Quantitative Thermal Infrared Analyses of Volcanic
Total Page:16
File Type:pdf, Size:1020Kb
QUANTITATIVE THERMAL INFRARED ANALYSES OF VOLCANIC PROCESSES AND PRODUCTS: APPLICATION TO BEZYMIANNY VOLCANO, RUSSIA by ADAM JOSEPH CARTER BSc Geological Sciences (honours), University of Leeds, Yorkshire, England 2001 DEA Volcanic and Magmatic Studies, University of Blaise Pascal, Clermont-Ferrand, France, 2003 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by ADAM JOSEPH CARTER It was defended on 1 August, 2008 and approved by Michael S. Ramsey (Primary Advisor), Associate Professor, University of Pittsburgh Alexander B. Belousov, Professor, Institute of Marine Geology and Geophysics, Yuzno- Sakhalinsk, Russia (External Examiner) William Harbert, Associate Professor, University of Pittsburgh Michael Rosenmeier, Assistant Professor, University of Pittsburgh Ian P. Skilling, Assistant Professor, University of Pittsburgh ii Copyright © by Adam Joseph Carter 2008 iii QUANTITATIVE THERMAL INFRARED ANALYSES OF VOLCANIC PROCESSES AND PRODUCTS: APPLICATION TO BEZYMIANNY VOLCANO, RUSSIA Adam Joseph Carter, BSc, DEA University of Pittsburgh, 2008 Bezymianny (55.98°N, 160.59°E) is a Holocene andesitic composite volcano with a summit elevation of approximately 2,900 m and is located on the Kamchatka Peninsula, eastern Russia. Previously inactive for about 1,000 years, Bezymianny reactivated in 1955, culminating in a cataclysmic eruption on 30 March 1956. This directed blast generated a 1.3 km (north–south) by 2.8 km (east–west) horseshoe shaped crater opening to the east, similar in morphology and activity to Mt. St. Helens (USA). During the last 30 years Bezymianny has been regularly active, erupting one to two times per year on average. This work focuses on field-based and remote sensing observations of explosive eruptions and their products at Bezymianny, concentrating on the pyroclastic flow (PF) deposits on the southeast flank. The events of March 2000, January 2005, December 2006, May 2007 and October 2007 were focused on to elucidate information on the pyroclastic flow (PF) deposits that were emplaced. Two principal themes were addressed: (1) A thermal infrared (TIR) investigation of the eruptive events and products. This encompassed ground-based field work, Forward Looking Infrared Radiometer (FLIR) image data, and spaceborne data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). (2) A micrometer-scale textural investigation of vesicular block and ash samples collected in the field on the pyroclastic flow deposits. Scanning Electron Microscope (SEM) iv images were used to generate micron-scale digital elevation models (DEM) for the surfaces of each volcanic sample collected. These were compared to TIR emission spectra that were deconvolved to estimate surface vesicularity. This work demonstrates the utility of TIR observations from satellite, aerial, and ground-based data that, in combination with standard geological mapping, provide timely, accurate, and quantitative remote sensing data to assist in the prediction and monitoring of explosive volcanoes. v TABLE OF CONTENTS PREFACE................................................................................................................................. XXI 1 INTRODUCTION ................................................................................................................ 1 1.1 EXPLOSIVE VOLCANISM AND GEOGRAPHIC SETTING ..................... 1 1.2 TECTONIC SETTING AND HISTORY OF KAMCHATKA ....................... 3 1.3 THE KLYUCHEVSKAYA VOLCANIC GROUP........................................... 6 1.4 BEZYMIANNY VOLCANO .............................................................................. 6 1.5 LAVA DOME INSTABILITY AND VOLCANIC HAZARDS .................... 12 1.6 NORTH PACIFIC MONITORING SYSTEMS............................................. 13 1.7 WEATHER CONDITIONS IN KAMCHAKTA............................................ 15 1.8 REMOTE SENSING HISTORY AND PRINCIPLES................................... 15 2 DATA SETS AND METHODS......................................................................................... 21 2.1 THE ADVANCED SPACEBORNE THERMAL EMISSION AND REFLECTION RADIOMETER (ASTER)...................................................................... 21 2.1.1. Applications of ASTER data in Volcanology ........................................... 23 2.1.2. ASTER data products ................................................................................ 25 2.1.3. ASTER data processing.............................................................................. 26 2.2 FORWARD-LOOKING INFRARED RADIOMETER (FLIR) DATA....... 27 2.2.1. Thermal imaging history............................................................................ 27 vi 2.2.2. FLIR camera and data specification........................................................ 28 2.2.3. Volcanic thermal imaging using FLIR products...................................... 29 2.3 LABORATORY THERMAL EMISSION SPECTROSCOPY..................... 29 2.3.1. Thermal infrared spectroscopy ................................................................. 29 2.3.2. Data collection ............................................................................................. 31 2.3.3. Data processing .......................................................................................... 32 2.3.4. Spectral library archives ............................................................................ 34 2.4 SCANNING ELECTRON MICROSCOPE (SEM) DATA ........................... 34 2.4.1. Method ......................................................................................................... 34 2.5 SUMMARY OF DATA/METHODS USED.................................................... 36 2.6 EXECUTIVE SUMMARY OF CHAPTERS 3 - 6.......................................... 36 3 DETECTION OF A NEW SUMMIT CRATER ON BEZYMIANNY VOLCANO LAVA DOME: SATELLITE AND FIELD-BASED THERMAL DATA ............................. 39 3.1 CHAPTER SUMMARY................................................................................. 39 3.2 INTRODUCTION........................................................................................... 40 3.3 SATELLITE OBSERVATIONS ................................................................... 41 3.4 AERIAL AND GROUND-BASED OBSERVATIONS ............................... 44 3.5 DISCUSSION AND CONCLUSIONS .......................................................... 47 4 ASTER AND FIELD OBSERVATIONS OF THE 24 DECEMBER 2006 ERUPTION OF BEZYMIANNY VOLCANO, RUSSIA .............................................................................. 49 4.1 CHAPTER SUMMARY ................................................................................... 49 4.2 INTRODUCTION ............................................................................................. 50 4.3 OBSERVATION CHRONOLOGY AND DATA........................................... 54 vii 4.3.1. Local seismic observations and visual data .............................................. 54 4.3.2. ASTER data processing.............................................................................. 56 4.3.3. Pre-eruption satellite observations............................................................ 59 4.3.4. Post-eruption satellite observations........................................................... 62 4.3.5. Time series of ASTER-derived temperatures .......................................... 66 4.3.6. March 2007 field observations................................................................... 69 4.4 DISCUSSION..................................................................................................... 70 4.5 CONCLUSIONS................................................................................................ 71 5 14 MONTHS OF ASTER- AND FIELD-BASED OBSERVATIONS AT BEZYMIANNY VOLCANO: FOCUS ON THE 11 MAY 2007 PYROCLASTIC FLOW DEPOSIT..................................................................................................................................... 73 5.1 CHAPTER SUMMARY ................................................................................... 73 5.2 INTRODUCTION ............................................................................................. 74 5.2.1. Bezymianny Volcano........................................................................................ 74 5.2.2. Purpose.............................................................................................................. 76 5.3 METHODS......................................................................................................... 78 5.4 ERUPTION DESCRIPTIONS ......................................................................... 81 5.4.1. The 24 December 2006 eruption ..................................................................... 81 5.4.2. The 11 May 2007 eruption............................................................................... 81 5.4.3. The 14 October 2007 eruption and 5 November 2007 collapse.................... 82 5.4 AERIAL PHOTOGRAPHY, ASTER- AND LABORATORY DATA INTERPRETATION.......................................................................................................... 83 viii 5.5 FIELD-BASED AND SATELLITE DATA OF THE MAY 2007 PYROCLASTIC FLOW DEPOSIT ................................................................................. 89 5.6