Professor Shigefumi Mori – July 2017 Biography

Total Page:16

File Type:pdf, Size:1020Kb

Professor Shigefumi Mori – July 2017 Biography Professor Shigefumi Mori – July 2017 biography Professor Shigefume MORI was the 1990 Fields Medallist for his ground-breaking work on algebraic 3-folds (3-dimensional complex algebraic varieties). In the same year he was also awarded the Japanese cultural medal. He was director of the prestigious Kyoto University Research Institute for Mathematical Science and is currently president of the International Mathematical Union. He was a visiting professor at: Harvard University 1977–1980, the Institute for Advanced Study in 1981–82, Columbia University 1985–87 and the University of Utah for periods during 1987–89 and again during 1991–92. He has been a professor at Kyoto University since 1990. From the late 1970s Mori produced several ground-breaking innovations in algebraic geometry. These include a revolutionary new technique to prove the existence of rational curves on an algebraic manifold using deformation theory and reduction to characteristic p. The technique is called "bending-and-breaking"; it was first used to prove major conjectures in complex projective geometry and in compact Kähler geometry that characterise complex n-dimensional projective space by curvature conditions. Mori then extended this and other techniques, developing the cone of effective curves of a projective manifold as a surprising and powerful new invariant. The results surrounding his Theorem on the Cone and their Extremal Rays radically changed our outlook on higher dimensional projective manifold and included the first serious steps in the higher dimensional Minimal Model Program (now known as Mori theory or the Mori program). His work and discoveries have become a cornerstone of research in higher dimensional geometry and theoretical physics..
Recommended publications
  • Arxiv:1701.01653V1 [Math.CV] 6 Jan 2017 32J25
    Bimeromorphic geometry of K¨ahler threefolds Andreas H¨oring and Thomas Peternell Abstract. We describe the recently established minimal model program for (non-algebraic) K¨ahler threefolds as well as the abundance theorem for these spaces. 1. Introduction Given a complex projective manifold X, the Minimal Model Program (MMP) predicts that either X is covered by rational curves (X is uniruled) or X has a ′ - slightly singular - birational minimal model X whose canonical divisor KX′ is nef; and then the abundance conjecture says that some multiple mKX′ is spanned by global sections (so X′ is a good minimal model). The MMP also predicts how to achieve the birational model, namely by a sequence of divisorial contractions and flips. In dimension three, the MMP is completely established (cf. [Kwc92], [KM98] for surveys), in dimension four, the existence of minimal models is es- tablished ([BCHM10], [Fuj04], [Fuj05]), but abundance is wide open. In higher dimensions minimal models exists if X is of general type [BCHM10]; abundance not being an issue in this case. In this article we discuss the following natural Question 1.1. Does the MMP work for general (non-algebraic) compact K¨ahler manifolds? Although the basic methods used in minimal model theory all fail in the K¨ahler arXiv:1701.01653v1 [math.CV] 6 Jan 2017 case, there is no apparent reason why the MMP should not hold in the K¨ahler category. And in fact, in recent papers [HP16], [HP15] and [CHP16], the K¨ahler MMP was established in dimension three: Theorem 1.2. Let X be a normal Q-factorial compact K¨ahler threefold with terminal singularities.
    [Show full text]
  • Party Time for Mathematicians in Heidelberg
    Mathematical Communities Marjorie Senechal, Editor eidelberg, one of Germany’s ancient places of Party Time HHlearning, is making a new bid for fame with the Heidelberg Laureate Forum (HLF). Each year, two hundred young researchers from all over the world—one for Mathematicians hundred mathematicians and one hundred computer scientists—are selected by application to attend the one- week event, which is usually held in September. The young in Heidelberg scientists attend lectures by preeminent scholars, all of whom are laureates of the Abel Prize (awarded by the OSMO PEKONEN Norwegian Academy of Science and Letters), the Fields Medal (awarded by the International Mathematical Union), the Nevanlinna Prize (awarded by the International Math- ematical Union and the University of Helsinki, Finland), or the Computing Prize and the Turing Prize (both awarded This column is a forum for discussion of mathematical by the Association for Computing Machinery). communities throughout the world, and through all In 2018, for instance, the following eminences appeared as lecturers at the sixth HLF, which I attended as a science time. Our definition of ‘‘mathematical community’’ is journalist: Sir Michael Atiyah and Gregory Margulis (both Abel laureates and Fields medalists); the Abel laureate the broadest: ‘‘schools’’ of mathematics, circles of Srinivasa S. R. Varadhan; the Fields medalists Caucher Bir- kar, Gerd Faltings, Alessio Figalli, Shigefumi Mori, Bào correspondence, mathematical societies, student Chaˆu Ngoˆ, Wendelin Werner, and Efim Zelmanov; Robert organizations, extracurricular educational activities Endre Tarjan and Leslie G. Valiant (who are both Nevan- linna and Turing laureates); the Nevanlinna laureate (math camps, math museums, math clubs), and more.
    [Show full text]
  • The Top Mathematics Award
    Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him.
    [Show full text]
  • INSTITUTO DE CIENCIAS MATEMÁTICAS Quarterly Newsletter Second Quarter 2015 CONTENTS
    INSTITUTO DE CIENCIAS MATEMÁTICAS Quarterly newsletter Second quarter 2015 CONTENTS Editorial: Looking to Europe..............................................................................3 Interview: Jean-Pierre Bourguignon.................................................................4 Report: Europe endorses the ICMAT’s excellence in mathematical research..................................................................................8 Interview: Shigefumi Mori........................................................................ .......12 Questionnaire: David Ríos................................................................................14 Scientific Review: Channel capacities via p-summing norms...........................................................................................15 Profile of Omar Lazar.......................................................................................17 Agenda.............................................................................................................18 News ICMAT......................................................................................................18 Quarterly newsletter Production: Layout: Instituto de Ciencias Matemáticas Divulga S.L Equipo globalCOMUNICA N.9 II Quarter 2015 C/ Diana 16-1º C 28022 Madrid Collaboration: Edition: Carlos Palazuelos C/ Nicolás Carrera nº 13-15 Coordination: Susana Matas Campus de Cantoblanco, UAM Ignacio F. Bayo 29049 Madrid ESPAÑA Ágata Timón Translation: Jeff Palmer Editorial committee: Design: Manuel de León Fábrica
    [Show full text]
  • NEWSLETTER No
    NEWSLETTER No. 458 May 2016 NEXT DIRECTOR OF THE ISAAC NEWTON INSTITUTE In October 2016 David Abrahams will succeed John Toland as Director of the Isaac Newton Institute for Mathematical Sciences and NM Rothschild and Sons Professor of Mathematics in Cambridge. David, who is a Royal Society Wolfson Research Merit Award holder, has been Beyer Professor of Applied Mathematics at the University of Man- chester since 1998. From 2014-16 he was Scientific Director of the International Centre for Math- ematical Sciences in Edinburgh and was President of the Institute of Mathematics and its Applica- tions from 2007-2009. David’s research has been in the broad area of applied mathematics, mainly focused on the theoretical understanding of wave processes including scattering, diffraction, localisation and homogenisation. In recent years his research has broadened somewhat, to now cover topics as diverse as mathematical finance, nonlinear vis- He has also been involved in a range of public coelasticity and glaciology. He has close links with engagement activities over the years. He a number of industrial partners. regularly offers mathematics talks of interest David plays an active role within the internation- to school students and the general public, al mathematics community, having served on over and ran the annual Meet the Mathematicians 30 national and international working parties, outreach events for sixth form students with panels and committees over the past decade. Chris Howls (Southampton). With Chris Budd This has included as a Member of the Applied (Bath) he has organised a training conference Mathematics sub-panel for the 2008 Research As- in 2010 on How to Talk Maths in Public, and in sessment Exercise and Deputy Chair for the Math- 2014 co-chaired the inaugural Festival of Math- ematics sub-panel in the 2014 Research Excellence ematics and its Applications.
    [Show full text]
  • On the Mathematical Work of Professor Heisuke Hironaka
    On the Mathematical Work of Professor Heisuke Hironaka By Leˆ D˜ung Tr´ang and Bernard Teissier The authors wish to express their gratitude to Hei Hironaka for his won- derful teaching and his friendship, over a period of many years. In this succinct and incomplete presentation of Hironaka’s published work up to now, it seems convenient to use a covering according to a few main topics: families of spaces and equisingularity, birational and bimeromorphic geometry, finite determinacy and algebraicity problems, flatness and flattening, real analytic and subanalytic geometry. This order follows roughly the order of publication of the first paper in each topic. One common thread is the frequent use of blowing-ups to simplify the algebraic problems or the geometry. For example, in the theory of subanalytic spaces of Rn, Hironaka inaugurated and systematically used this technique, in contrast with the “traditional” method of studying subsets of Rn by considering their generic linear projections to Rn−1. No attempt has been made to point at generalizations, simplifications, applications, or any sort of mathematical descent of Hironaka’s work, since the result of such an attempt must be either totally inadequate or of book length. • Families of algebraic varieties and analytic spaces, equisingularity - Hironaka’s first published paper is [1], which contains part of his Master’s Thesis. The paper deals with the difference between the arithmetic genus and the genus of a projective curve over an arbitrary field. In particular it studies what is today known as the δ invariant of the singularities of curves. Previous work in this direction had been done by Rosenlicht (in his famous 1952 paper where Rosenlicht differentials are introduced), as he points out in his review of Hironaka’s paper in Math.
    [Show full text]
  • Bimeromorphic Geometry of K'́ahler Threefolds
    Bimeromorphic geometry of K’́ahler threefolds Andreas Höring, Thomas Peternell To cite this version: Andreas Höring, Thomas Peternell. Bimeromorphic geometry of K’́ahler threefolds. 2015 Summer Institute on Algebraic Geometry, Jul 2015, Salt Lake City, United States. hal-01428621 HAL Id: hal-01428621 https://hal.archives-ouvertes.fr/hal-01428621 Submitted on 6 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bimeromorphic geometry of K¨ahler threefolds Andreas H¨oring and Thomas Peternell Abstract. We describe the recently established minimal model program for (non-algebraic) K¨ahler threefolds as well as the abundance theorem for these spaces. 1. Introduction Given a complex projective manifold X, the Minimal Model Program (MMP) predicts that either X is covered by rational curves (X is uniruled) or X has a ′ - slightly singular - birational minimal model X whose canonical divisor KX′ is nef; and then the abundance conjecture says that some multiple mKX′ is spanned by global sections (so X′ is a good minimal model). The MMP also predicts how to achieve the birational model, namely by a sequence of divisorial contractions and flips. In dimension three, the MMP is completely established (cf.
    [Show full text]
  • The Resolution of Singular Algebraic Varieties
    Clay Mathematics Proceedings Volume 20 The Resolution of Singular Algebraic Varieties Clay Mathematics Institute Summer School 2012 The Resolution of Singular Algebraic Varieties Obergurgl Tyrolean Alps, Austria June 3–30, 2012 David Ellwood Herwig Hauser Shigefumi Mori Josef Schicho Editors American Mathematical Society Clay Mathematics Institute The Resolution of Singular Algebraic Varieties Clay Mathematics Proceedings Volume 20 The Resolution of Singular Algebraic Varieties Clay Mathematics Institute Summer School 2012 The Resolution of Singular Algebraic Varieties Obergurgl Tyrolean Alps, Austria, June 3–30, 2012 David Ellwood Herwig Hauser Shigefumi Mori Josef Schicho Editors American Mathematical Society Clay Mathematics Institute 2010 Mathematics Subject Classification. Primary 14-01, 14-06, 14Bxx, 14Exx, 13-01, 13-06, 13Hxx, 32Bxx, 32Sxx, 58Kxx. Cover photo of Obergurgl, Austria is by Alexander Zainzinger. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute Summer School (2012 : Obergurgl Center) The resolution of singular algebraic varieties: Clay Mathematics Institute Summer School, the resolution of singular algebraic varieties, June 3–30, 2012, Obergurgl Center, Tyrolean Alps, Austria / David Ellwood, Herwig Hauser, Shigefumi Mori, Josef Schicho, editors. pages cm. — (Clay mathematics proceedings ; volume 20) Includes bibliographical references and index. ISBN 978-0-8218-8982-4 (alk. paper) 1. Algebraic varieties—Congresses. 2. Commutative algebra—Congresses. I. Ellwood, David, 1966– II. Hauser, H. (Herwig), 1956– III. Mori, Shigefumi. IV. Schicho, Josef, 1964– V. Ti- tle. QA564.C583 2012 516.35—dc23 2014031965 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research.
    [Show full text]
  • Arxiv:1809.03710V2 [Math.AG] 7 Oct 2019 Riodpout O Ihrkter N Oii Cohomolo Motivic and K-Theory Higher for Products Orbifold Introduction 1 Contents Ouet Math
    Documenta Math. 1 Orbifold products for higher K-theory and motivic cohomology Lie Fu and Manh Toan Nguyen Abstract. Due to the work of many authors in the last decades, given an algebraic orbifold (smooth proper Deligne–Mumford stack with trivial generic stabilizer), one can construct its orbifold Chow ring and orbifold Grothendieck ring, and relate them by the orbifold Chern character map, generalizing the fundamental work of Chen–Ruan on orbifold cohomology. In this paper, we extend this theory naturally to higher Chow groups and higher algebraic K-theory, mainly following the work of Jarvis–Kaufmann– Kimura and Edidin–Jarvis–Kimura. 2010 Mathematics Subject Classification: 19E08, 19E15, 14C15, 55N32. Keywords and Phrases: Orbifold cohomology, K-theory, motivic cohomol- ogy, Chow rings, hyper-K¨ahler resolution. Contents 1 Introduction 2 2 Preliminaries on K-theory and motivic cohomology 7 arXiv:1809.03710v2 [math.AG] 7 Oct 2019 3 Equivariant K-theory and motivic cohomology 11 4 Orbifold theories: global quotient by a finite group 16 5 Orbifold theories: general setting 26 6 Application: hyper-Kahler¨ resolution conjectures 37 Documenta Mathematica 24 (2019) 1–1000 2 Lie Fu and Manh Toan Nguyen 1 Introduction In their seminal papers [12] and [13], Chen and Ruan constructed the orbifold coho- mology theory for complex orbifolds. More precisely, given an orbifold X, there is a rationally graded, associative and super-commutative algebra whose underlying vec- tor space is the cohomology of the inertia orbifold of X. The highly non-trivial multi- plicative structure of the orbifold cohomology ring is defined using orbifold Gromov– Witten theory, in particular, the construction of the virtual fundamental class of some moduli stack of the so-called ghost stable maps, which are stable maps (from orb- ifoldal curves) of degree 0, thus invisible if the orbifold X is a manifold.
    [Show full text]
  • 2008 Annual Report
    Contents Clay Mathematics Institute 2008 Letter from the President James A. Carlson, President 2 Annual Meeting Clay Research Conference 3 Recognizing Achievement Clay Research Awards 6 Researchers, Workshops, Summary of 2008 Research Activities 8 & Conferences Profile Interview with Research Fellow Maryam Mirzakhani 11 Feature Articles A Tribute to Euler by William Dunham 14 The BBC Series The Story of Math by Marcus du Sautoy 18 Program Overview CMI Supported Conferences 20 CMI Workshops 23 Summer School Evolution Equations at the Swiss Federal Institute of Technology, Zürich 25 Publications Selected Articles by Research Fellows 29 Books & Videos 30 Activities 2009 Institute Calendar 32 2008 1 smooth variety. This is sufficient for many, but not all applications. For instance, it is still not known whether the dimension of the space of holomorphic q-forms is a birational invariant in characteristic p. In recent years there has been renewed progress on the problem by Hironaka, Villamayor and his collaborators, Wlodarczyck, Kawanoue-Matsuki, Teissier, and others. A workshop at the Clay Institute brought many of those involved together for four days in September to discuss recent developments. Participants were Dan Letter from the president Abramovich, Dale Cutkosky, Herwig Hauser, Heisuke James Carlson Hironaka, János Kollár, Tie Luo, James McKernan, Orlando Villamayor, and Jaroslaw Wlodarczyk. A superset of this group met later at RIMS in Kyoto at a Dear Friends of Mathematics, workshop organized by Shigefumi Mori. I would like to single out four activities of the Clay Mathematics Institute this past year that are of special Second was the CMI workshop organized by Rahul interest.
    [Show full text]
  • Ffields J)/[Edauists' Jtectures
    World Scientific Series in 20th Century Mathematics - Vol. 5 ffields J)/[edaUists' jTectures Editors Sir Michael Atiyah Trinity College, Cambridge, UK Daniel Iagolnitzer Service de Physique Theorique CEA-Saclay, France Vfe World Scientific Wl SingaporeSinqapore» * New Jersey • LondonLondon* • Hong Kong • SINGAPORE UNIVERSITY PRESS NATIONAL UNIVERSITY OF SINGAPORE CONTENTS Preface v Recipients of Fields Medals vi 1936 L. V. AHLFORS Autobiography 3 Commentary on: Zur Theorie der Uberlagerungsflächen (1935) 8 Quasiconformal Mappings, Teichmüller Spaces, and Kleinian Groups 10 1950 L. SCHWARTZ The Work of L. Schwartz by H. Bohr 25 Biographical Notice 31 Calcul Infinitesimal Stochastique 33 1958 K. F. ROTH The Work of K. F. Roth by H. Davenport 53 Biographical Notice 59 Rational Approximations to Algebraic Numbers 60 RTHOM The Work of R. Thom by H. Hopf 67 Autobiography 71 1962 L. HÖRMANDER Hörmander's Work On Linear Differential Operators by L. Gärding 77 Autobiography 83 Looking forward from ICM 1962 86 1966 M. F. ATIYAH L'oeuvre de Michael F. Atiyah by H. Cartan 105 Biography 113 The Index of Elliptic Operators 115 \ viü Fields Medallists' Lectures S. SM ALE Sur les Travaux de Stephen Smale by R. Thom 129 Biographical Notice 135 A Survey of Some Recent Developments in Differential Topology 142 1970 A. BAKER The Work of Alan Baker by P. Turän 157 Biography 161 Effective Methods in the Theory of Numbers 162 Effective Methods in Diophantine Problems 171 Effective Methods in Diophantine Problems. II. Comments 183 Effective Methods in the Theory of Numbers/Diophantine Problems 190 S. NOVIKOV The Work of Serge Novikov by M.
    [Show full text]
  • Clay Mathematics Institute 2008
    Contents Clay Mathematics Institute 2008 Letter from the President James A. Carlson, President 2 Annual Meeting Clay Research Conference 3 Recognizing Achievement Clay Research Awards 6 Researchers, Workshops, Summary of 2008 Research Activities 8 & Conferences Profile Interview with Research Fellow Maryam Mirzakhani 11 Feature Articles A Tribute to Euler by William Dunham 14 The BBC Series The Story of Math by Marcus du Sautoy 18 Program Overview CMI Supported Conferences 20 CMI Workshops 23 Summer School Evolution Equations at the Swiss Federal Institute of Technology, Zürich 25 Publications Selected Articles by Research Fellows 29 Books & Videos 30 Activities 2009 Institute Calendar 32 2008 1 smooth variety. This is sufficient for many, but not all applications. For instance, it is still not known whether the dimension of the space of holomorphic q-forms is a birational invariant in characteristic p. In recent years there has been renewed progress on the problem by Hironaka, Villamayor and his collaborators, Wlodarczyck, Kawanoue-Matsuki, Teissier, and others. A workshop at the Clay Institute brought many of those involved together for four days in September to discuss recent developments. Participants were Dan Letter from the president Abramovich, Dale Cutkosky, Herwig Hauser, Heisuke James Carlson Hironaka, János Kollár, Tie Luo, James McKernan, Orlando Villamayor, and Jaroslaw Wlodarczyk. A superset of this group met later at RIMS in Kyoto at a Dear Friends of Mathematics, workshop organized by Shigefumi Mori. I would like to single out four activities of the Clay Mathematics Institute this past year that are of special Second was the CMI workshop organized by Rahul interest.
    [Show full text]