Tthe Exploration of Titan

Total Page:16

File Type:pdf, Size:1020Kb

Tthe Exploration of Titan EXPLORATION OF TITAN The Exploration of Titan Ralph D. Lorenz he exploration of Saturn’s moon Titan is reviewed, noting the dramatic recent improvements in our knowledge of this strange world from the ongoing inter- national Cassini-Huygens mission, results from which are summarized. Among Cassini’s discoveries are the remarkable richness and complexity of its organic chemistry, a strikingly Earth-like landscape with hydrocarbon lakes and seas, and vast fields of organic sand dunes interspersed with craters and icy mountains. The breadth of scientific questions posed by Titan’s Earth-like landscape and meteorology, and its organic-rich prebiotic chemistry, set the stage for Titan to become a key target for future solar system exploration, possibly by aircraft exploiting its thick atmosphere and Tlow gravity. INTRODUCTION The most Earth-like body in the solar system is not (“cryovolcanism”), by rivers of liquid methane, and by another planet but Saturn’s largest moon, Titan.1 Indeed, tidally driven winds that sculpt drifts of aromatic organ- if Titan orbited the Sun rather than Saturn, we would ics into long linear dunes. Until only 3 years ago, little of not hesitate to call it a planet in its own right. This this was known. strange new world is larger than the planet Mercury The dramatic and surprising results obtained from and has a thick nitrogen atmosphere laden with organic the Cassini-Huygens mission2 have shown Titan to be smog, which hid its surface from view until only recently much more diverse and complicated than had been (Fig. 1). Since Titan is far from the Sun, methane plays thought, making it much more than just an icy satellite the active role there that water plays on Earth, serving with an atmosphere. as a condensable greenhouse gas, forming clouds and rain, and pooling on the surface as lakes. Titan’s icy sur- EXPLORATION HISTORY face is shaped not only by impact craters and tectonics Titan was discovered in 1655 by the Dutchman but also by volcanism in which the lava is liquid water Christiaan Huygens, who realized simultaneously that JOHNS HopKinS APL TECHniCal DIGEST, VolUME 27, NUMBer 2 (2006) 133 R. D. LORENZ contradictory: a thick atmosphere would reflect blue and UV light more brightly than the space-borne observations (just as our own sky is blue), but the warm temperatures implied by the ground-based thermal data required a thick atmosphere. Observations from the Voyager 1 spacecraft as it flew by Titan in 1980 resolved the matter, showing both “end members” to be partly correct. Voyager showed Titan’s atmosphere to be like Earth’s, made predominantly (>90%) of molecular nitrogen and having a surface pressure of 150 kPa and a tempera- ture around 94 K, indicating its “sea-level” air density to be 4 times higher than Earth’s. Methane makes up about 1.5% of Titan’s strato- sphere, although (much like water vapor in the Earth’s troposphere) its abundance increases some- what nearer the ground. Indeed, the temperature pro- file indicated by Voyager showed Titan to have a very Earth-like atmospheric structure, but one that was colder and vertically stretched in the low gravity, i.e., temperatures slowly fall with altitude from the surface Figure 1. A false-color composite of Cassini International Space upward to the chilly tropopause at 40 km. And just Station (ISS) images. The blue is rendered from a UV filter, making as with water vapor on Earth, Titan’s tropopause acts it particularly responsive to high-altitude haze, which appears as a “cold trap” for methane, which is a condensable especially abundant over the northern polar region (north is up). greenhouse gas. At higher altitudes, local absorption The tan is generated from a near-IR filter in a methane absorption of sunlight (on Earth by ozone, on Titan by the haze band: the northern hemisphere has more haze lying above the bulk discussed below) causes temperatures to rise with alti- of the methane, hence it is more tan. The green channel is from a tude, forming a stable stratosphere. It is this warm, near-IR “window” that penetrates to the surface, showing the irreg- stable stratosphere that causes the large thermal ular “coastline” at left. The irregular white patch at the bottom is a fluxes observed from Earth. complex of tropospheric clouds around the south pole, which were It had been suspected from Titan’s reddish color observed to move and evolve over periods of a few hours. (Image and the polarization of its light that its atmosphere courtesy of NASA/JPL/Ciclops/University of Arizona.) might be hazy, and indeed it is this haze that prevents Titan’s sky from being blue. Because it absorbs around half of the sunlight incident on Titan, the haze is a Saturn’s rings (seen only as fuzzy blobs before his high- major factor in controlling Titan’s climate: together quality telescope was trained on the planet) were just that, with the condensable greenhouse gas (methane), the rings defining a plane, and that a satellite, later named haze opens Titan to many interesting climate feed- Titan, orbited in that plane once every 16 Earth days. back processes. Huygens was a remarkable thinker and considered that, A further intriguing analogy with Earth is the “polar absent any information to the contrary, other planetary hood” observed by Voyager (and also by Cassini; see bodies must be Earth-like. He even noted that the outer Fig. 2). There is a seasonally variable enhancement of planets, being so far from the Sun, would be very cold and haze opacity over the winter polar regions, which are thus their clouds and rain would have to be made of some- dynamically isolated from the rest of the atmosphere thing other than water. by a circumpolar vortex. A similar effect occurs on Another Dutchman, Gerard Kuiper, working in the Earth where polar stratospheric clouds form in the United States in 1944, discovered this other something cold winter darkness but are kept from dispersing by on Titan: dark bands in the spectrum of sunlight reflected the circumpolar winds, especially around Antarctica. by Titan matched those of methane measured in the labo- On Earth, these clouds are instrumental in the catal- ratory. This immediately made Titan unique among the ysis of ozone destruction, and so are responsible for satellites in the solar system—it had an atmosphere. the formation of the ozone hole. Titan’s chemistry is Even through the 1970s, with the first space-borne very different, but the physical setting and the pecu- observations of Titan (in the UV by the Orbiting Astro- liar processes occurring in its polar night may have nomical Observatory-2) together with thermal IR obser- much to teach us about Earth. vations from the ground, the thickness of this atmosphere Titan’s haze is produced by the destruction of meth- was unknown. The early observations seemed mutually ane by solar UV light and the bombardment of the 134 JOHNS HopKinS APL TECHniCal DIGEST, VolUME 27, NUMBer 2 (2006) EXPLORATION OF TITAN the bright/dark dichotomy on Iapetus, the fresh surface of Enceladus, and the E-ring, among others) a follow- on mission was proposed. That mission opened up two new dimensions compared with Galileo (the follow-on mission to Jupiter). First, while Galileo’s tour at Jupi- ter made multiple encounters with the planet’s four large satellites that orbit in a plane, Cassini’s orbital tour was three-dimensional—the inclination of the spacecraft’s orbital plane could be cranked upward to look down on the rings and Saturn’s polar regions. In the Saturnian system, only Titan is massive enough to usefully alter the spacecraft’s orbit (a “slingshot” or gravity assist), so Cassini’s orbital tour was constructed by chaining one Titan flyby after another, with each flyby changing the orbital period, the orientation in its plane, or its inclination. With a 4-year tour making many dozens of orbits, the number of possible tours was enormous. The second added dimension, that is, international participation, has been more significant. Although Figure 2. Cassini ISS images show striking structure in the atmo- NASA had studied follow-on Saturnian and Titan mis- spheric haze. The north polar region (top) features a particularly sions, notably SO2P (Saturn Orbiter with Two Probes, complex structure (the “North Polar Hood”). The main orange one for Titan and one for Saturn), the Cassini mission in haze deck, as well as the “detached haze” (which appears dynami- its modern form originated in an international proposal cally connected to the polar hood), has somewhat different opti- to the European Space Agency (ESA). Several years of cal properties. The lower panel shows a close-up example of the joint studies followed, culminating in a new start for rich, layered structure in the haze (“up” is to the right.) (Images Cassini as part (subsequent cancellations were to make courtesy of NASA/JPL/Ciclops.) it the only part) of the Mariner Mark II series in NASA’s program in 1989, and the selection of a Titan probe for Cassini, to be named Huygens, as ESA’s second medium- atmosphere by energetic particles in Saturn’s magneto- class mission. sphere. Titan orbits 1.2 million kilometers from Saturn In addition to the ESA contribution of the probe and (20 Saturn radii) so that it is sometimes inside the mag- its support systems, its member states and the United netosphere but outside during periods of stronger solar States provided instruments for both the Huygens probe wind. Titan’s ionosphere is therefore exposed to various and the orbiter spacecraft, making both elements truly combinations of sunlight, solar wind, and Saturn’s mag- international endeavors.
Recommended publications
  • Exomars Schiaparelli Direct-To-Earth Observation Using GMRT
    TECHNICAL ExoMars Schiaparelli Direct-to-Earth Observation REPORTS: METHODS 10.1029/2018RS006707 using GMRT S. Esterhuizen1, S. W. Asmar1 ,K.De2, Y. Gupta3, S. N. Katore3, and B. Ajithkumar3 Key Point: • During ExoMars Landing, GMRT 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2Cahill Center for Astrophysics, observed UHF transmissions and California Institute of Technology, Pasadena, CA, USA, 3National Centre for Radio Astrophysics, Pune, India Doppler shift used to identify key events as only real-time aliveness indicator Abstract During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, Correspondence to: S. W. Asmar, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The [email protected] Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real-time aliveness indicator to European Space Agency Citation: mission operations during the critical EDL stage of the mission. Esterhuizen, S., Asmar, S. W., De, K., Gupta, Y., Katore, S. N., & Plain Language Summary When planetary missions, such as landers on the surface of Mars, Ajithkumar, B. (2019). ExoMars undergo critical and risky events, communications to ground controllers is very important as close to real Schiaparelli Direct-to-Earth observation using GMRT. time as possible. The Schiaparelli spacecraft attempted landing in 2016 was supported in an innovative way. Radio Science, 54, 314–325. A large radio telescope on Earth was able to eavesdrop on information being sent from the lander to other https://doi.org/10.1029/2018RS006707 spacecraft in orbit around Mars.
    [Show full text]
  • Cassini RADAR Images at Hotei Arcus and Western Xanadu, Titan: Evidence for Geologically Recent Cryovolcanic Activity S
    GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009 Click Here for Full Article Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity S. D. Wall,1 R. M. Lopes,1 E. R. Stofan,2 C. A. Wood,3 J. L. Radebaugh,4 S. M. Ho¨rst,5 B. W. Stiles,1 R. M. Nelson,1 L. W. Kamp,1 M. A. Janssen,1 R. D. Lorenz,6 J. I. Lunine,5 T. G. Farr,1 G. Mitri,1 P. Paillou,7 F. Paganelli,2 and K. L. Mitchell1 Received 21 October 2008; revised 5 January 2009; accepted 8 January 2009; published 24 February 2009. [1] Images obtained by the Cassini Titan Radar Mapper retention age comparable with Earth or Venus (500 Myr) (RADAR) reveal lobate, flowlike features in the Hotei [Lorenz et al., 2007]). Arcus region that embay and cover surrounding terrains and [4] Most putative cryovolcanic features are located at mid channels. We conclude that they are cryovolcanic lava flows to high northern latitudes [Elachi et al., 2005; Lopes et al., younger than surrounding terrain, although we cannot reject 2007]. They are characterized by lobate boundaries and the sedimentary alternative. Their appearance is grossly relatively uniform radar properties, with flow features similar to another region in western Xanadu and unlike most brighter than their surroundings. Cryovolcanic flows are of the other volcanic regions on Titan. Both regions quite limited in area compared to the more extensive dune correspond to those identified by Cassini’s Visual and fields [Radebaugh et al., 2008] or lakes [Hayes et al., Infrared Mapping Spectrometer (VIMS) as having variable 2008].
    [Show full text]
  • Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018)
    Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth- Entry Vehicle Daniel A. Boyd Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Aerodynamics and Fluid Mechanics Commons, Space Vehicles Commons, and the Thermodynamics Commons Recommended Citation Boyd, Daniel A.. "Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/xhmz-ax21 https://digitalcommons.odu.edu/mae_etds/43 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE by Daniel A. Boyd B.S. May 2008, Virginia Military Institute M.A. August 2015, Webster University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY August 2018 Approved by: __________________________ Robert L. Ash (Director) __________________________ Oktay Baysal (Member) __________________________ Jamshid A. Samareh (Member) __________________________ Shizhi Qian (Member) ABSTRACT AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE Daniel A. Boyd Old Dominion University, 2018 Director: Dr. Robert L. Ash Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery.
    [Show full text]
  • Visit the National Academies Press Online, the Authoritative Source
    Assessment of the CRAF and Cassini Science Missions: Letter Report Committee on Planetary and Lunar Exploration, Space Science Board, Commission on Physical Sciences, Mathematics, and Resources, National Research Council ISBN: 0-309-12299-6, 7 pages, 8 1/2 x 11, (1988) This free PDF was downloaded from: http://www.nap.edu/catalog/12334.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Space Studies Board Jump to Search: Top NewsJump to Science in the Subscribe to our FREE e- Headlines newsletter! NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL June 18, 2004 Current Operating Status Assessment of the CRAF and Cassini Science Missions: Letter Report http://www.nap.edu/catalog/12334.html On September 1, 1988, Dr.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Saturn — from the Outside In
    Saturn — From the Outside In Saturn — From the Outside In Questions, Answers, and Cool Things to Think About Discovering Saturn:The Real Lord of the Rings Saturn — From the Outside In Although no one has ever traveled ing from Saturn’s interior. As gases in from Saturn’s atmosphere to its core, Saturn’s interior warm up, they rise scientists do have an understanding until they reach a level where the tem- of what’s there, based on their knowl- perature is cold enough to freeze them edge of natural forces, chemistry, and into particles of solid ice. Icy ammonia mathematical models. If you were able forms the outermost layer of clouds, to go deep into Saturn, here’s what you which look yellow because ammonia re- trapped in the ammonia ice particles, First, you would enter Saturn’s up- add shades of brown and other col- per atmosphere, which has super-fast ors to the clouds. Methane and water winds. In fact, winds near Saturn’s freeze at higher temperatures, so they equator (the fat middle) can reach turn to ice farther down, below the am- speeds of 1,100 miles per hour. That is monia clouds. Hydrogen and helium rise almost four times as fast as the fast- even higher than the ammonia without est hurricane winds on Earth! These freezing at all. They remain gases above winds get their energy from heat ris- the cloud tops. Saturn — From the Outside In Warm gases are continually rising in Earth’s Layers Saturn’s atmosphere, while icy particles are continually falling back down to the lower depths, where they warm up, turn to gas and rise again.
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • 3.1 Discipline Science Results
    CASSINI FINAL MISSION REPORT 2019 1 SATURN Before Cassini, scientists viewed Saturn’s unique features only from Earth and from a few spacecraft flybys. During more than a decade orbiting the gas giant, Cassini studied the composition and temperature of Saturn’s upper atmosphere as the seasons changed there. Cassini also provided up-close observations of Saturn’s exotic storms and jet streams, and heard Saturn’s lightning, which cannot be detected from Earth. The Grand Finale orbits provided valuable data for understanding Saturn’s interior structure and magnetic dynamo, in addition to providing insight into material falling into the atmosphere from parts of the rings. Cassini’s Saturn science objectives were overseen by the Saturn Working Group (SWG). This group consisted of the scientists on the mission interested in studying the planet itself and phenomena which influenced it. The Saturn Atmospheric Modeling Working Group (SAMWG) was formed to specifically characterize Saturn’s uppermost atmosphere (thermosphere) and its variation with time, define the shape of Saturn’s 100 mbar and 1 bar pressure levels, and determine when the Saturn safely eclipsed Cassini from the Sun. Its membership consisted of experts in studying Saturn’s upper atmosphere and members of the engineering team. 2 VOLUME 1: MISSION OVERVIEW & SCIENCE OBJECTIVES AND RESULTS CONTENTS SATURN ........................................................................................................................................................................... 1 Executive
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • Solubility and Solution-Phase Chemistry of Isocyanic Acid, Methyl Isocyanate, 2 and Cyanogen Halides 3 4 5 6 James M
    Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1160 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Solubility and Solution-phase Chemistry of Isocyanic Acid, Methyl Isocyanate, 2 and Cyanogen Halides 3 4 5 6 James M. Roberts1, and Yong Liu2 7 8 1. NOAA/ESRL Chemical Sciences Division, Boulder, Colorado, 80305 9 2. Department of Chemistry, University of Colorado, Denver, Denver, Colorado, 80217 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1160 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 November 2018 c Author(s) 2018. CC BY 4.0 License. 52 Abstract 53 54 Condensed phase uptake and reaction are important atmospheric removal processes for reduced nitrogen 55 species, isocyanic acid (HNCO), methyl isocyanate (CH3NCO) and cyanogen halides (XCN, X =Cl, Br, I), yet many 56 of the fundamental quantities that govern this chemistry have not been measured or are understudied. Solubilities 57 and first-order reaction rates of these species were measured for a variety of solutions using a bubble flow reactor 58 method with total reactive nitrogen (Nr) detection. The aqueous solubility of HNCO was measured as a function of 59 pH, and exhibited the classic behavior of a weak acid, with an intrinsic Henry’s law solubility of 20 (±2) M/atm, and -4 60 a Ka of 2.0 (±0.28) ×10 M (which corresponds to pKa = 3.7 ±0.06) at 298K.
    [Show full text]
  • Hydroxyacetonitrile (HOCH2CN) As a Precursor for Formylcyanide (CHOCN), Ketenimine (CH2CNH), and Cyanogen (NCCN) in Astrophysical Conditions
    A&A 549, A93 (2013) Astronomy DOI: 10.1051/0004-6361/201219779 & c ESO 2013 Astrophysics Hydroxyacetonitrile (HOCH2CN) as a precursor for formylcyanide (CHOCN), ketenimine (CH2CNH), and cyanogen (NCCN) in astrophysical conditions G. Danger1, F. Duvernay1, P. Theulé1, F. Borget1, J.-C. Guillemin2, and T. Chiavassa1 1 Aix-Marseille Univ, CNRS, PIIM UMR 7345, 13397 Marseille, France e-mail: [email protected] 2 Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France Received 8 June 2012 / Accepted 19 November 2012 ABSTRACT Context. The reactivity in astrophysical environments can be investigated in the laboratory through experimental simulations, which provide understanding of the formation of specific molecules detected in the solid phase or in the gas phase of these environments. In this context, the most complex molecules are generally suggested to form at the surface of interstellar grains and to be released into the gas phase through thermal or non-thermal desorption, where they can be detected through rotational spectroscopy. Here, we focus our experiments on the photochemistry of hydroxyacetonitrile (HOCH2CN), whose formation has been shown to compete with aminomethanol (NH2CH2OH), a glycine precursor, through the Strecker synthesis. Aims. We present the first experimental investigation of the ultraviolet (UV) photochemistry of hydroxyacetonitrile (HOCH2CN) as a pure solid or diluted in water ice. Methods. We used Fourier transform infrared (FT-IR) spectroscopy to characterize photoproducts of hydroxyacetonitrile (HOCH2CN) and to determine the different photodegradation pathways of this compound. To improve the photoproduct identifications, irradiations of hydroxyacetonitrile 14N and 15N isotopologues were performed, coupled with theoretical calculations.
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]