(Alosa Tanaica, Grimm, 1901) from the Romanian Black Sea Coast

Total Page:16

File Type:pdf, Size:1020Kb

(Alosa Tanaica, Grimm, 1901) from the Romanian Black Sea Coast Studies Regarding the Biological Parameters of Azov Shad (Alosa tanaica, Grimm, 1901) from the Romanian Black Sea Coast George TIGANOV 1,2*), Lucian OPREA2), Valodia MAXIMOV1) 1)National Institute for Marine Research and Development “Grigore Antipa“ Constanta, Mamaia Bvd, 300, Constanta, Romania 2) Galati, Romania *CorrespondingFaculty of Food authors, Science ande-mail: Engineering, [email protected] “Lower Danube” University of Galati, Domnească Str, 111, Bulletin UASVM Animal Science and Biotechnologies 73(1)/ 2016 Print ISSN 1843-5262; Electronic ISSN 1843-536X DOI:10.15835/buasvmcn-asb: 11947 Abstract Azov shad (Alosa tanaica, Grimm 1901) is a marine anadromous species, which migrates for spawning from sea into fresh water lakes and rivers. It winters in the sea and appears close to shore in spring when the water temperature reaches the value of approximately 6 degrees Celsius. The paper presents the biological parameters shad belonging to the family Clupeidae thesuch entire as length Romanian and weight coast classfrom structure, Sulina to age, Vama sex Veche. ratio Theand studydegree of of the maturation behaviour ofof theAzov commercial shad (reproduction, fish Azov . The investigations were performed during 2014 on fish caught along manage these aspects. The preference for certain areas of distribution, for feeding and breeding was determined migration, feeding) is important to understand the impact on populations and to find sustainable solutions to The main aim of this research is to identify the current state of Azov shad population along the Black Sea Coast consideringby analysing that samples its biology collected and by conservation passive fishing are (shad less known. gillnets set in all fishing points across the Romanian Coast). Keywords: Black Sea, Azov shad, catches, length, weight, age INTRODUCTION Three shad species of the genus Alosa are previously conducted by the Bulgarian researcher known in the north–western basin of the Black Ivanov, in collaboration with Beverton (1985). The Sea, including the Sea of Azov: Danube shad (Alosa current level of knowledge of the biology of shad immaculata–Bennett, 1835), Caspian shad (Alosa originates from the research of Romanian and tanaica – Grimm, 1901) and Black Sea shad (Alosa Russian specialists in the 1960’s and 1970’s, but maeotica– Grimm, 1901). in the last 30 years many changes have occurred The concept of sustainable use, addressing the in the environmental and exploitation conditions of Alosa species. introduced for the inland waters of Romania, The biology, ecology and status of Alosa in impact of fishing on the stock dynamics, is recently Romanian waters have been studied by many th the Danube Delta (Staras et al., 1993; Navodaru authors since the beginning of the 19 century: andwith Staras,applications 1996). toStudies freshwater on the fish dynamics stocks inof Antipa (1905; 1909); Kovachev (1922); Drensky shad stocks in relation to operation have been (1923); Leonte (1943); Cristea A. and Cristea E., 2 TIGANOV et al (1958); Banarescu (1964); Kolarov (1991 a, b and c); Navodaru (1996; 1997); Navodaru et al.,(1997, have been conducted, in which 41 pelagic hauls 1998, 2003, 2008); Maximov (2006, 2007) and A total of 4 complex scientific expeditions Maximov et al.,(2011 a, 2011b). of trawling and over 1,200 hours effort of gillnet The research performed has led to the have been performed, a fishing effort of 41 hours knowledge of the current state of Alosa immaculata 400 m/each, and the mesh size varying between populations characterised by constantly 28÷fishing 36 (fourmm). strings, The perimeters of four nets, were with selected a length to beof decreasing numbers under anthropogenic representative for each habitat type and species of pressure. Investigations were conducted along interest (Fig.1). the entire Romanian Black Sea Coast, in almost The qualitative and quantitative composition of Azov shad catches was achieved by centralising, over periods of time, the data obtained during the all fishing points, by organising both expeditions alongAzov the shadcoast ( Alosa(gillnet tanaica fishing), Grimm, and 1901)sea surveys is the in the area. smallest(pelagic trawlrepresentative fishing). of the three shad species researchIn order surveys to study and interviewsthe biological with parameters fishermen present in the north – western part of the Black of the Azov shad species, from the specimens collected samples were taken for each species, economic value in this area of distribution. which were analysed in the laboratory, focusing Sea, Thea commercial main goal of fish this species research that is to has identify modest the in particular on: length class structure, weight current state of Azov shad population along the and age, sex, degree of gonad maturity, elements Black Sea Coast. The paper presents the biological required to estimate the growth parameters. parameters, such as length and weight class Biometric measurements were made for total structure, age, sex ratio and degree of maturation length (Lt), while for centralisation the errors were lower than 1 centimetre. The weight was family Clupeidae. determined in grams, with an accuracy of ±1 g. of the commercial fish Azov shad, belonging to the For the determination of the total length (Lt) MATERIAL AND METHODS - weight (W) ratio, the following relation was used The data and information regarding the (Carlander, 1977): geographic distribution of Alosa species were b collected within the monitoring plan developed W = a · Lt where: during 2014, for research expeditions carried out t at sea, on board the research vessel “Steaua de a and b = regression constants. mare”, equipped with pelagic trawl (Photo 1) and W = fish body weight; L = total length of the fish; pneumatic boat in order to carry out specialised The values of a and b were determined using the least squares method (Snedecor, 1968), fishing with gillnets (Photo 2). Photo 1 Pelagic Photo 2 Bulletin UASVM Animal Science and Biotechnologiestrawl fishing 73(1) / 2016 Gillnet fishing Studies Regarding the Biological Parameters of Azov Shad (Alosa tanaica, Grimm, 1901) from the Black Sea Coast 3 included in the FISHPARM programme (Prager, reaches the value of approximately 6 degrees Saila and Recksiek, 1987, 1989, 1994). Celsius. During the analysed period, Azov shad was RESULTS AND DISCUSSIONS Azov shad (Alosa tanaica, Grimm 1901) is a The largest number of specimens was caught in marine anadromous species, which migrates for thepresent perimeters throughout Sulina, the Sf. survey Gheorghe, fishing Sakhalin perimeter. and spawning from sea into freshwater littoral lakes Zatoane, and the fewest in the perimeters Vadu, and rivers. It winters in the sea and appears close Chituc and Periboina. to the shore in spring, when the water temperature approx.→ in 36.50% spring ofseason the total (April, catches 2014) of 2014was highly being caughtproductive now for (123 the individuals).scientific fishing The ofgeographical Azov shad, distribution was broad, being reported in all perimeters of ROSCI 0066 Danube Delta - marine ten hauls, the Azov shad was caught only in the sectorszone site. Sakhalin Thus, in and mid-water Perisor, trawl at depths fishing, of of 10.6 the - 17.1 m (2 individuals each, yield 0.1 - 1.00 kg/ depths, Azov shad was reported in all sectors: Periboinahour), while (13 in individuals), gillnet fishing yields set at0.1 3.0 – 1.00- 10.0 kg/ m hour, Sakhalin (48 individuals) and Zatoane (36 individuals), yields 0.1 – 1.00 kg/hour, Chituc (6 individuals) and Perisor (18 individuals), yields 0.1 – 1.00 kg/hour, were the sectors with the highest distribution; 49.1→ % in of summer the total season number (July of2014) individuals was the most(165 individuals)productive for being Azov caught shad researchnow, yet fishing,its distribution approx. was more scarce, occurring in catches only in the perimeters Sulina (79 individuals), Sf. Gheorghe (65 individuals) and Sakhalin (21 individuals). In Fig. 1 Areas where shad survey fishing was performed mid-water trawl fishing, in the ten hauls performed, Fig. 2 - Spatial distribution of Azov shad caught off the Romanian coast Bulletin UASVM Animal Science and Biotechnologies 73(1) / 2016 4 TIGANOV et al Alosa tanaica 336 individuals Lm - 165.5 mm Gm - 42.1 g 60 50 40 % 30 20 10 0 Class size (mm) Female Male Total Fig. 3 - Length class structure in Azov shad Fig. 4 - Age class structure in Azov shad (%) Fig. 5 - Sex ratio in Azov shad Fig. 6 - Length / weight relationship for Azov shad (Alosa tanaica) Bulletin UASVM Animal Science and Biotechnologies 73(1) / 2016 Studies Regarding the Biological Parameters of Azov Shad (Alosa tanaica, Grimm, 1901) from the Black Sea Coast 5 are essential habitats for the reproduction and feeding of Alosa juveniles. betweenAzov shad 0.1 did – 1.00not occur.kg/hour, In gillnetat 5.9 -fishing 6.4 m depthset at Only two shad species occurred in survey (Sf.3.0 Gheorghe),– 7.9 m (Sulina), yield 0.1 the - 2.0 fishing kg/hour, effort and atranged 4.3 – Alosa immaculata and Alosa tanaica; During the past 50 years, Alosa maeotica in autumn (September, 2014), the Azov shad was hasfishing, not beennamely reported as occurring in Romania, 7.9 m depth (Sakhalin), yield 0.1 – 1.00 kg/hour;→ Perisor, Zaton and Sahalin. Thus, the gillnets were past years erroneous. setreported at 4.3 only - 6.7 in mgillnet depths, fishing, 48 individualsin the perimeters being thus considering the official fishery records of the caught (yields ranging between 0.1- 1.00 kg/ REFERENCES hour), namely in Perisor (18 individuals), at 5.3 1. Antipa Gr. (1905). Die Clupeinen des Westlichen Teiles - 6.8 m depths, the yields ranged between 1.0 - des Schwatzen Meeres der Donaumündungen. Denkschr. 2.99 kg/hour and 3.0 - 4.99 kg/hour, while in the Akad. Wiss. Wien, Marh.-Naturw. Kl., 28:1-56, 3 pl. sector Zaton (16 individuals) and Sakhalin (14 2.
Recommended publications
  • Alosa Macedonica
    Alosa macedonica Region: 1 Taxonomic Authority: (Vinciguerra, 1921) Synonyms: Common Names: Macedonian shad English Order: Clupeiformes Family: Clupeidae Notes on taxonomy: General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: Its range is limited to Lake Volvi in northern Greece. It was previously A lake species, non migratory. Maximum age: 10 years. It is a present in Lake Koronia but in 1995 the lake dried up killing all the fish predominantly zooplantivorous fish, but the oldest fish are able to eat (Barbieri pers com) small fish. Conservation Measures: Threats: On paper it is protected by Greek laws on fishery management but in In the past the fishery was uncontrolled and overfishing was common. practice it receives little protection. It is listed in Annexes II and V of the Today the fishermen are disappearing and the fishing pressure is low. Habitats Directive of EU. Ongoing eutrophication of the lake and water extraction for irrigation might be threats in a near future. Species population information: A large A. macedonica population was established in the lake in recent years, principally due to overfishing of its predators (Zarfdjian et al. 1996). A further field survey in 1996 indicated the population to be increasing (Kottelat, pers comm.]. Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible Country:Greece Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 5.5 Wetlands (inland)
    [Show full text]
  • The Study on Fishing and Resource Management of Bony Fisheries Within Southern Caspian Sea
    The Study on fishing and resource management of bony fisheries within Southern Caspian Sea Item Type Report Authors Abdolmalaki, Shahram; Taghavi, S.A.; Motalebi, A.A.; Sharif Rohani, M.; Ghasemi, S.; Parafkandeh Haghighi, F.; Fazli, H.; Vahabnejad, A.; Ghaninejad, D.; Karimi, D.; Rahmati, M.; Daryanabard, R.; Bandani, G.A.; Talebzadeh, S.A.; Akhoondi, M. Publisher Iranian Fisheries Science Research Institute Download date 30/09/2021 16:11:40 Link to Item http://hdl.handle.net/1834/13405 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت ، آﻣﻮزش و ﺗﺮوﻳﺞﻛ ﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه آﺑﺰي ﭘﺮوري آﺑﻬﺎي داﺧﻠﻲ ﻋﻨﻮان : : ﻣﻄﺎﻟﻌﺎت ﺻﻴﺪ و ﻣﺪﻳﺮﻳﺖ ذﺧﺎﻳﺮ ﻣﺎﻫﻴﺎن اﺳﺘﺨﻮاﻧﻲ در ﺣﻮﺿﻪ ﺟﻨﻮﺑﻲ درﻳﺎي ﺧﺰر ﻣﺠﺮي : : ﺷﻬﺮام ﻋﺒﺪاﻟﻤﻠﻜﻲ ﺷﻤﺎره ﺛﺒﺖ 43144 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﻋﻨﻮان ﭘﺮوژه : ﻣﻄﺎﻟﻌﺎت ﺻﻴﺪ و ﻣﺪﻳﺮﻳﺖ ذﺧﺎﻳﺮ ﻣﺎﻫﻴﺎن اﺳﺘﺨﻮاﻧﻲ در ﺣﻮﺿﻪ ﺟﻨﻮﺑﻲ درﻳﺎي ﺧﺰر ﺷﻤﺎره ﻣﺼﻮب ﭘﺮوژه : 89049 - 8903 -12 -12 -14 ﻧﺎ م و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎرﻧﺪه / ﻧﮕﺎرﻧﺪﮔﺎن : ﺷﻬﺮام ﻋﺒﺪاﻟﻤﻠﻜﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : - - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : ﺷﻬﺮام ﻋﺒﺪاﻟﻤﻠﻜﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎر( ان ) : ﺳﻴﺪ اﻣﻴﻦ اﷲ ﺗﻘﻮي - ﻋﺒﺎﺳﻌﻠﻲ ﻣﻄﻠﺒﻲ – ﻣﺼﻄﻔﻲ ﺷﺮﻳﻒ روﺣﺎﻧﻲ – ﻣﺨﺘﺎر آﺧﻮﻧﺪي – ﺳﻴﺪ ﻋﺒﺎس ﻃﺎﻟﺐ زاده - ﺷﻬﺮام ﻗﺎﺳﻤﻲ - ﺣﺴﻦ ﻓﻀﻠﻲ - آرزو وﻫﺎب ﻧﮋاد – داود ﻏﻨﻲ ﻧﮋاد - داﻳﻮش ﻛﺮﻳﻤﻲ - ﻓﺮخ ﭘﺮاﻓﻜﻨﺪه - ﻣﺮاﺣﻢ رﺣﻤﺘﻲ - رﺿﺎ درﻳﺎﻧﺒﺮد - ﻏﻼﻣﻌﻠﻲ ﺑﻨﺪاﻧﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎور( ان ) : - - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ( ان ) : ﻓﺮﻫﺎد ﻛﻴﻤﺮام ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﺗﻬﺮان ﺗﺎرﻳﺦ ﺷﺮوع : /1/5 89 ﻣﺪت اﺟﺮا : 2 ﺳﺎل و 3 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل1393 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ .
    [Show full text]
  • Labidesthes Sicculus
    Version 2, 2015 United States Fish and Wildlife Service Lower Great Lakes Fish and Wildlife Conservation Office 1 Atherinidae Atherinidae Sand Smelt Distinguishing Features: — (Atherina boyeri) — Sand Smelt (Non-native) Old World Silversides Old World Silversides Old World (Atherina boyeri) Two widely separated dorsal fins Eye wider than Silver color snout length 39-49 lateral line scales 2 anal spines, 13-15.5 rays Rainbow Smelt (Non -Native) (Osmerus mordax) No dorsal spines Pale green dorsally Single dorsal with adipose fin Coloring: Silver Elongated, pointed snout No anal spines Size: Length: up to 145mm SL Pink/purple/blue iridescence on sides Distinguishing Features: Dorsal spines (total): 7-10 Brook Silverside (Native) 1 spine, 10-11 rays Dorsal soft rays (total): 8-16 (Labidesthes sicculus) 4 spines Anal spines: 2 Anal soft rays: 13-15.5 Eye diameter wider than snout length Habitat: Pelagic in lakes, slow or still waters Similar Species: Rainbow Smelt (Osmerus mordax), 75-80 lateral line scales Brook Silverside (Labidesthes sicculus) Elongated anal fin Images are not to scale 2 3 Centrarchidae Centrarchidae Redear Sunfish Distinguishing Features: (Lepomis microlophus) Redear Sunfish (Non-native) — — Sunfishes (Lepomis microlophus) Sunfishes Red on opercular flap No iridescent lines on cheek Long, pointed pectoral fins Bluegill (Native) Dark blotch at base (Lepomis macrochirus) of dorsal fin No red on opercular flap Coloring: Brownish-green to gray Blue-purple iridescence on cheek Bright red outer margin on opercular flap
    [Show full text]
  • 17. Preliminary Data on the Studies of Alosa Immaculate in Romanian
    Scientific Annals of the Danube Delta Institute Tulcea, România Vol. 22 2016 pp. 141-148 Preliminary Data on the Studies of Alosa immaculate in Romanian marine waters 17. ȚIGANOV George1, NĂVODARU Ion1, CERNIȘENCU Irina1, NĂSTASE Aurel1, MAXIMOV Valodia2, OPREA Lucian3 1 - Danube Delta National Institute for Research and Development: 165 Babadag street, Tulcea - 820112, Romania; e-mail: [email protected] 2 - National Institute for Marine Research and Development “Grigore Antipa”: 300 Blvd Mamaia, Constanta - 900581, Romania 3- "Lower Danube" University of Galati, Faculty of Food Science and Engineering, 111 Domnească Street, Galați, 800201, Romania Address of author responsible for correspondence: ȚIGANOV George, Danube Delta National Institute for Research and Development: Babadag street, No. 165, Tulcea - 820112, Romania; email: [email protected] bstract: Danube shad is a fish with high economic and socio-cultural value for the human communities established in the Danubian-Pontic space. In Romania, shad fishery has a market Avalue of about 1.5 million euro, with average annual catches of 200-500 tonnes. Biological material was collected during research surveys organized along the Black Sea coast, in 2012-2013, in spring season (March, April), summer (June, July) and autumn (September). Experimental fishing was done with fishing gillnets. Demographic structure of Alosa immaculata consists of generations of 2-5 years, dominated by generations of 3 to 4 years. The aim of this paper is to provide recent data regarding Alosa immaculata population along the Black Sea Coast consideribg that its biology is less known. Keywords: Danube shad, experimental fishing, Alosa immaculata, Black Sea. INTRODUCTION Genus Alosa is represented by several species, the most important being distributed in the Atlantic, Mediterranean, Black Sea and Caspian Sea.
    [Show full text]
  • Teleostei, Clupeiformes)
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Fall 2019 Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes) Tiffany L. Birge Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Birge, Tiffany L.. "Global Conservation Status and Threat Patterns of the World’s Most Prominent Forage Fishes (Teleostei, Clupeiformes)" (2019). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/8m64-bg07 https://digitalcommons.odu.edu/biology_etds/109 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) by Tiffany L. Birge A.S. May 2014, Tidewater Community College B.S. May 2016, Old Dominion University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY December 2019 Approved by: Kent E. Carpenter (Advisor) Sara Maxwell (Member) Thomas Munroe (Member) ABSTRACT GLOBAL CONSERVATION STATUS AND THREAT PATTERNS OF THE WORLD’S MOST PROMINENT FORAGE FISHES (TELEOSTEI, CLUPEIFORMES) Tiffany L. Birge Old Dominion University, 2019 Advisor: Dr. Kent E.
    [Show full text]
  • Review of Fisheries and Aquaculture Development Potentials in Georgia
    FAO Fisheries and Aquaculture Circular No. 1055/1 REU/C1055/1(En) ISSN 2070-6065 REVIEW OF FISHERIES AND AQUACULTURE DEVELOPMENT POTENTIALS IN GEORGIA Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Circular No. 1055/1 REU/C1055/1 (En) REVIEW OF FISHERIES AND AQUACULTURE DEVELOPMENT POTENTIALS IN GEORGIA by Marina Khavtasi † Senior Specialist Department of Integrated Environmental Management and Biodiversity Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Marina Makarova Head of Division Water Resources Protection Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Irina Lomashvili Senior Specialist Department of Integrated Environmental Management and Biodiversity Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Archil Phartsvania National Consultant Thomas Moth-Poulsen Fishery Officer FAO Regional Office for Europe and Central Asia Budapest, Hungary András Woynarovich FAO Consultant FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Biodiversity Assessment for Georgia
    Biodiversity Assessment for Georgia Task Order under the Biodiversity & Sustainable Forestry IQC (BIOFOR) USAID C ONTRACT NUMBER: LAG-I-00-99-00014-00 SUBMITTED TO: USAID WASHINGTON E&E BUREAU, ENVIRONMENT & NATURAL RESOURCES DIVISION SUBMITTED BY: CHEMONICS INTERNATIONAL INC. WASHINGTON, D.C. FEBRUARY 2000 TABLE OF CONTENTS SECTION I INTRODUCTION I-1 SECTION II STATUS OF BIODIVERSITY II-1 A. Overview II-1 B. Main Landscape Zones II-2 C. Species Diversity II-4 SECTION III STATUS OF BIODIVERSITY CONSERVATION III-1 A. Protected Areas III-1 B. Conservation Outside Protected Areas III-2 SECTION IV STRATEGIC AND POLICY FRAMEWORK IV-1 A. Policy Framework IV-1 B. Legislative Framework IV-1 C. Institutional Framework IV-4 D. Internationally Supported Projects IV-7 SECTION V SUMMARY OF FINDINGS V-1 SECTION VI RECOMMENDATIONS FOR IMPROVED BIODIVERSITY CONSERVATION VI-1 SECTION VII USAID/GEORGIA VII-1 A. Impact of the Program VII-1 B. Recommendations for USAID/Georgia VII-2 ANNEX A SECTIONS 117 AND 119 OF THE FOREIGN ASSISTANCE ACT A-1 ANNEX B SCOPE OF WORK B-1 ANNEX C LIST OF PERSONS CONTACTED C-1 ANNEX D LISTS OF RARE AND ENDANGERED SPECIES OF GEORGIA D-1 ANNEX E MAP OF LANDSCAPE ZONES (BIOMES) OF GEORGIA E-1 ANNEX F MAP OF PROTECTED AREAS OF GEORGIA F-1 ANNEX G PROTECTED AREAS IN GEORGIA G-1 ANNEX H GEORGIA PROTECTED AREAS DEVELOPMENT PROJECT DESIGN SUMMARY H-1 ANNEX I AGROBIODIVERSITY CONSERVATION IN GEORGIA (FROM GEF PDF GRANT PROPOSAL) I-1 SECTION I Introduction This biodiversity assessment for the Republic of Georgia has three interlinked objectives: · Summarizes the status of biodiversity and its conservation in Georgia; analyzes threats, identifies opportunities, and makes recommendations for the improved conservation of biodiversity.
    [Show full text]
  • Review Article Review of the Herrings of Iran (Family Clupeidae)
    Int. J. Aquat. Biol. (2017) 5(3): 128-192 ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2017 Iranian Society of Ichthyology Review Article Review of the Herrings of Iran (Family Clupeidae) Brian W. Coad1 Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada. Abstract: The systematics, morphology, distribution, biology, economic importance and Article history: Received 4 March 2017 conservation of the herrings (kilkas and shads) of Iran are described, the species are illustrated, and Accepted 5 May 2017 a bibliography on these fishes in Iran is provided. There are 9 native species in the genera Available online 25 June 2017 Clupeonella , Alosa and Tenualosa in the Caspian Sea and rivers of southern Iran. Keywords: Morphology, Biology, Alosa, Clupeonella, Tenualosa, Kilka, Shad. Introduction family in the Caspian Sea is seen in the number of The freshwater ichthyofauna of Iran comprises a subspecies which have been described, rather than in diverse set of families and species. These form genera. At the species level these are Caspian Sea important elements of the aquatic ecosystem and a endemics. A study by Pourrafei et al. (2016) based number of species are of commercial or other on the nuclear gene RAG1 did not support the significance. The literature on these fishes is widely monophyly of Clupeidae but, as an abstract, details scattered, both in time and place. Summaries of the are lacking. These fishes are dealt with as a single morphology and biology of these species were given family here. in a website (www.briancoad.com) which is updated Curiously, the species and subspecies in the here for one family, while the relevant section of that Caspian Sea are generally of larger size than their website is now closed down.
    [Show full text]
  • Systematic List of the Romanian Vertebrate Fauna
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 377–411 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0028-1 SYSTEMATIC LIST OF THE ROMANIAN VERTEBRATE FAUNA DUMITRU MURARIU Abstract. Compiling different bibliographical sources, a total of 732 taxa of specific and subspecific order remained. It is about the six large vertebrate classes of Romanian fauna. The first class (Cyclostomata) is represented by only four species, and Pisces (here considered super-class) – by 184 taxa. The rest of 544 taxa belong to Tetrapoda super-class which includes the other four vertebrate classes: Amphibia (20 taxa); Reptilia (31); Aves (382) and Mammalia (110 taxa). Résumé. Cette contribution à la systématique des vertébrés de Roumanie s’adresse à tous ceux qui sont intéressés par la zoologie en général et par la classification de ce groupe en spécial. Elle représente le début d’une thème de confrontation des opinions des spécialistes du domaine, ayant pour but final d’offrir aux élèves, aux étudiants, aux professeurs de biologie ainsi qu’à tous ceux intéressés, une synthèse actualisée de la classification des vertébrés de Roumanie. En compilant différentes sources bibliographiques, on a retenu un total de plus de 732 taxons d’ordre spécifique et sous-spécifique. Il s’agît des six grandes classes de vertébrés. La première classe (Cyclostomata) est représentée dans la faune de Roumanie par quatre espèces, tandis que Pisces (considérée ici au niveau de surclasse) l’est par 184 taxons. Le reste de 544 taxons font partie d’une autre surclasse (Tetrapoda) qui réunit les autres quatre classes de vertébrés: Amphibia (20 taxons); Reptilia (31); Aves (382) et Mammalia (110 taxons).
    [Show full text]
  • Detailed Final Conclusions on the Representation of Animal Species from Res. No. 6
    Detailed final conclusions on the representation of animal species from Res. No. 6 (1998) of the Bern Convention in proposed Emerald sites in the Republic of Moldova, the Russian Federation and Ukraine (Steppic, Alpine-Caucasus and Black Sea) Remark: "During this seminar (Kyiv, 4-5 September 2016), we were not able to discuss marine features (sea turtles, dolphins, seals, anadromous fishes in their marine period) and certains habitats (mainly: A1.11, A1.141, A1.22, A1.44, A2.61, A2.621, A3, A4, A5 and A6.911) due to almost complete absence of Marine Emerald sites proposed so far. It is planned that such discussion will be held in a dedicated marine seminar in coming years. If necessary, additional guidelines on designation of marine sites will be prepared and disseminated." Code Species Name iso biogeo Final Concl. Final Conclusion Comments Mammals 1303 Rhinolophus hipposideros MD STE IN MOD 1303 Rhinolophus hipposideros RU ALP- IN MOD Cau 1303 Rhinolophus hipposideros RU BLS IN MIN 1303 Rhinolophus hipposideros RU STE IN MIN Krasnodar oblast 1303 Rhinolophus hipposideros UA STE IN MOD/SR/CD IN MOD: N Odessa, SR: Crimea, CD: delete NE site in Crimea 1304 Rhinolophus ferrumequinum MD STE IN MAJ 1 site 1304 Rhinolophus ferrumequinum RU ALP- IN MOD Cau 1304 Rhinolophus ferrumequinum RU BLS SUF 1304 Rhinolophus ferrumequinum RU STE IN MIN 1304 Rhinolophus ferrumequinum UA STE IN MOD/SR/CD IN MOD: Kerch peninsula, CD and SR: Crimea 1305 Rhinolophus euryale RU ALP- EXCL REF LIST Cau 1305 Rhinolophus euryale RU BLS SR 1305 Rhinolophus euryale RU STE EXCL REF LIST 1307 Myotis blythii MD STE IN MAJ/SR IN MAJ: Prut River 1307 Myotis blythii RU ALP- IN MOD Cau 1307 Myotis blythii RU BLS IN MIN 1307 Myotis blythii RU STE IN MIN Adjacent territory to W Caucasus Emerald Biogeographical Seminar STE - ALP (Caucasus) - BLS, 6-8 September 2016 - Final Conclusions Page 1 of 14 Code Species Name iso biogeo Final Concl.
    [Show full text]
  • Freshwater Fishes of Turkey: a Revised and Updated Annotated Checklist
    BIHAREAN BIOLOGIST 9 (2): 141-157 ©Biharean Biologist, Oradea, Romania, 2015 Article No.: 151306 http://biozoojournals.ro/bihbiol/index.html Freshwater fishes of Turkey: a revised and updated annotated checklist Erdoğan ÇIÇEK1,*, Sevil Sungur BIRECIKLIGIL1 and Ronald FRICKE2 1. Nevşehir Hacı Bektaş Veli Üniversitesi, Faculty of Art and Sciences, Department of Biology, 50300, Nevşehir, Turkey. E-mail: [email protected]; [email protected] 2. Im Ramstal 76, 97922 Lauda-Königshofen, Germany, and Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-Mail: [email protected] *Corresponding author, E. Çiçek, E-mail: [email protected] Received: 24. August 2015 / Accepted: 16. October 2015 / Available online: 20. November 2015 / Printed: December 2015 Abstract. The current status of the inland waters ichthyofauna of Turkey is revised, and an updated checklist of the freshwater fishes is presented. A total of 368 fish species live in the inland waters of Turkey. Among these, 3 species are globally extinct, 5 species are extinct in Turkey, 28 species are non-native and 153 species are considered as endemic to Turkey. We recognise pronounced species richness and a high degree of endemism of the Turkish ichthyofauna (41.58%). Orders with the largest numbers of species in the ichthyofauna of Turkey are the Cypriniformes 247 species), Perciformes (43 species), Salmoniformes (21 species), Cyprinodontiformes (15 species), Siluriformes (10 species), Acipenseriformes (8 species) and Clupeiformes (8 species). At the family level, the Cyprinidae has the greatest number of species (188 species; 51.1% of the total species), followed by the Nemacheilidae (39), Salmonidae (21 species), Cobitidae (20 species), Gobiidae (18 species) and Cyprinodontidea (14 species).
    [Show full text]
  • Stellate Sturgeon (Acipenser Stellatus) Ecological Risk Screening Summary
    Stellate Sturgeon (Acipenser stellatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2011 Revised, June 2018 Web Version, 8/29/2018 Photo: FAO. Licensed under CC BY-NC 3.0. Available: http://eol.org/data_objects/20923584. (June 2018). 1 Native Range and Status in the United States Native Range From Qiwei (2010): “The species was known from the Caspian, Black and Aegean Seas. It is now extirpated from the Aegean Sea, and in the Black Sea basin the last natural population migrates up the Danube where it is heavily overfished. Only very few spawners remain in the rest of the Black Sea basin.” Status in the United States This species has not been reported as introduced or established in the United States. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 1 Remarks From Qiwei (2010): “Red List Category & Criteria: Critically Endangered […]” “Based on catch data, and number of individuals migrating into the Volga and Ural rivers it is estimated that the species has undergone a population decline of at least 80% (possibly close to 100%) in the past three generations (minimum estimate of 30 years, possibly up to 40), which is expected to continue. Catch data shows massive declines across the species range with a 98% decline between 1980 and 2007 in the Caspian Sea, and a 72.5% in four years (2002-2005) in Romania (Danube).” “In the early 1990s it was estimated that nearly 100% of the Sea of Azov population and 30% of the Caspian Sea population were from stocking.
    [Show full text]