Francisella Tularensis DNA Microarray

Total Page:16

File Type:pdf, Size:1020Kb

Francisella Tularensis DNA Microarray Open Research Online The Open University’s repository of research publications and other research outputs The Construction and Use of a Francisella tularensis DNA Microarray Thesis How to cite: LeButt, Helen (2008). The Construction and Use of a Francisella tularensis DNA Microarray. PhD thesis The Open University. For guidance on citations see FAQs. c 2007 Helen LeButt https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000fd6f Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk U a ) % £ST*l/C-ri£'(> The Construction and Use of a Francisella tularensis DNA Microarray A thesis submitted for the degree of Doctor of Philosophy to the Open University by Helen LeButt BSc. (Hons.) December 2007 72 0/7 /art’ /3 -Zocq bA-Tf. a r Ah^/ATSh,: 3 o A P & L . -2 0 & 2 - ProQuest N um ber: 13889945 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13889945 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Abstract Abstract A DNA microarray was designed and constructed using the genome sequence of the highly virulent obligate intracellular pathogen Francisella tularensis strain Schu S4. The microarray was optimised and then tested by performing a comparative genomics study on Francisella strains. The microarray was used to distinguish between Francisella strains at the subspecies level, detecting differences between the genomes of the subspecies at a similar rate to differences previously published from Francisella comparative genomics studies. Further analysis of the genomic differences identified between subspecies using the microarray has provided some suggestions as to the genetic basis for the relative attenuation of one subspecies, and similarly, differences identified between the F. tularensis live vaccine strain and its progenitor strain provided some clues as the genetic basis for the attenuation of the vaccine strain. The microarray was also used to carry out functional genomics studies on Francisella novicida cultured under in vitro stress conditions: iron starvation, oxidative stress, elevated temperature, and acidic pH. A number of genes were regulated in response to each of these conditions, and a detailed analysis of the data has provided insights into the stress response ofFrancisella, and some of the mechanisms that it may employ upon encountering similar stresses in vivo. Table of contents Table of contents Title page ................................................................................................................... i Abstract..................................................................................................................... ii Table of contents .................................................................................................... iii List of figures............................................................................................................x List of tables.......................................................................................................... xiii List of symbols and abbreviations................................................................ xv Acknowledgements .............................................................................................. xxi Author’s declaration.................... xxiii Publications.........................................................................................................xxiv 1. Introduction.................................................................................. .1 1.1. Francisella tularensis and tularemia ...............................................2 1.1.1. Francisella ..........................................................................................2 1.1.2. Tularemia ........................................................................................... 8 1.1.3. The intracellular lifestyle of Francisella ........................................ 16 1.2. DNA microarrays............................................................................ 24 1.2.1. Microarray formats......................................................................... 25 1.2.2. A microarray experiment using fluorescent labeling ..................26 1.2.3. Comparative genomics ...................................................................28 1.2.4. Functional genomics.......................................................................36 1.2.5. Aim.................................................................... 38 2. Methods.......................................................................................40 2.1. Bacterial strains and cultivation.....................................................41 2.2. Isolation and quantification of DNA from Francisella ................ 41 2.3. PCR.................................................................................................. 46 iii Table of contents 2.4. Culture of F. novicida under in vitro stress conditions................48 2.5. RNA isolation................................................................................. 50 2.6. Microarrays..................................................................................... 51 2.7. Quantitative real time PCR (QPCR). ......................................58 3. Design and construction of a F. tularensis microarray 62 3.1. Introduction..................................................................................... 63 3.2. Methods...........................................................................................65 3.2.1. Oligonucleotide design .................................................................. 65 3.2.2. Microarray printing......................................................................... 67 3.2.3. Preparation of Cy3-labelled DNA and hybridisation ................ 70 3.2.4. Microarray wash protocols..........................................................70 3.2.5. Scanning and image quantification .............................................71 3.3. Results............................................................................................72 3.3.1. Microarrays printed at FOI........................................................... 72 3.3.2. Microarrays printed at HPA..........................................................72 3.4 Discussion......................................................................................83 3.4.1. Oligonucleotide probes were selected for the F.tularensis microarray..................................................................................... 83 3.4.2. Aminosilane was used to attach the DNA probes to the slides.................. ......................................................................... 84 3.5. Conclusion..................................................................................... 85 4. Comparative genomics of Francisella ..................................86 4.1. Introduction.................................................................................... 87 4.2. Methods..........................................................................................91 4.2.1. Bacterial strains and genomic DNA isolation.............................91 Table of contents 4.2.2. Microarray hybridisation.............................................................. 91 4.2.3. Data acquisition and analysis ........................................ 91 4.2.4. Confirmation of microarray data by PCR.................................... 93 4.2.5. Strain- and subsp.-specific RD.....................................................93 4.3. Results............................................................................................. 95 4.3.1. RD identified by aCGH compared to those predicted by genome sequence ........................................................................ 95 4.3.2. Confirmation of results by PCR....................................................97 4.3.3. Hybridisations using DNA fromF. tularensis Schu S4.............. 97 4.3.4. Genomic differences identified using the F. tularensis microarray................................................................................... 101 4.3.5. RD/jo/arcf/ca...................................................................................... 103 4.3.6. RDlvs........................................................................................... 129 4.4. Discussion......................................... 131 4.4.1. aCGH studies on Francisella .......................................................131 4.4.2. RD/7 o/arcf/ca...................................................................................... 136 4.4.3. RDlvs..............................................................................................142 4.5. Conclusion.....................................................................................147
Recommended publications
  • Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
    ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp.
    [Show full text]
  • Francisella Tularensis
    The Genetic Composition and Diversity of Francisella tularensis Pär Larsson Akademisk avhandling som med vederbörligt tillstånd av rektorsämbetet vid Umeå Universitet för avläggande av medicine doktorsexamen i klinisk mikrobiologi med inriktning mot bakteriologi vid Medicinska fakulteten, framlägges till offentligt försvar vid Institutionen för Klinisk Mikrobiologi, sal E04 byggnad 6, torsdagen den 31 maj 2007, klockan 09.00. Avhandlingen kommer att försvaras på engelska. Fakultetsopponent: Dr. Andrew K Benson Department of Food Science & Technology University of Nebraska–Lincoln Lincoln, Nebraska USA Department of Clinical Microbiology, Clinical Bacteriology Umeå University Umeå 2007 Organization Document type UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Clinical Microbiology Date of publication SE-901 87 Umeå, Sweden May 2007 Author Pär Larsson Title The Genetic Composition and Diversity of Francisella tularensis Abstract Francisella tularensis is the causative agent of the debilitating, sometimes fatal zoonotic disease tularemia. Despite all F. tularensis bacteria having very similar genotypes and phenotypes, the disease varies significantly in severity depending on the subspecies of the infectious strain. To date, little information has been available on the genetic makeup of this pathogen, its evolution, and the genetic differences which characterize subspecific lineages. These are the main areas addressed in this thesis. Using the F. tularensis subsp. tularensis SCHU S4 strain as a genetic reference, microarray-based comparative genomic hybridisations were used to investigate the differences in genomic composition of F. tularensis isolates. Overall, the strains analysed were very similar, matching the high degree of conservation previously observed at the sequence level. One striking finding was that subsp. mediasiatica was most similar to subsp. tularensis, despite their natural confinement to Central Asia and North America, respectively.
    [Show full text]
  • Francisella Tularensis Blue-Grey Phase Variation Involves Structural
    Francisella tularensis blue-grey phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Shilpa Soni Graduate Program in Microbiology The Ohio State University 2010 Master's Examination Committee: John Gunn, Ph.D. Advisor Mark Wewers, M.D. Robert Munson, Ph.D. Copyright by Shilpa Soni 2010 Abstract Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long- standing issue with potential Francisella vaccines is strain phase variation to a grey form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a grey variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the grey variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology.
    [Show full text]
  • Tularemia – Epidemiology
    This first edition of theWHO guidelines on tularaemia is the WHO GUIDELINES ON TULARAEMIA result of an international collaboration, initiated at a WHO meeting WHO GUIDELINES ON in Bath, UK in 2003. The target audience includes clinicians, laboratory personnel, public health workers, veterinarians, and any other person with an interest in zoonoses. Tularaemia Tularaemia is a bacterial zoonotic disease of the northern hemisphere. The bacterium (Francisella tularensis) is highly virulent for humans and a range of animals such as rodents, hares and rabbits. Humans can infect themselves by direct contact with infected animals, by arthropod bites, by ingestion of contaminated water or food, or by inhalation of infective aerosols. There is no human-to-human transmission. In addition to its natural occurrence, F. tularensis evokes great concern as a potential bioterrorism agent. F. tularensis subspecies tularensis is one of the most infectious pathogens known in human medicine. In order to avoid laboratory-associated infection, safety measures are needed and consequently, clinical laboratories do not generally accept specimens for culture. However, since clinical management of cases depends on early recognition, there is an urgent need for diagnostic services. The book provides background information on the disease, describes the current best practices for its diagnosis and treatment in humans, suggests measures to be taken in case of epidemics and provides guidance on how to handle F. tularensis in the laboratory. ISBN 978 92 4 154737 6 WHO EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Guidelines on Tularaemia EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Library Cataloguing-in-Publication Data WHO Guidelines on Tularaemia.
    [Show full text]
  • A Dissertation Entitled Characterization of a Novel
    A Dissertation entitled Characterization of a novel Francisella tularensis Virulence Factor Involved in Cell Wall Repair by Briana Collette Zellner Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Jason Huntley, Ph.D., Major Advisor ___________________________________________ R. Mark Wooten, Ph.D., Committee Member ___________________________________________ Jyl Matson, Ph.D., Committee Member ___________________________________________ Robert Blumenthal, Ph.D. Committee Member ___________________________________________ R. Travis Taylor, Ph.D., Committee Member ___________________________________________ Cyndee Gruden, PhD, Dean College of Graduate Studies The University of Toledo December 2019 © 2019 Briana Collette Zellner This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of a Novel Francisella tularensis Virulence Factor Involved in Cell Wall Repair by Briana Collette Zellner Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo December 2019 Francisella tularensis, the causative agent of tularemia, is one of the most dangerous bacterial pathogens known. F. tularensis has a low infectious dose, is easily aerosolized, and induces high morbidity and mortality; thus, it
    [Show full text]
  • Francisellosis of Atlantic Cod (Gadus Morhua L.)
    ICES IDENTIFICATION LEAFLETS FOR DISEASES AND PARASITES OF FISH AND SHELLFISH Leaflet No. 64 Francisellosis of Atlantic cod (Gadus morhua L.) Anders Alfjorden and Neil Ruane International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H.C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Alfjorden, A., and Ruane, N. 2015. Francisellosis of Atlantic cod (Gadus morhua L.). ICES Identification Leaflets for Diseases and Parasites of Fish and Shellfish. Leaflet No. 64. 5 pp. Series Editor: Stephen Feist. Prepared under the auspices of the ICES Working Group on Pathology and Diseases of Marine Organisms. The material in this report may be reused for non-commercial purposes using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. ISBN 978-87-7482-173-1 ISSN 0109–2510 © 2015 International Council for the Exploration of the Sea Leaflet No. 64 | 1 Francisellosis of Atlantic cod (Gadus morhua L.) Anders Alfjorden and Neil Ruane Susceptible species Francisellosis, caused by infection with Francisella noatunensis, primarily affects Atlantic cod (Gadus morhua) and was first described in Norway in 2004 (Nylund et al., 2006) and 2005 (Olsen et al., 2006).
    [Show full text]
  • In Vivo and in Vitro Pathogenesis of Francisella Asiatica in Tilapia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 In vivo and in vitro pathogenesis of Francisella asiatica in tilapia nilotica (Oreochromis niloticus) Esteban Soto Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Soto, Esteban, "In vivo and in vitro pathogenesis of Francisella asiatica in tilapia nilotica (Oreochromis niloticus)" (2010). LSU Doctoral Dissertations. 2796. https://digitalcommons.lsu.edu/gradschool_dissertations/2796 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IN VIVO AND IN VITRO PATHOGENESIS OF FRANCISELLA ASIATICA IN TILAPIA NILOTICA (OREOCHROMIS NILOTICUS) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Esteban Soto Med.Vet., Universidad Nacional-Costa Rica, 2005 M.Sc., Mississippi State University, 2007 August, 2010 ACKNOWLEDGEMENTS The main reason why I’m being able to present this dissertation is because of all the help and advices received by many people along these years. Firstly and foremost I thank my wife Tati for always believing in me and giving me all the support I needed. To my dad and mom, thanks for being a perfect example of integrity and perseverance.
    [Show full text]
  • Francisella Novicida–Causing Two Samples of Blood Cultures from Peripheral Lines Bacteremia in a Woman from Thailand Who Was Receiving Chemotherapy for Ovarian Cancer
    she was treated with lamivudine. A follow-up visit in early Emergence of September showed that her liver function biochemistry re- sults had returned to within normal limits. Chemotherapy Francisella with carboplastin and paclitaxel was then initiated. At the time of admission, 25 days after the start of novicida chemotherapy, the patient had fever (39oC), blood pressure 90/60 mm Hg, and pulse rate 75 beats/min. She also had Bacteremia, an episode of gastrointestinal hemorrhage with melena. It Thailand was believed that fever and gastrointestinal bleeding were complications from chemotherapy; thus, microbiologic Amornrut Leelaporn, Samaporn Yongyod, investigation was not promptly initiated. Abnormal labo- Sunee Limsrivanichakorn, Thitiya Yungyuen, ratory fi ndings included anemia (hemoglobin 80 g/L) and and Pattarachai Kiratisin leukocytosis with marked neutrophilia (Figure). Urine and stool cultures showed insignifi cant growth. We report isolation of Francisella novicida–causing Two samples of blood cultures from peripheral lines bacteremia in a woman from Thailand who was receiving chemotherapy for ovarian cancer. The organism was iso- were obtained using BacT/Alert FA bottles (bioMérieux, lated from blood cultures and identifi ed by 16S rDNA and Durham, NC, USA) on day 10 of hospital admission and PPIase gene analyses. Diagnosis and treatment were de- incubated in the continuous monitoring BacT/Alert 3D sys- layed due to unawareness of the disease in this region. tem (bioMérieux). Both blood culture bottles grew small pleomorphic gram-negative coccobacillus after incubation for 2 days. Samples from positive bottles were subcultured rancisella novicida, a rare human pathogen, has recent- onto 5% (vol/vol) sheep blood agar, MacConkey agar, and Fly been considered to be a subspecies of F.
    [Show full text]
  • View That Similar Evolutionary Paths of Host Adaptation Developed Independently in F
    Sjödin et al. BMC Genomics 2012, 13:268 http://www.biomedcentral.com/1471-2164/13/268 RESEARCH ARTICLE Open Access Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish Andreas Sjödin1*, Kerstin Svensson1, Caroline Öhrman1, Jon Ahlinder1, Petter Lindgren1, Samuel Duodu2, Anders Johansson3, Duncan J Colquhoun2, Pär Larsson1 and Mats Forsman1 Abstract Background: Prior to this study, relatively few strains of Francisella had been genome-sequenced. Previously published Francisella genome sequences were largely restricted to the zoonotic agent F. tularensis. Only limited data were available for other members of the Francisella genus, including F. philomiragia, an opportunistic pathogen of humans, F. noatunensis, a serious pathogen of farmed fish, and other less well described endosymbiotic species. Results: We determined the phylogenetic relationships of all known Francisella species, including some for which the phylogenetic positions were previously uncertain. The genus Francisella could be divided into two main genetic clades: one included F. tularensis, F. novicida, F. hispaniensis and Wolbachia persica, and another included F. philomiragia and F. noatunensis. Some Francisella species were found to have significant recombination frequencies. However, the fish pathogen F. noatunensis subsp. noatunensis was an exception due to it exhibiting a highly clonal population structure similar to the human pathogen F. tularensis. Conclusions: The genus Francisella can be divided into two main genetic clades occupying both terrestrial and marine habitats. However, our analyses suggest that the ancestral Francisella species originated in a marine habitat. The observed genome to genome variation in gene content and IS elements of different species supports the view that similar evolutionary paths of host adaptation developed independently in F.
    [Show full text]
  • The Francisella Pathogenicity Island Its Role in Type VI Secretion and Intracellular Infection
    The Francisella Pathogenicity Island Its role in Type VI Secretion and intracellular infection Lena Meyer Department of Clinical Microbiology Umeå 2015 Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-246-8 ISSN: 0346-6612 Front cover by Lena Meyer. Injection capillary. Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Print & Media Umeå, Sweden 2015 Somewhere, something incredible is waiting to be known. Carl Sagan Für Familie und Freunde. TABLE OF CONTENTS TABLE OF CONTENTS i ABSTRACT iii SAMMANFATTNING PÅ SVENSKA v ABBREVIATIONS vii LIST OF PAPERS ix PAPERS INCLUDED IN THE THESIS ix PAPERS NOT INCLUDED IN THE THESIS ix 1. INTRODUCTION 1 1.1. FRANCISELLA TULARENSIS – AN OVERVIEW 1 1.2. THE INTRACELLULAR LIFESTYLE OF FRANCISELLA TULARENSIS 2 PHAGOSOMAL ESCAPE AND INTRACELLULAR REPLICATION OF FRANCISELLA 3 METABOLIC ADAPTATION 5 INNATE IMMUNE RECOGNITION OF FRANCISELLA 7 1.3. THE FRANCISELLA PATHOGENICITY ISLAND (FPI) 10 1.4 TYPE VI SECRETION SYSTEM (T6SS) 13 CORE COMPONENTS, STRUCTURE AND EFFECTORS 14 A CURRENT MODEL FOR T6S AND ITS REGULATION 17 THE FRANCISELLA T6SS – OUTSIDE THE BOX? 20 2. AIMS OF THE THESIS 22 3. METHODOLOGICAL CONSIDERATIONS 23 MUTAGENESIS AND COMPLEMENTATION 23 CELL INFECTION, INFECTION MODELS AND RESPONSE 24 FRACTIONATION AND BACTERIAL CELL MEMBRANE INTEGRITY 26 PROTEIN-PROTEIN INTERACTION METHODS 26 PROTEIN SECRETION METHODS 28 MICROINJECTION 29 4. RESULTS AND DISCUSSION 31 4.1 CHARACTERIZATION OF FPI MUTANTS (PAPERS I, II AND III) 32 THE SUBCELLULAR LOCALIZATION OF FPI PROTEINS AND THEIR ENGAGEMENT IN PROTEIN-PROTEIN INTERACTIONS 32 NOVEL PHENOTYPES AND NULL MUTANTS – THE IMPORTANCE OF FPI PROTEINS FOR THE INTRACELLULAR GROWTH CYCLE OF F.
    [Show full text]
  • Francisella Noatunensis
    Francisella noatunensis – Taxonomy and ecology Karl Fredrik Ottem The degree doctor philosophiae (dr.philos) University of Bergen, Norway 2011 2 Aknowlegdement The studies included in this thesis were conducted at the Fish Disease Group, Department of Biology, University of Bergen in the period 2006-2009. The project was financed by the Norwegian Research Council grant NFR174227/S40, Intervet Norbio AS and PatoGen Analyse AS. I am especially indebted to my supervisor Are Nylund for his guidance, support and enthusiasm over the years and in the completion of this thesis. I am also deeply indebted to Egil Karlsbakk for his guidance, enthusiasm, many contributions and efforts that have helped me in completing this thesis. Your help have been very valuable and much appreciated. I would also like to thank all the good friends and colleagues in the Fish Disease Group for all the fun between the work, and for all of the interesting discussions not always related to biology. Thanks go to Kuninori Watanabe, Linda Andersen, Marius Karlsen, Trond E. Isaksen, Stian Nylund, Øyvind Brevik, Henrik Duesund, Siri Vike, and Heidrun Nylund. It is fun working with you. I am also grateful to my parents, my brothers and sister and all of my friends for all support during these years. I am deeply grateful and indepted to my dearest Susanne for your love, support and encouragment during the completion of this thesis, a process which must have seem endless. Finally Folke, even though you do not realize it now, your laughter and good mood have been priceless after a long day at the office.
    [Show full text]
  • I DISSERTATION the SURFACE PROTEOME
    DISSERTATION THE SURFACE PROTEOME OF FRANCISELLA TULARENSIS Submitted by Jeffrey Craig Chandler Department of Microbiology, Immunology and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2011 Doctoral Committee: Advisor: John T. Belisle Robert D. Gilmore Lawrence D. Goodridge Jeannine M. Petersen i ABSTRACT THE SURFACE PROTEOME OF FRANCISELLA TULARENSIS The surface associated lipids, polysaccharides, and proteins of bacterial pathogens often have significant roles in environmental and host-pathogen interactions. Lipopolysaccharide and an O-antigen polysaccharide capsule are the best defined Francisella tularensis surface molecules, and are important virulence factors that also contribute to the phenotypic variability of Francisella species, subspecies, and populations. In contrast, little is known regarding the composition and contributions of surface proteins in the biology of Francisella, or what roles they have in the documented phenotypic variability of this genus. A sufficient understanding of the Francisella surface proteome has been hampered by the few surface proteins identified and the inherent difficulty of characterizing new surface proteins. Thus, the objective of this dissertation was to provide an enhanced definition of F. tularensis surface proteome and evaluate how surface proteins relate to aspects of F. tularensis physiology, specifically humoral immunity and phenotypic variability of subspecies and populations. Analyses of the F. tularensis live vaccine strain surface proteome resulted in the identification of 36 proteins, 28 of which were newly described to the surface of this bacterium. Bioinformatic comparisons of surface proteins to their homologs in other Francisella species, subspecies, and populations revealed numerous differences that may contribute variable phenotypes, including significant alterations in the ChiA chitinase (FTL_1521).
    [Show full text]