, P. R. China (phone: +86-27-8178-0118; fax: +86-27-8178-0118) 2Department of Maritime Police and Production System / The Institute of Marine Industry, Gyeongsang National University, Cheondaegukchi-Gil 38, Tongyeong-si, Gyeongsangnam-do, 53064, South Korea (phone: +82-55-772-9187; fax: +82-55-772-9189) *Corresponding authors e-mail: [email protected]; [email protected] (Received 21st Jul 2017; accepted 27th Oct 2017) Abstract. The Gezhouba Dam was the first and lowermost dam on the major stem of the Yangtze River. Up to now, the dam has been operating for more than 35 years. The time period was a fast economic development stage in the Yangtze basin. Therefore, the entire Yangtze aquatic ecosystem has been highly affected by various anthropogenic activities. Especially, the fish population and distribution in the Yangtze River have been largely altered. This study reviews the ecological effects of the Gezhouba Dam to the Yangtze aquatic biodiversity for the past 60 years based on literatures. It was concluded that the pre-assessment of the Gezhouba Dam on Yangtze fishes in 1970s was appropriate.
    [Show full text]