In Vivo and in Vitro Pathogenesis of Francisella Asiatica in Tilapia

Total Page:16

File Type:pdf, Size:1020Kb

In Vivo and in Vitro Pathogenesis of Francisella Asiatica in Tilapia Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 In vivo and in vitro pathogenesis of Francisella asiatica in tilapia nilotica (Oreochromis niloticus) Esteban Soto Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation Soto, Esteban, "In vivo and in vitro pathogenesis of Francisella asiatica in tilapia nilotica (Oreochromis niloticus)" (2010). LSU Doctoral Dissertations. 2796. https://digitalcommons.lsu.edu/gradschool_dissertations/2796 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IN VIVO AND IN VITRO PATHOGENESIS OF FRANCISELLA ASIATICA IN TILAPIA NILOTICA (OREOCHROMIS NILOTICUS) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Esteban Soto Med.Vet., Universidad Nacional-Costa Rica, 2005 M.Sc., Mississippi State University, 2007 August, 2010 ACKNOWLEDGEMENTS The main reason why I’m being able to present this dissertation is because of all the help and advices received by many people along these years. Firstly and foremost I thank my wife Tati for always believing in me and giving me all the support I needed. To my dad and mom, thanks for being a perfect example of integrity and perseverance. It is very easy to have personal heroes having both of you as parents. My brothers Quique and Teto, thanks for always having my back, and always giving me a great excuse to go back to Costa Rica. I’m also greatly indebted to my advisor Dr. John P. Hawke, who sacrificed time, energy, and effort to help me realize my educational goal. Your support, friendship and guidance both as advisor and as person will always be remembered and I will always be in debt for all the help provided. I would like to express all my appreciation to committee members Dr. Ron Thune, Dr. Kevin Macaluso, Dr. Philip Elzer, and Dr. Donald Baltz who provided assistance and advice during the research of these projects. I also greatly thank all the help, friendship, and technical assistance of Judy Wiles, Denise Fernandez, Dr. Matt Rogge, Dr. Wes Baumgartner, Judith Beekman, Christie Landry, Johnny Shelly, Natthida Petchampai, Dr. Piyanate Sunyakumthorn, Dr. Walairat Pornwiroon, Dr. Chutima Thepparit, and Michael Kearney from the Pathobiological Sciences Department, LSU School of Veterinary Medicine. I also gratefully thank Dr. Juan A. Morales from the Escuela de Medicina Veterinaria in the Universidad Nacional of Costa Rica for providing a new perspective on veterinary science, and help me get started in the fish health field. I thank, Dr. Jagit Ludu and Dr. Francis Nano at the Department of Biochemistry and Microbiology of the University of Victoria, B.C.; Dr. Xhavit Zogaj and Dr. Karl E. Klose from the South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX for sharing some of the plasmids used in this study. ii I also thank Dr. Anne-Berit Olsen from the National Veterinary Institute, Bergen, Norway and Dr. John Hansen from the Interdisciplinary Program in Pathobiology, University of Washington, Seattle, WA, for sharing some of the strains used in the study. I also thank Dr. B. Arulanandam and Dr. J.-J. Yu, from the Department of Biology, University of Texas at San Antonio for sharing some of the DNA used in this study. I also appreciate all the help provided by Dr. Matt Griffin and Dr. Patricia Gaunt from the Thad Cochran National Warmwater Aquaculture Center for their skillful technical assistance; and Dr. Richard Shelby (USDA/ARS, Auburn, AL) for sharing the mouse anti-tilapia IgM antibodies used in this study. iii TABLE OF CONTENTS ACKNOWLEDGMENTS ……………………………………………………….……………ii LIST OF TABLES ……………………………………………………………………….…...vi LIST OF FIGURES …………………………………………….……………………………..vii ABSTRACT ……………………………………………………………..………………………x CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW ………………..……….…...1 Tilapia and Tilapia Aquaculture ....…………..…………………………………..…..1 Tilapia Bacterial Diseases ...…………………………………………………………...2 Rickettsia Like-Organisms and Piscirickettsia Like-Organisms ..…………………....2 Genus Francisella …………………………………………………………………..…6 Fish Francisellosis ………………………………………………………………..……8 Taxonomic Classification of Francisella sp. Isolated from Fish ..………………..…12 Francisella tularensis Pathogenesis …………………………………………………....14 Francsiella tularensis Pathogenicity Island ………………………………………..…..17 Objectives …………………………………………………………………………....19 Literature Cited …………………………………………………………………....22 CHAPTER 2. FRANCISELLA SP., AN EMERGING PATHOGEN OF TILAPIA (OREOCHROMIS NILOTICUS) IN COSTA RICA ………………………………………..…..30 Introduction ………………………………………………………………………..…..30 Materials and Methods …………………………………………………………....32 Results …………………………………………………………………………....36 Discussion ………………………………………………………………………..…..43 Literature Cited ………………………………………………………………..…..46 CHAPTER 3. ATTENUATION OF THE FISH PATHOGEN FRANCISELLA SP. BY MUTATION OF THE IGLC GENE …………………………………………………..………..50 Introduction ……………………………………………………………………..……..50 Materials and Methods ……………………………………………..……………..53 Results ………………………………………………………………………………..…..59 Discussion …………………………………………………………………………....65 Literature Cited ………………………………………………………………..…..68 CHAPTER 4. INTERACTION OF FRANCISELLA ASIATICA WITH TILAPIA (OREOCHROMIS NILOTICUS) INNATE IMMUNITY ………………………..…………..72 Introduction ………………………………………………………………………..…..72 Materials and Methods ………………………………………………………..…..75 Results ………………………………………………………………………..…..81 Discussion ……………………………………………………………………..…..…89 Literature Cited ………………………………………………………..………..…96 iv CHAPTER 5. ATTENUATED FRANCISELLA ASIATICA IGLC MUTANT INDUCES PROTECTIVE IMMUNITY TO FRANCISELLOSIS IN TILAPIA …………………..102 Introduction …………………………………………………………………………..102 Materials and Methods …………………………………………………………..104 Results …………………………………………………………………………………..109 Discussion …………………………………………………………………………..115 Literature Cited …………………………………………………………………..117 CHAPTER 6. DEVELOPMENT OF A REAL-TIME PCR ASSAY FOR IDENTIFICATION AND QUANTIFICATION OF THE FISH PATHOGEN FRANCISELLA NOATUNENSIS SUBSP. ORIENTALIS ………………...………………………………………………..121 Introduction …………………………………………………………………………..121 Materials and Methods …………………………………………………………..124 Results …………………………………………………………………………..131 Discussion …………………………………………………………………………..134 Literature Cited …………………………………………………………………..137 CHAPTER 7. COMPARISON OF IN VITRO AND IN VIVO EFFICACY OF FLORFENICOL FOR TREATMENT OF FRANCISELLA ASIATICA INFECTION IN TILAPIA …………..141 Introduction …………………………………………………………………………..141 Materials and Methods …………………………………………………………..143 Results …………………………………………………………………………..148 Discussion …………………………………………………………………………..155 Literature Cited …………………………………………………………………..158 CHAPTER 8. CONCLUSIONS …………………………………………………………..162 Literature Cited …………………………………………………………………..169 APPENDIX 1. JOURNAL OF FISH DISEASE PERMISSION …………………………..172 APPENDIX 2. JOURNAL OF AQUATIC ANIMAL HEALTH PERMISSION …………..173 APPENDIX 3. INFECTION AND IMMUNITY PERMISSION …………………………..174 APPENDIX 4. DISEASES OF AQUATIC ORGANISMS PERMISSION …………………..175 VITA …………………………………………………………………………………..176 v LIST OF TABLES Table 2.1 Estimates of evolutionary divergence between 16S rRNA sequences of members of the genus Francisella and representative warmwater fish pathogens and isolate LADL 07-285A ……………………………………………………………………………42 Table3. 1 Description of strains, plasmids and primers used in this study ……………………54 Table 3.2 Summary of Francisella sp. LADL 07-285A LD50 Virulence Assays and % mortalities calculated by the method of Reed-Muench ……………………………………63 Table 6.1 Bacterial DNA used in this study …………………………………………………..126 Table 6.2 TaqMan primers and probe used in this study …………………………………..128 Table 6.3 Quantification of Francisella noatunensis subsp. orientalis from inoculated PBS and spleen …………………………………………………………………………………..132 Table 7.1 Minimum inhibitory concentration (MIC) of florfenicol against Francisella asiatica and Escherichia coli 25922 isolates obtained from culture fish ……………….....149 Table 7. 2 Histopathological lesions in selected tissues from medicated and non-medicated tilapia 30 days post-challenge with F. asiatica …………………………………………..151 vi LIST OF FIGURES Figure 2.1 Splenomegaly and renomegaly with widespread multifocal white nodules in infected nile tilapia (Oreochromis niloticus) ………………………………………..…………..37 Figure 2.2 Histopathological findings of Francisellosis in nile tilapia (Oreochromis niloticus) (a) Hyperplasic and hypertrophic primary and secondary gill lamella (b) Pericarditis with granulomatous cellular infiltrate …………………………………………………………....38 Figure 2.3 Francisella sp. bacteria seen intra and extracellularly with Giemsa stain (100X)…...38 Figure 2.4 PCR amplification of Francisella sp. isolates recovered from tilapia (Oreochromis niloticus) …………………………..………………………………………..40 Figure 2.5 Evolutionary relationships of 24 taxa based on partial 16S rRNA sequences of members of the genus
Recommended publications
  • Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
    ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Burkholderia Cenocepacia Intracellular Activation of the Pyrin
    Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A. Gavrilin, Dalia H. A. Abdelaziz, Mahmoud Mostafa, Basant A. Abdulrahman, Jaykumar Grandhi, This information is current as Anwari Akhter, Arwa Abu Khweek, Daniel F. Aubert, of September 29, 2021. Miguel A. Valvano, Mark D. Wewers and Amal O. Amer J Immunol 2012; 188:3469-3477; Prepublished online 24 February 2012; doi: 10.4049/jimmunol.1102272 Downloaded from http://www.jimmunol.org/content/188/7/3469 Supplementary http://www.jimmunol.org/content/suppl/2012/02/24/jimmunol.110227 Material 2.DC1 http://www.jimmunol.org/ References This article cites 71 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/188/7/3469.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of the Pyrin Inflammasome by Intracellular Burkholderia cenocepacia Mikhail A.
    [Show full text]
  • Bioinformatics Resource Centers Systems Biology (Brcs) Centers
    Fondation Merieux – J Craig Venter Institute Bioinformatics Workshop December 5 – 8, 2017 Module 3: Genomic Data & Sequence Annotations in Public Databases NIH/NIAID Genomics and Bioinformatics Program SlideSource:A.S.Fauci SlideSource:A.S.Fauci Conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases. NIAIDGenomicsProgram Proteomics Systems Sequencing Functional Structural Biology Genomics Genomics Genomic Clinical Functional Systems Sequencing Proteomics Structural Genomic Biology Centers Centers Genomics Research Centers Centers Centers Bioinformatics BioinformaticsResource Centers GenomicResearchResources Genomic/OmicsDataSets,Databases,BioinformaticsTools,Biomarkers,3DStructures,ProteinClones,PredictiveModels Toaddresskeyquestionsin microbiologyandinfectious disease NIAID Genome Sequencing Center Influenza Genome Sequencing Project at JCVI • 2004: 80 influenza genomes in GenBank • 3OCT2017: ~20,000 influenza genomes sequenced at JCVI • 75% complete influenza genomes in GenBank by JCVI Slide source: Maria Giovanni * Genome Sequencing Centers Bioinformatics Resource Centers Systems Biology (BRCs) Centers Structure Genomics Centers Clinical Proteomics Centers Courtesy of Alison Yao, DMID *Bioinformatics Resource Centers (BRCs) Goal: Provide integrated bioinformatics resources in support of basic and applied infectious diseases research • Data and metadata management and integration solutions • Computational analysis and visualization tools • Work
    [Show full text]
  • Original Article COMPARISON of MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, and BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR
    European Journal of Microbiology and Immunology 7 (2017) 1, pp. 15–36 Original article DOI: 10.1556/1886.2016.00037 COMPARISON OF MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, AND BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR FOR THE SELECTIVE GROWTH OF BURKHOLDERIA SPP. Carola Edler1, Henri Derschum2, Mirko Köhler3, Heinrich Neubauer4, Hagen Frickmann5,6,*, Ralf Matthias Hagen7 1 Department of Dermatology, German Armed Forces Hospital of Hamburg, Hamburg, Germany 2 CBRN Defence, Safety and Environmental Protection School, Science Division 3 Bundeswehr Medical Academy, Munich, Germany 4 Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Jena, Germany 5 Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany 6 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany 7 Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany Received: November 18, 2016; Accepted: December 5, 2016 Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and non- target organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • Francisella Tularensis Subspecies Holarctica and Tularemia in Germany
    microorganisms Review Francisella tularensis Subspecies holarctica and Tularemia in Germany 1, 2, 3 1 1 Sandra Appelt y, Mirko Faber y , Kristin Köppen , Daniela Jacob , Roland Grunow and Klaus Heuner 3,* 1 Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; [email protected] (S.A.); [email protected] (D.J.); [email protected] (R.G.) 2 Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; [email protected] 3 Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-301-8754-2226 These authors contributed equally to this work. y Received: 27 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation—noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging.
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Francisella Tularensis
    The Genetic Composition and Diversity of Francisella tularensis Pär Larsson Akademisk avhandling som med vederbörligt tillstånd av rektorsämbetet vid Umeå Universitet för avläggande av medicine doktorsexamen i klinisk mikrobiologi med inriktning mot bakteriologi vid Medicinska fakulteten, framlägges till offentligt försvar vid Institutionen för Klinisk Mikrobiologi, sal E04 byggnad 6, torsdagen den 31 maj 2007, klockan 09.00. Avhandlingen kommer att försvaras på engelska. Fakultetsopponent: Dr. Andrew K Benson Department of Food Science & Technology University of Nebraska–Lincoln Lincoln, Nebraska USA Department of Clinical Microbiology, Clinical Bacteriology Umeå University Umeå 2007 Organization Document type UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Clinical Microbiology Date of publication SE-901 87 Umeå, Sweden May 2007 Author Pär Larsson Title The Genetic Composition and Diversity of Francisella tularensis Abstract Francisella tularensis is the causative agent of the debilitating, sometimes fatal zoonotic disease tularemia. Despite all F. tularensis bacteria having very similar genotypes and phenotypes, the disease varies significantly in severity depending on the subspecies of the infectious strain. To date, little information has been available on the genetic makeup of this pathogen, its evolution, and the genetic differences which characterize subspecific lineages. These are the main areas addressed in this thesis. Using the F. tularensis subsp. tularensis SCHU S4 strain as a genetic reference, microarray-based comparative genomic hybridisations were used to investigate the differences in genomic composition of F. tularensis isolates. Overall, the strains analysed were very similar, matching the high degree of conservation previously observed at the sequence level. One striking finding was that subsp. mediasiatica was most similar to subsp. tularensis, despite their natural confinement to Central Asia and North America, respectively.
    [Show full text]
  • Francisella Tularensis Blue-Grey Phase Variation Involves Structural
    Francisella tularensis blue-grey phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Shilpa Soni Graduate Program in Microbiology The Ohio State University 2010 Master's Examination Committee: John Gunn, Ph.D. Advisor Mark Wewers, M.D. Robert Munson, Ph.D. Copyright by Shilpa Soni 2010 Abstract Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long- standing issue with potential Francisella vaccines is strain phase variation to a grey form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a grey variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the grey variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology.
    [Show full text]
  • Tularemia – Epidemiology
    This first edition of theWHO guidelines on tularaemia is the WHO GUIDELINES ON TULARAEMIA result of an international collaboration, initiated at a WHO meeting WHO GUIDELINES ON in Bath, UK in 2003. The target audience includes clinicians, laboratory personnel, public health workers, veterinarians, and any other person with an interest in zoonoses. Tularaemia Tularaemia is a bacterial zoonotic disease of the northern hemisphere. The bacterium (Francisella tularensis) is highly virulent for humans and a range of animals such as rodents, hares and rabbits. Humans can infect themselves by direct contact with infected animals, by arthropod bites, by ingestion of contaminated water or food, or by inhalation of infective aerosols. There is no human-to-human transmission. In addition to its natural occurrence, F. tularensis evokes great concern as a potential bioterrorism agent. F. tularensis subspecies tularensis is one of the most infectious pathogens known in human medicine. In order to avoid laboratory-associated infection, safety measures are needed and consequently, clinical laboratories do not generally accept specimens for culture. However, since clinical management of cases depends on early recognition, there is an urgent need for diagnostic services. The book provides background information on the disease, describes the current best practices for its diagnosis and treatment in humans, suggests measures to be taken in case of epidemics and provides guidance on how to handle F. tularensis in the laboratory. ISBN 978 92 4 154737 6 WHO EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Guidelines on Tularaemia EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Library Cataloguing-in-Publication Data WHO Guidelines on Tularaemia.
    [Show full text]
  • Communicating in a Crisis: Biological Attack
    2. Use common sense, practice good hygiene and cleanliness to avoid spreading germs. “Communication before, during People who are potentially exposed should: and after a biological attack will 1. Follow instructions of health care providers and other public health officials. NEWS &TERRORISM 2. Expect to receive medical evaluation and treatment. Be prepared for long lines. If COMMUNICATING IN A CRISIS be a critical element in effectively the disease is contagious, persons exposed may be quarantined. A fact sheet from the National Academies and the U.S. Department of Homeland Security responding to the crisis and help­ If people become aware of a suspicious substance nearby, they should: ing people to protect themselves 1. Quickly get away. and recover.” 2. Cover their mouths and noses with layers of fabric that can filter the air but still allow breathing. —A Journalist’s Guide to Covering 3. Wash with soap and water. Bioterrorism (Radio and Television News 4. Contact authorities. BIOLOGICAL ATTACK Director’s Foundation, 2004) 5. Watch TV, listen to the radio, or check the Internet for official news and informa- HUMAN PATHOGENS, BIOTOXINS, tion including the signs and symptoms of the disease, if medications or vaccinations AND AGRICULTURAL THREATS are being distributed, and where to seek medical attention if they become sick. 6. Seek emergency medical attention if they become sick. Table 1. Diseases/Agents Listed by the CDC as Potential WHAT IS IT? Bioterror Threats (as of March 2005). The U.S. Department of Medical Treatment Agriculture maintains lists of animal and plant agents of concern. Table 2 lists general medical treatments for several biothreat agents.
    [Show full text]