A Dissertation Entitled Characterization of a Novel

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Characterization of a Novel A Dissertation entitled Characterization of a novel Francisella tularensis Virulence Factor Involved in Cell Wall Repair by Briana Collette Zellner Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Jason Huntley, Ph.D., Major Advisor ___________________________________________ R. Mark Wooten, Ph.D., Committee Member ___________________________________________ Jyl Matson, Ph.D., Committee Member ___________________________________________ Robert Blumenthal, Ph.D. Committee Member ___________________________________________ R. Travis Taylor, Ph.D., Committee Member ___________________________________________ Cyndee Gruden, PhD, Dean College of Graduate Studies The University of Toledo December 2019 © 2019 Briana Collette Zellner This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of a Novel Francisella tularensis Virulence Factor Involved in Cell Wall Repair by Briana Collette Zellner Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo December 2019 Francisella tularensis, the causative agent of tularemia, is one of the most dangerous bacterial pathogens known. F. tularensis has a low infectious dose, is easily aerosolized, and induces high morbidity and mortality; thus, it has been designated as a Tier 1 Select Agent. Studies to identify and characterize F. tularensis envelope proteins are important to help understand the molecular mechanisms by which F. tularensis, and other intracellular pathogens cause disease, and may lead to the development of new therapeutics. In previous studies, we demonstrated that the F. tularensis disulfide bond formation protein ortholog, DsbA, is required for virulence and, more importantly, identified >50 DsbA substrates, half of which are annotated as hypothetical proteins or proteins with unknown functions. In the current study, we selected one of these unstudied DsbA substrates, FTL1678, for detailed analysis. Using bioinformatics, FTL1678 was found to contain a putative L,D-carboxypeptidase A (LdcA) domain, indicating a potential role in peptidoglycan (PG) remodeling, which likely is required for the intracellular lifestyle of F. tularensis. Unlike prototypic LdcA homologs, F. tularensis LdcA does not localize to the cytoplasm. An FTL1678 mutant was completely iii attenuated in a mouse pulmonary infection model, with decreased lung colonization and inability to disseminate to livers or spleens. Mutant attenuation was confirmed through complementation with wild-type (WT) FTL1678, as well as the Campylobacter jejuni LdcA homolog Pgp2, and both fully-restored virulence to WT levels. Importantly, immunization with this mutant provided significant protection against pulmonary challenge with fully-virulent F. tularensis strain SchuS4 (in the BSL3). Membrane integrity testing revealed differences in cell wall permeability between WT F. tularensis Live Vaccine Strain (LVS) and ΔFTL1678 and electron microscopy analysis of ΔFTL1678 showed increased outer membrane thickness. In addition, through enzymatic assays, FTL1678 was shown to have L,D-carboxypeptidase and L,D-endopeptidase activities, cleaving peptidoglycan pentapeptides to tetrapeptides and tripeptides. These studies have revealed a new F. tularensis virulence factor and have highlighted the importance of the F. tularensis envelope in protecting the bacterium during infection. iv This work is dedicated to my parents, Kent and Kathy Zellner. Your continued love and support over the past four and a half years have been a crucial component of my success. You have always been my biggest cheerleaders in life, even when I wasn’t sure of myself, and I can’t thank you enough for always being there for me. v Acknowledgements I would first like to thank my advisor, Dr. Jason F. Huntley for all of his support and guidance. I consider myself very lucky to have had the privilege of working in his laboratory for the past four years. My time in the Huntley lab, and his mentorship has made me a better scientist not only in a technical sense, but also as an independent and critical thinker. I would also like to thank my committee members, Drs. Jyl Matson, R. Mark Wooten, Robert Blumenthal, and R. Travis Taylor, for all their advice on my project over the years and for being available and willing to help me whenever I needed it. Next, I would like to thank the past and current members of the Huntley lab, Dr. Wilma Wu, Nicole Bearss, Alison Brandel, Kayla Uveges, Nick Mitchell, Brenden Tully, and Alex McCartney for all your help and friendship through this process. I wouldn’t have made it through without you all. Finally, I would like to thank all of our collaborators, Dr. Dominique Mengin- Lecreulx (University of Paris), Drs. Joe Dillard and Ryan Schaub (University of Wisconsin-Madison), Dr. Erin Gaynor (University of British Columbia), and Drs. William Gunning and Robert Booth (University of Toledo) for their contributions to my dissertation research. vi Table of Contents Abstract ......................................................................................................................... iii Acknowledgements ........................................................................................................ vi Table of Contents ..........................................................................................................vii List of Tables.................................................................................................................xii List of Figures ............................................................................................................. xiii List of Abbreviations ..................................................................................................... xv 1 Introduction and Literature Review ...................................................................... 1 1.1 Francisella tularensis ..................................................................................... 1 1.1.1 A Brief History of Tularemia ........................................................... 1 1.1.2 F. tularensis as a Biological Weapon ............................................... 3 1.1.3 F. tularensis Species, Subspecies, and Genetics ............................... 4 1.1.4 Vectors, Transmission, and Clinical Disease .................................... 7 1.1.5 F. tularensis Invasion of and Survival in Host Cells ......................... 9 1.1.6 F. tularensis Pathogenesis .............................................................. 11 1.1.7 Immune Responses to F. tularensis ............................................... 12 1.1.7.1 Innate Immunity ............................................................. 12 1.1.7.2 Adaptive Immunity ......................................................... 14 vii 1.2 Virulence Factors of F. tularensis ................................................................. 17 1.2.1 Francisella Pathogenicity Island .................................................... 17 1.2.2 Additional Francisella Secretion Systems ...................................... 19 1.2.3 F. tularensis Capsule ..................................................................... 20 1.2.4 F. tularensis LPS ........................................................................... 21 1.2.5 F. tularensis Envelope Proteins ...................................................... 22 1.2.5.1 Outer Membrane Proteins ............................................... 22 1.2.5.2 Periplasmic Proteins ....................................................... 24 1.2.5.3 Inner Membrane Proteins ................................................ 25 1.2.6 Disulfide Bond Formation Protein A and Substrates ...................... 27 1.3 F. tularensis Vaccines .................................................................................. 28 1.3.1 History of Tularemia Vaccines ....................................................... 28 1.3.2 Animal Models .............................................................................. 30 1.3.3 Immune Correlates of Protection .................................................... 32 1.3.4 Subunit, Killed Whole-Cell, or Live-Attenuated? ........................... 34 1.3.5 Live-Attenuated Vaccines Derived from LVS vs. SchuS4 .............. 36 1.4 Gram-Negative Bacterial Peptidoglycan ....................................................... 38 1.4.1 Peptidoglycan General Structure .................................................... 38 1.4.2 Peptidoglycan Synthesis ................................................................ 39 1.4.3 Peptidoglycan Recycling ................................................................ 40 1.5 Goals and Significance of my Dissertation Studies ....................................... 41 2 A Periplasmic L,D-Carboxypeptidase is Important for Cell Shape, Membrane Integrity, and Virulence in F. tularensis ............................................................ 44 viii 2.1 Abstract ................................................................................................... 45 2.2 Introduction .................................................................................................. 46 2.3 Results ..................................................................................................
Recommended publications
  • Melioidosis: an Emerging Infectious Disease
    Review Article www.jpgmonline.com Melioidosis: An emerging infectious disease Raja NS, Ahmed MZ,* Singh NN** Department of Medical ABSTRACT Microbiology, University of Malaya Medical Center, Kuala Lumpur, Infectious diseases account for a third of all the deaths in the developing world. Achievements in understanding Malaysia, *St. the basic microbiology, pathogenesis, host defenses and expanded epidemiology of infectious diseases have Bartholomew’s Hospital, resulted in better management and reduced mortality. However, an emerging infectious disease, melioidosis, West Smithfield, London, is becoming endemic in the tropical regions of the world and is spreading to non-endemic areas. This article UK and **School of highlights the current understanding of melioidosis including advances in diagnosis, treatment and prevention. Biosciences, Cardiff Better understanding of melioidosis is essential, as it is life-threatening and if untreated, patients can succumb University, Cardiff, UK to it. Our sources include a literature review, information from international consensus meetings on melioidosis Correspondence: and ongoing discussions within the medical and scientific community. N. S. Raja, E-mail: [email protected] Received : 21-2-2005 Review completed : 20-3-2005 Accepted : 30-5-2005 PubMed ID : 16006713 KEY WORDS: Melioidosis, Burkholderia pseudomallei, Infection J Postgrad Med 2005;51:140-5 he name melioidosis [also known as Whitmore dis- in returning travellers to Europe from endemic areas.[14] The T ease] is taken from the Greek word ‘melis’ meaning geographic area of the prevalence of the organism is bound to distemper of asses and ‘eidos’ meaning resembles glanders. increase as the awareness increases. Melioidosis is a zoonotic disease caused by Pseudomonas pseudomallei [now known as Burkholderia pseudomallei], a B.
    [Show full text]
  • Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
    ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp.
    [Show full text]
  • The Pentagon Bio-Weapons
    The Pentagon Bio-Weapons https://southfront.org/pentagon-bio-weapons/ ANALYSIS #USAEditor's choice DilyanaGaytandzhieva is a Bulgarian investigative journalist and Middle East Correspondent. Over the last two years she has published a series of revealed reports on weapons smuggling. In the past year she came under pressure from the Bulgarian National Security Agency and was fired from her job in the Bulgarian newspaper Trud Daily without explanation. Despite this, Dilyana continues her investigations. Her current report provides an overview of Pentagon’s vigour in the development of biological weapons. Twitter/@dgaytandzhieva (Here is a topic long suspected, but never ‘brought to light’ until now. Don't expect to see such an article in the Main Stream media [MSM] as it would be censored and/or heavily edited before being published. The level of details provided by the author makes her case irrefutable! Those that would like better documentation, can go to the website cited, as virtually EVERY photo, document, map, etc., is enlargeable.. Downloaded from the above website on Feb 10, 2018 ~ Don Chapin) The US Army regularly produces deadly viruses, bacteria and toxins in direct violation of the UN Convention on the prohibition of Biological Weapons. Hundreds of thousands of unwitting people are systematically exposed to dangerous pathogens and other incurable diseases. Bio warfare scientists using diplomatic cover test man-made viruses at Pentagon bio laboratories in 25 countries across the world. These US bio-laboratories are funded by the Defense Threat Reduction Agency (DTRA) under a $ 2.1 billion military program– Cooperative Biological Engagement Program (CBEP), and are located in former Soviet Union countries such as Georgia and Ukraine, the Middle East, South East Asia and Africa.
    [Show full text]
  • Anthrax Plague Tularemia
    July 29, 2019 Paula Bryant Acting Director, OBRRTR OBRRTR in DMID Office of the Director Clinical Research Coordination Office of Office of Office of Office of Office of Office of Biodefense, Scientific Clinical Clinical Genomics Regulatory Research Resources, Coordination Research Research and Advanced Affairs and Translational and Program Affairs Resources Technologies Research (OBRRTR) Operations Parasitology and Enterics & Sexually Bacteriology and Respiratory International Transmitted Virology Branch Mycology Branch Diseases Branch Programs Infections Branch Branch HHS Priority Biological Threats* NIAID Cat A NIAID Cat B NIAID Cat C Bacillus anthracis (anthrax) Burkholderia mallei (glanders) Antimicrobial resistance MDR anthrax Burkholderia pseudomallei Pandemic influenza Smallpox (melioidosis) Ebola virus Rickettsia prowazekii (typhus) Marburg virus Yersinia pestis (plague) Francisella tularensis (tularemia) Clostridium botulinum toxin (BoNT) Emerging infectious diseases (EID) – ‘Disease X’ Other VHFs (Junin, Machupo, Alphaviruses (WEE,EEE,VEE) Lassa, RVF) Ricin, Brucellosis, SEB, Q-fever Yellow Fever Additional DoD and/or lower priority *PHEMCE SIP 2017-18 From OBRA to OBRRTR Broad spectrum MCMs & Narrow-spectrum MCMs Enabling Platform for CatA-BioD Technologies for CatA-C BioD & EID preparedness OBRRTR’s Role 1. ‘PHEMCE’: Address USG’s identified biodefense and public health needs • Execute and represent NIH’s BioD and public health emergency R&D to the PHEMCE 2. Product Development: advance candidate MCMs and Platform Technologies late preclinical, IND/IDE- Phase I clinical testing, enabling testing & mfg with Phase II capabilities • Biothreats = PHEMCE requirements based on DHS assessments • EID’s and other public health threats • Regulatory path - accelerated approval, Animal rule, or EUA • Transition to BARDA, DoD or industry 3. Translational Research: facilitate and manage….
    [Show full text]
  • Avoidance of Mechanisms of Innate Immune Response by Neisseria Gonorrhoeae
    ADVANCEMENTS OF MICROBIOLOGY – POSTĘPY MIKROBIOLOGII 2019, 58, 4, 367–373 DOI: 10.21307/PM–2019.58.4.367 AVOIDANCE OF MECHANISMS OF INNATE IMMUNE RESPONSE BY NEISSERIA GONORRHOEAE Jagoda Płaczkiewicz* Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Submitted in July, accepted in October 2019 Abstract: Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacteria and an etiological agent of the sexually transmitted disease – gonorrhea. N. gonorrhoeae possesses many mechanism to evade the innate immune response of the human host. Most are related to serum resistance and avoidance of complement killing. However the clinical symptoms of gonorrhea are correlated with a significant pres- ence of neutrophils, whose response is also insufficient and modulated by gonococci. 1. Introduction. 2. Adherence ability. 3. Serum resistance and complement system. 4. Neutrophils. 4.1. Phagocytosis. 4.1.1. Oxygen- dependent intracellular killing. 4.1.2. Oxygen-independent intracellular killing. 4.2. Neutrophil extracellular traps. 4.3. Degranulation. 4.4. Apoptosis. 5. Summary UNIKANIE MECHANIZMÓW WRODZONEJ ODPOWIEDZI IMMUNOLOGICZNEJ PRZEZ NEISSERIA GONORRHOEAE Streszczenie: Neisseria gonorrhoeae (gonokok) to Gram-ujemna dwoinka będąca czynnikiem etiologicznym choroby przenoszonej drogą płciową – rzeżączki. N. gonorrhoeae posiada liczne mechanizmy umożliwiające jej unikanie wrodzonej odpowiedzi immunologicznej gospodarza. Większość z nich związana jest ze zdolnością gonokoków do manipulowania układem dopełniacza gospodarza oraz odpor- nością tej bakterii na surowicę. Jednakże symptomy infekcji N. gonorrhoeae wynikają między innymi z obecności licznych neutrofili, których aktywność jest modulowana przez gonokoki. 1. Wprowadzenie. 2. Zdolność adherencji. 3. Surowica i układ dopełniacza. 4. Neutrofile. 4.1. Fagocytoza. 4.1.1. Wewnątrzkomórkowe zabijanie zależne od tlenu. 4.1.2.
    [Show full text]
  • Transparency in Past Offensive Biological Weapon Programmes
    Transparency in past offensive biological weapon programmes An analysis of Confidence Building Measure Form F 1992-2003 Nicolas Isla Occasional Paper No. 1 June 2006 TABLE OF CONTENTS Executive summary................................................................................................................................ 3 1. Introduction....................................................................................................................................... 5 2. Analysis and evaluation of declared data on past offensive BW programmes........................ 8 2.1. Canada....................................................................................................................................... 8 2.2. France........................................................................................................................................ 10 2.3. Iraq............................................................................................................................................. 13 2.4. Russian Federation................................................................................................................... 15 2.5. South Africa.............................................................................................................................. 18 2.6. United Kingdom...................................................................................................................... 20 2.7. United States............................................................................................................................
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Laboratory Manual for Diagnosis of Sexually Transmitted And
    Department of AIDS Control LaborLaboraattororyy ManualManual fforor DiagnosisDiagnosis ofof SeSexxuallyually TTrransmitansmittteded andand RRepreproductivoductivee TTrractact InInffectionsections FOREWORD Sexually Transmitted Infections (STIs) and Reproductive Tract Infections (RTIs) are diseases of major global concern. About 6% of Indian population is reported to be having STIs. In addition to having high levels of morbidity, they also facilitate transmission of HIV infection. Thus control of STIs goes hand in hand with control of HIV/AIDS. Countrywide strengthening of laboratories by helping them to adopt uniform standardized protocols is very important not only for case detection and treatment, but also to have reliable epidemiological information which will help in evaluation and monitoring of control efforts. It is also essential to have good referral services between primary level of health facilities and higher levels. This manual aims to bring in standard testing practices among laboratories that serve health facilities involved in managing STIs and RTIs. While generic procedures such as staining, microscopy and culture have been dealt with in detail, procedures that employ specific manufacturer defined kits have been left to the laboratories to follow the respective protocols. An introduction to quality system essentials and quality control principles has also been included in the manual to sensitize the readers on the importance of quality assurance and quality management system, which is very much the need of the hour. Manual of Operating Procedures for Diagnosis of STIs/RTIs i PREFACE Sexually Transmitted Infections (STIs) are the most common infectious diseases worldwide, with over 350 million new cases occurring each year, and have far-reaching health, social, and economic consequences.
    [Show full text]
  • Identification of Ixodes Ricinus Female Salivary Glands Factors Involved in Bartonella Henselae Transmission Xiangye Liu
    Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Xiangye Liu To cite this version: Xiangye Liu. Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission. Human health and pathology. Université Paris-Est, 2013. English. NNT : 2013PEST1066. tel-01142179 HAL Id: tel-01142179 https://tel.archives-ouvertes.fr/tel-01142179 Submitted on 14 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS-EST École Doctorale Agriculture, Biologie, Environnement, Santé T H È S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PARIS-EST Spécialité : Sciences du vivant Présentée et soutenue publiquement par Xiangye LIU Le 15 Novembre 2013 Identification of Ixodes ricinus female salivary glands factors involved in Bartonella henselae transmission Directrice de thèse : Dr. Sarah I. Bonnet USC INRA Bartonella-Tiques, UMR 956 BIPAR, Maisons-Alfort, France Jury Dr. Catherine Bourgouin, Chef de laboratoire, Institut Pasteur Rapporteur Dr. Karen D. McCoy, Chargée de recherches, CNRS Rapporteur Dr. Patrick Mavingui, Directeur de recherches, CNRS Examinateur Dr. Karine Huber, Chargée de recherches, INRA Examinateur ACKNOWLEDGEMENTS To everyone who helped me to complete my PhD studies, thank you.
    [Show full text]
  • Burkholderia Cenocepacia Intracellular Activation of the Pyrin
    Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A. Gavrilin, Dalia H. A. Abdelaziz, Mahmoud Mostafa, Basant A. Abdulrahman, Jaykumar Grandhi, This information is current as Anwari Akhter, Arwa Abu Khweek, Daniel F. Aubert, of September 29, 2021. Miguel A. Valvano, Mark D. Wewers and Amal O. Amer J Immunol 2012; 188:3469-3477; Prepublished online 24 February 2012; doi: 10.4049/jimmunol.1102272 Downloaded from http://www.jimmunol.org/content/188/7/3469 Supplementary http://www.jimmunol.org/content/suppl/2012/02/24/jimmunol.110227 Material 2.DC1 http://www.jimmunol.org/ References This article cites 71 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/188/7/3469.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A.
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Nicotine Induces Polyspermy in Sea Urchin Eggs Through a Non-Cholinergic Pathway Modulating Actin Dynamics
    cells Article Nicotine Induces Polyspermy in Sea Urchin Eggs through a Non-Cholinergic Pathway Modulating Actin Dynamics 1,2 1, 2 1, Nunzia Limatola , Filip Vasilev y, Luigia Santella and Jong Tai Chun * 1 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, I-80121 Napoli, Italy; [email protected] (N.L.); [email protected] (F.V.) 2 Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, I-80121 Napoli, Italy; [email protected] * Correspondence: [email protected] Current address: Centre de Recherche du Centre Hospitalier de l’Université de Montreal (CRCHUM) y Montreal, QC H2X 0A9, Canada. Received: 8 November 2019; Accepted: 21 December 2019; Published: 25 December 2019 Abstract: While alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors. Unlike acetylcholine and carbachol, nicotine uniquely induced drastic rearrangement of egg cortical microfilaments in a dose-dependent way. Such cytoskeletal changes appeared to render the eggs more receptive to sperm, as judged by the significant alleviation of polyspermy by latrunculin-A and mycalolide-B. In addition, our fluorimetric assay provided the first evidence that nicotine directly accelerates polymerization kinetics of G-actin and attenuates depolymerization of preassembled F-actin. Furthermore, nicotine inhibited cofilin-induced disassembly of F-actin.
    [Show full text]