Integrated Microfossil Biostratigraphy, Facies Distribution and Depositional Sequences of the Upper Turonian to Campanian Succes

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Microfossil Biostratigraphy, Facies Distribution and Depositional Sequences of the Upper Turonian to Campanian Succes 1 Integrated microfossil biostratigraphy, facies distribution and depositional sequences of the 2 upper Turonian to Campanian succession in northeast Egypt and Jordan 3 Sherif Farouk*, Fayez Ahmad, John H. Powell, Akmal M. Marzouk 4 5 Sherif Farouk* 6 Exploration Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Egypt 7 e-mail: [email protected] 8 Fayez Ahmad 9 Earth and Environmental sciences Department, Hashemite University, Jordan 10 John H. Powell 11 British Geological Survey, Nottingham, UK 12 Akmal M. Marzouk 13 Geology Department, Faculty of Science, Tanta University, Egypt 14 15 Abstract Six upper Turonian to Campanian sections in Egypt (Sinai) and Jordan were 16 studied for their microfossil biostratigraphy (calcareous nannofossils and planktonic 17 foraminifera), facies distribution and sequence stratigraphic frameworks. Carbonate (mostly 18 chalk) and chert lithofacies dominate the basinward northern sections passing laterally and 19 vertically to mixed carbonate/siliciclastic lithofacies towards the shoreline in the southeast. 20 Twenty-six lithofacies types have been identified and grouped into six lithofacies associations: 21 littoral siliciclastic facies belt; peritidal carbonate; intertidal carbonate platform/ramp; high- 22 energy ooidal shoals and shelly biostromes; shallow subtidal; and pelagic facies association. The 23 following calcareous nannofossil biozones were recognized: Luianorhabdus malefomis (CC12) 24 (late Turonian), Micula staurophora (CC14) (early Coniacian), Reinhardtites anthophorus 25 ( CC15) (late Coniacian), Lucianorhabdus cayeuxii (CC16) (early Santonian) and Broinsonia 1 1 parca parca (CC18) (Campanian). Equivalent planktonic foraminifera zones recognized are: 2 Dicarinella concavata (Coniacian), the lower most part of D. asymetrica (earliest Santonian) and 3 Globotruncanita elevata (early Campanian). The integrated zonation presented here is 4 considered to provide higher resolution than the use of either group alone. The absence of 5 calcareous nannofossil biozones CC13 and CC17 in most of the studied sections, associated with 6 regional vertical lithofacies changes, indicates that recognition of the Turonian/Coniacian and 7 Santonian/Campanian stage boundary intervals in the region have been hampered by 8 depositional hiatuses at major sequence boundaries resulting in incomplete sections. These 9 disconformities are attributed to eustatic sea-level fluctuations and regional tectonics resulting 10 from flexuring of the Syrian Arc fold belt. The Coniacian to Santonian succession can be divided 11 into three third-order depositional sequences which are bounded by four widely recognized 12 sequence boundaries. 13 Keywords: Planktonic biostratigraphy, late Turonian, Coniacian, Santonian, Campanian, 14 sequence stratigraphy, Arabian platform, Jordan, Egypt. 15 16 Introduction 17 Upper Cretaceous successions are widely distributed and well-exposed in north Egypt (Sinai) 18 Jordan, Israel and the Levant, an area that formed the northeastern part of the Arabian Platform. 19 These successions are characterized by marked lateral and vertical changes in lithofacies 20 resulting from the interplay of eustatic sea-level fluctuations and the influence of regional intra- 21 plate tectonics (Krenkel 1924; Reiss et al. 1985; Gvirtzman et al. 1985; Powell 1989; Lüning et 22 al. 1998a-b; Soudry et al. 2006). Biostratigraphical analyses of the Turonian/Coniacian, 23 Coniacian/Santonian and Santonian/Campanian stage boundary successions in the region have 2 1 been hampered by periods of depositional hiatus resulting in incomplete sections and/or 2 hardgrounds (e.g. Lewy 1990; Gruszczynski et al. 2002; Powell and Moh’d 2012; Farouk and 3 Faris 2012; Meilijson 2014). 4 Numerous studies have been published on the facies analysis and reconstruction of 5 depositional environments of the Coniacian to Campanian successions (e.g. Koch 1968; Lewy 6 1990; Almogi-Labin et al. 1993; Kuss 1986; Powell 1988, 1989; Cherif and Ismail 1991; Kora 7 and Genedi 1995; Lüning et al. 1998a-b; Moh’d 2000; Mustafa 2000; Mustafa et al. 2002; Kuss 8 et al. 2000; Bauer et al. 2002, 2003; Abdel-Gawad et al. 2004; El-Azabi and El-Araby 2007; 9 Shahin and Kora 1991; Issawi et al. 2009; Powell and Moh`d 2011, 2012; Ismail 2012; Makhlouf 10 et al. 2015 and Farouk 2015). The precise correlation of the upper Turonian to Campanian 11 successions in Egypt, Jordan and Israel on a regional scale, based upon integrated litho- and 12 biostratigraphy, and the distribution of lithofacies tracts has, to date, been uncertain. 13 Furthermore, comparison and correlation of the sequences in this region to global (eustatic) sea- 14 level events (Haq, 2014) is controversial as a result of regional (eurybatic) fluctuations on the 15 Arabian Platform that were influenced by Late Cretaceous tectonic deformation of the Syrian 16 Arc (Krenkel 1924; Soudry et al. 1985; Flexer et al. 1986; Shahar 1994; Lüning et al. 1998; 17 Meilijson et al. 2014). 18 Regional correlation of sequence boundaries based upon biostratigraphy provides important 19 information on relative sea-level fluctuations on the southern margin of Neo-Tethys. These data 20 help to elucidate the effect of local tectonics on the development of depositional sequences that 21 can be more widely correlated with the global cycle charts (Hardenbol et al. 1998; Stampfli and 22 Borel 2002; Haq and Al-Qahtani 2005; Haq 2014). 3 1 The aims of this paper are to: (1) determine the lithofacies characteristics and biostratigraphic 2 framework of the upper Turonian to Campanian sequences and their palaeoenvironments, (2) 3 establish a standard sequence stratigraphic scheme, and compare its depositional sequences and 4 boundaries with those previously published, (3) re-evaluate the nature, extent and hiatus of the 5 recorded sequence boundaries, (4) improve correlation with sequence boundaries recognized 6 elsewhere in North Africa, the Arabian Platform, Europe, and with global records, (5) constrain 7 better the timing of sea-level variations, and (6) reconstruct, precisely, the depositional history in 8 the region during late Turonian to Santonian time. 9 Geological setting 10 In Mesozoic times, Egypt, Jordan and Israel were situated at the southern margin of the Neo- 11 Tethys Ocean (Stampfli and Borel 2002; Ahmad et al. 2014; Meilijson et al. 2014). Many 12 dramatic lateral and vertical lithofacies changes are observed during the convergence of the 13 African-Arabian Craton (closure of Neo-Tethys) that resulted in the variable development of 14 basins and swells in the region in response to the major intra-plate tectonic pulse of the ‘Syrian 15 Arc’ fold belt (Krenkel 1924; Bowen and Jux 1987; Shahar 1994). At the end of the Turonian, a 16 phase of non-deposition or local uplift and erosion, respectively, lasted until the early Coniacian 17 (Flexer et al. 1986; Gvirtzman et al. 1989; Powell 1989; Powell and Moh’d 2011). This event is 18 attributed to tectonic (intra-plate) foundering, subsidence and tilting of the platform margin, 19 possibly linked to ophiolite obduction in northeast Arabia (Haq and Al-Qahtani 2005), and is 20 also associated with extensional rifting in the Azraq Basin (Powell and Moh’d 2011). During the 21 Coniacian a global sea-level rise (Haq 2014) resulted in marine transgression (marine flooding) 22 across the pre-existing, rimmed carbonate platform. Transgressive marine flooding was 23 characterized by chalk sedimentation with regressive events characterized by a marl-chert- 4 1 phosphorite association; these lithofacies associations passed shorewards (southeast) to shallow 2 marine carbonates/siliciclastics in Jordan and Egypt (Powell and Moh’d 2011). 3 Regional variations in the lithofacies and associated fauna and nannoflora are observed 4 during Coniacian-Santonian time, ranging from predominantly carbonate ramp lithofacies in 5 basinward settings towards the north and northwest (Wadi Umm Ghudran and Themed 6 formations), to mixed shallow-water clastic/carbonate facies (Alia and Matulla formations) 7 towards the southeast and south, depending on their relative palaeogeographic and tectonic 8 setting. The Campanian (and Maastrichtian) sea in this region was characterized by a high 9 concentration of organic material deposited in a broad, shallow-water zone locally associated 10 with oyster bioherms, which led to the accumulation of economic phosphate deposits in Jordan 11 (Powell 1989). Elevated levels of organic matter and the deposition of phosphate and organic- 12 rich carbonates (Abed et al. 2005) at discrete levels within this succession was the result of high 13 oceanic bio-productivity and upwelling of nutrients at the shelf margin (Almogi-Labin et al. 14 1993; Soudry et al. 2006; Abed et al 2007; Powell and Moh’d 2011; Meilijson et al. 2014). In 15 contrast, the observed basinal facies in north Egypt are represented by hemiplegic facies of the 16 Sudr Chalk Formation in north Eastern Desert/Sinai and the equivalent Khoman Chalk 17 Formation in the Western Desert. These hemipelagic chalk facies pass laterally to mixed 18 siliciclastic/carbonate lithofacies of the Dakhla Formation, which was deposited close to the 19 shoreline in central and southern Egypt. 20 Material and Methods 21 Lithostratigraphical, biostratigraphical and sedimentological investigations were carried out on 22 six exposed sections in north eastern Egypt and Jordan (Fig. 1); a total of 227 samples were 5 1 collected. The sections, measured and sampled bed-by-bed, are located
Recommended publications
  • Cenomanian Turonian Coniacian Santonian Campanian
    walteri aff. aff. spp. spp. imperfectus spp. (prisms) Chronostratigraphy Offshore Norway sp. 1 Geologic Time Scale 2012 Zonation (Gradstein et al., 1999, and this study) Allomorphina halli / pyriformis Sigmoilina antiqua Textularia Gavelinella intermeda gracillima Valvulineria Bulbobaculites problematicus Caudammina ovuloides Nuttallinella florealis Stensioeina granulata polonica Inoceramus Rzehakina minima Rzehakina epigona Fenestrella bellii Gaudryina filiformis Trochamminoides Haplophragmoides Gavelinella usakensis Caudammina ovula Coarse agglutinated spp. LCO dubia Tritaxia Plectorecurvoides alternans Reussella szajnochae Recurvoides Hippocrepina depressa Psammosphaera sphaerical radiolarians Ma Age/Stage Lingulogavelinella jarzevae elegans Lt NCF19 Maastrichtian volutus LCO 70 NCF18 E szajnochae dubia Lt 75 LCO of NCF17 Campanian Deep Water M Agglutinated 80 Foraminifera E bellii NCF16 Lt Inoceramus LCO NCF15 85 Santonian M E polonica NCF14 Lt Coniacian M E Marginotruncana NCF13 90 Lt Turonian M E Dicarinella NCF12 95 Lt brittonensis M NCF11 Cenomanian delrioensis LCO NCF10 E antiqua NCF9 100 Figure 2.8c. Stratigraphic ranges of Upper Cretaceous benthic foraminifera, and miscellaneous index taxa, oshore mid-Norway, with the foraminiferal zonation established in this study. s.l. Chronostratigraphy Offshore Norway Geologic Time Scale 2012 Zonation (Gradstein et al., 1999, and this study) Abathomphalus mayaroensis Pseudotextularia elegans Hedbergella planispira Hedbergella hoelzi Praeglobotruncana delrioensis Praeglobotruncana stephani
    [Show full text]
  • Upper Cretaceous Chondrichthyes Teeth Record in Phosphorites of the Loma Gorda Formation•
    BOLETIN DE CIENCIAS DE LA TIERRA http://www.revistas.unal.edu.co/index.php/rbct Upper Cretaceous chondrichthyes teeth record in phosphorites of the • Loma Gorda formation Alejandro Niño-Garcia, Juan Diego Parra-Mosquera & Peter Anthony Macias-Villarraga Departamento de Geociencias, Facultad de Ciencias Naturales y Exactas, Universidad de Caldas, Manizales, Colombia. [email protected], [email protected], [email protected] Received: April 26th, 2019. Received in revised form: May 17th, 2019. Accepted: June 04th, 2019. Abstract In layers of phosphorites and gray calcareous mudstones of the Loma Gorda Formation, in the vicinity of the municipal seat of Yaguará in Huila department, Colombia, were found fossils teeth of chondrichthyes, these were extracted from the rocks by mechanical means, to be compared with the species in the bibliography in order to indentify them. The species were: Ptychodus mortoni (order Hybodontiformes), were found, Squalicorax falcatus and Cretodus crassidens (order Lamniformes). This finding constitutes the first record of these species in the Colombian territory; which allows to extend its paleogeographic distribution to the northern region of South America, which until now was limited to Africa, Europe, Asia and North America, except for the Ptychodus mortoni that has been described before in Venezuela. Keywords: first record; sharks; upper Cretaceous; fossil teeth; Colombia. Registro de dientes de condrictios del Cretácico Superior en fosforitas de la formación Loma Gorda Resumen En capas de fosforitas y lodolitas calcáreas grises de la Formación Loma Gorda, en cercanías de la cabecera municipal de Yaguará en el departamento del Huila, Colombia, se encontraron dientes fósiles de condrictios; estos fueron extraídos de la roca por medios mecánicos, para ser comparados con las especies encontradas en la bibliografía e identificarlos.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • The Turonian - Coniacian Boundary in the United States Western Interior
    Acta Geologica Polonica, Vol. 48 (1998), No.4, pp. 495-507 The Turonian - Coniacian boundary in the United States Western Interior IRENEUSZ WALASZCZYKI & WILLIAM A. COBBAN2 I Institute of Geology, University of Warsaw, AI. Zwirki i Wigury 93, PL-02-089 Warszawa, Poland E-mail: [email protected] 270 Estes Street, Lakewood, Colorado 80226, USA ABSTRACT: WALASZCZYK, I. & COBBAN, W.A. 1998. The Turonian - Coniacian boundary in the United States Western Interior. Acta Geologica Polonica, 48 (4),495-507. Warszawa. The Turonian/Coniacian boundary succession in the United States Western Interior is characterized by the same inoceramid faunas as recognized in Europe, allowing the application of the same zonal scheme in both regions; Mytiloides scupini and Cremnoceramus waltersdorfensis waltersdorfensis zones in the topmost Turonian and Cremnoceramus deformis erectus Zone in the lowermost Coniacian. The correla­ tion with Europe is enhanced, moreover, by a set of boundary events recognized originally in Europe and well represented in the Western Interior: Didymotis I Event and waltersdorfensis Event in the topmost Turonian, and erectus I, II and ?III events in the Lower Coniacian. First "Coniacian" ammonite, Forresteria peruana, appears in the indisputable Turonian, in the zone of M. scupini, and the reference to Forresteria in the boundary definition should be rejected. None of the North American sections, pro­ posed during the Brussels Symposium as the potential boundary stratotypes, i.e. Wagon Mound and Pueblo sections, appears better than the voted section of the Salzgitter-Salder. The Pueblo section is relatively complete but markedly condensed in comparison with the German one, but it may be used as a very convenient reference section for the Turonian/Coniacian boundary in the Western Interior.
    [Show full text]
  • Report 2015–1087
    Chronostratigraphic Cross Section of Cretaceous Formations in Western Montana, Western Wyoming, Eastern Utah, Northeastern Arizona, and Northwestern New Mexico, U.S.A. Pamphlet to accompany Open-File Report 2015–1087 U.S. Department of the Interior U.S. Geological Survey Chronostratigraphic Cross Section of Cretaceous Formations in Western Montana, Western Wyoming, Eastern Utah, Northeastern Arizona, and Northwestern New Mexico, U.S.A. By E.A. Merewether and K.C. McKinney Pamphlet to accompany Open-File Report 2015–1087 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Merewether, E.A., and McKinney, K.C., 2015, Chronostratigraphic cross section of Cretaceous formations in western Montana, western Wyoming, eastern Utah, northeastern Arizona, and northwestern New Mexico, U.S.A.: U.S. Geological Survey Open-File Report 2015–1087, 10 p.
    [Show full text]
  • A New Middle Jurassic Diplodocoid Suggests an Earlier Dispersal and Diversification of Sauropod Dinosaurs
    ARTICLE DOI: 10.1038/s41467-018-05128-1 OPEN A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs Xing Xu1, Paul Upchurch2, Philip D. Mannion 3, Paul M. Barrett 4, Omar R. Regalado-Fernandez 2, Jinyou Mo5, Jinfu Ma6 & Hongan Liu7 1234567890():,; The fragmentation of the supercontinent Pangaea has been suggested to have had a profound impact on Mesozoic terrestrial vertebrate distributions. One current paradigm is that geo- graphic isolation produced an endemic biota in East Asia during the Jurassic, while simul- taneously preventing diplodocoid sauropod dinosaurs and several other tetrapod groups from reaching this region. Here we report the discovery of the earliest diplodocoid, and the first from East Asia, to our knowledge, based on fossil material comprising multiple individuals and most parts of the skeleton of an early Middle Jurassic dicraeosaurid. The new discovery challenges conventional biogeographical ideas, and suggests that dispersal into East Asia occurred much earlier than expected. Moreover, the age of this new taxon indicates that many advanced sauropod lineages originated at least 15 million years earlier than previously realised, achieving a global distribution while Pangaea was still a coherent landmass. 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China. 2 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. 3 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. 4 Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 5 Natural History Museum of Guangxi, 530012 Nanning, Guangxi, China.
    [Show full text]
  • Strontium and Oxygen Isotope Analyses Reveal Late Cretaceous Shark Teeth in Iron Age Strata in the Southern Levant
    fevo-08-570032 December 11, 2020 Time: 20:56 # 1 ORIGINAL RESEARCH published: 17 December 2020 doi: 10.3389/fevo.2020.570032 Strontium and Oxygen Isotope Analyses Reveal Late Cretaceous Shark Teeth in Iron Age Strata in the Southern Levant Thomas Tütken1*, Michael Weber1, Irit Zohar2,3, Hassan Helmy4, Nicolas Bourgon5, Omri Lernau3, Klaus Peter Jochum6 and Guy Sisma-Ventura7* 1 Institute of Geosciences, Johannes Gutenberg University of Mainz, Mainz, Germany, 2 Beit Margolin, Oranim Academic College, Kiryat Tivon, Israel, 3 Zinman Institute of Archaeology, University of Haifa, Haifa, Israel, 4 Department of Geology, Minia University, Minia, Egypt, 5 Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 6 Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany, 7 Oceanographic and Limnological Research, Haifa, Israel Skeletal remains in archaeological strata are often assumed to be of similar ages. Here we show that combined Sr and O isotope analyses can serve as a powerful tool for assessing fish provenance and even for identifying fossil fish teeth in archaeological Edited by: contexts. For this purpose, we established a reference Sr and O isotope dataset of Brooke Crowley, extant fish teeth from major water bodies in the Southern Levant. Fossil shark teeth were University of Cincinnati, United States identified within Iron Age cultural layers dating to 8–9th century BCE in the City of David, Reviewed by: Jerusalem, although the reason for their presence remains unclear. Their enameloid Laszlo Kocsis, 87 86 18 Universiti Brunei Darussalam, Brunei Sr/ Sr and d OPO4 values [0.7075 ± 0.0001 (1 SD, n = 7) and 19.6 ± 0.9 Malte Willmes, (1 SD, n = 6), respectively], are both much lower than values typical for modern marineh University of California, Santa Cruz, United States sharks from the Mediterranean Sea [0.7092 and 22.5–24.6 (n = 2), respectively].
    [Show full text]
  • ARTICLES Definition of Late Cretaceous Stage Boundaries In
    ARTICLES De®nition of Late Cretaceous Stage Boundaries in Antarctica Using Strontium Isotope Stratigraphy J. M. McArthur, J. A. Crame,1 and M. F. Thirlwall2 Department of Geological Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom (e-mail: [email protected]) ABSTRACT New 87Sr/86Sr analyses of macrofossils from 13 key marker horizons on James Ross and Vega Islands, Antarctica, allow the integration of the Antarctic Late Cretaceous succession into the standard biostratigraphic zonation schemes of the Northern Hemisphere. The 87Sr/86Sr data enable Late Cretaceous stage boundaries to be physically located with accuracy for the ®rst time in a composite Southern Hemisphere reference section and so make the area one of global importance for documenting Late Cretaceous biotic evolution, particularly radiation and extinction events. The 87Sr/86Sr values allow the stage boundaries of the Turonian/Coniacian, Coniacian/Santonian, Santonian/Campanian, and Campanian/Maastrichtian, as well as other levels, to be correlated with both the United Kingdom and United States. These correlations show that current stratigraphic ages in Antarctica are too young by as much as a stage. Immediate implications of our new ages include the fact that Inoceramus madagascariensis, a useful fossil for regional austral correlation, is shown to be Turonian (probably Late Turonian) in age; the ªMytiloidesº africanus species complex is exclusively Late Coniacian in age; both Baculites bailyi and Inoceramus cf. expansus have a Late Con- iacian/Early Santonian age range; an important heteromorph ammonite assemblage comprising species of Eubostry- choceras, Pseudoxybeloceras, Ainoceras, and Ryugasella is con®rmed as ranging from latest Coniacian to very earliest Campanian.
    [Show full text]
  • U-Pb Geochronology and Paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-Scale
    Research Paper GEOSPHERE U-Pb geochronology and paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-scale GEOSPHERE, v. 17, no. 1 source areas https://doi.org/10.1130/GES02284.1 E. Schwarz1,*, E.S. Finzel2,*, G.D. Veiga1, C.W. Rapela1, C. Echevarria3,*, and L.A. Spalletti1 1Centro de Investigaciones Geológicas (Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET]), Diagonal 113 #256 B1904DPK, La Plata, Argentina 13 figures; 2 tables; 1 set of supplemental files 2Earth and Environmental Science Department, University of Iowa, 115 Trowbridge Hall, Iowa City, Iowa 52242, USA 3Pampa Energía S.A. Gerencia Tight, Dirección de E&P, J.J. Lastra 6000, 8300 Neuquén, Argentina CORRESPONDENCE: [email protected] ABSTRACT starting in the mid-continent region of south- Early Cretaceous was the Neuquén Basin, which CITATION: Schwarz, E., Finzel, E.S., Veiga, G.D., western Gondwana and by effective sorting, was during that time was a backarc basin separated Rapela, C.W., Echevarria, C., and Spalletti, L.A., Sedimentary basins located at the margins bringing fine-grained or finer caliber sand to the from the proto–Pacific Ocean (i.e., to the west) by 2021, U-Pb geochronology and paleogeography of the of continents act as the final base level for con- Neuquén Basin shoreline. This delivery system was a discontinuous volcanic arc (Howell et al., 2005). Valanginian–Hauterivian Neuquén Basin: Implications for Gondwana-scale source areas: Geosphere, v. 17, tinental-scale catchments that are sometimes probably active (though not necessarily continu- This marine basin was bounded by the Sierra no.
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • Warm Middle Jurassic–Early Cretaceous High-Latitude Sea-Surface Temperatures from the Southern Ocean
    Clim. Past, 8, 215–226, 2012 www.clim-past.net/8/215/2012/ Climate doi:10.5194/cp-8-215-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean H. C. Jenkyns1, L. Schouten-Huibers2, S. Schouten2, and J. S. Sinninghe Damste´2 1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK 2NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 Den Burg, Texel, The Netherlands Correspondence to: H. C. Jenkyns ([email protected]) Received: 17 March 2011 – Published in Clim. Past Discuss.: 20 April 2011 Revised: 6 December 2011 – Accepted: 14 December 2011 – Published: 2 February 2012 Abstract. Although a division of the Phanerozoic climatic 1 Introduction modes of the Earth into “greenhouse” and “icehouse” phases is widely accepted, whether or not polar ice developed dur- In order to understand Jurassic and Cretaceous climate, the ing the relatively warm Jurassic and Cretaceous Periods is reconstruction of sea-surface temperatures at high latitudes, still under debate. In particular, there is a range of iso- and their variation over different time scales, is of paramount topic and biotic evidence that favours the concept of discrete importance. A basic division of Phanerozoic climatic modes “cold snaps”, marked particularly by migration of certain into “icehouse” and “greenhouse” periods is now common- biota towards lower latitudes. Extension of the use of the place (Fischer, 1982). However, a number of authors have in- palaeotemperature proxy TEX86 back to the Middle Juras- voked transient icecaps as controls behind eustatic sea-level sic indicates that relatively warm sea-surface conditions (26– change during the Mesozoic greenhouse period (e.g.
    [Show full text]