Francisella Noatunensis

Total Page:16

File Type:pdf, Size:1020Kb

Francisella Noatunensis Francisella noatunensis – Taxonomy and ecology Karl Fredrik Ottem The degree doctor philosophiae (dr.philos) University of Bergen, Norway 2011 2 Aknowlegdement The studies included in this thesis were conducted at the Fish Disease Group, Department of Biology, University of Bergen in the period 2006-2009. The project was financed by the Norwegian Research Council grant NFR174227/S40, Intervet Norbio AS and PatoGen Analyse AS. I am especially indebted to my supervisor Are Nylund for his guidance, support and enthusiasm over the years and in the completion of this thesis. I am also deeply indebted to Egil Karlsbakk for his guidance, enthusiasm, many contributions and efforts that have helped me in completing this thesis. Your help have been very valuable and much appreciated. I would also like to thank all the good friends and colleagues in the Fish Disease Group for all the fun between the work, and for all of the interesting discussions not always related to biology. Thanks go to Kuninori Watanabe, Linda Andersen, Marius Karlsen, Trond E. Isaksen, Stian Nylund, Øyvind Brevik, Henrik Duesund, Siri Vike, and Heidrun Nylund. It is fun working with you. I am also grateful to my parents, my brothers and sister and all of my friends for all support during these years. I am deeply grateful and indepted to my dearest Susanne for your love, support and encouragment during the completion of this thesis, a process which must have seem endless. Finally Folke, even though you do not realize it now, your laughter and good mood have been priceless after a long day at the office. I look forward to spend some much longed family time with the both of you. 3 List of Papers Paper-I. Nylund A, Ottem KF, Watanabe K, Karlsbakk E, Krossøy B (2006) Francisella sp. (Family Francisellaceae) causing mortality in Norwegian cod (Gadus morhua ) farming. Arch Microbiol 5:383-92. Epub 2006 Apr 14. Paper-II. Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Krossøy B (2007) Characterization of Francisella sp., GM2212, the first Francisella isolate from marine fish, Atlantic cod ( Gadus morhua ). Arch Microbiol 5:343-50. Epub 2006 Dec 12. Paper-III. Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Krossøy B, Knappskog D (2007) New species in the genus Francisella (Gammaproteobacteria; Francisellaceae); Francisella piscicida sp. nov. isolated from cod ( Gadus morhua ). Arch Microbiol 5:547-50. Epub 2007 Jul 10. Paper-IV. Ottem KF, Nylund A, Isaksen TE, Karlsbakk E, Bergh Ø (2008) Occurence of Francisella piscicida in farmed and wild Atlantic cod Gadus morhua L. in Norway. J Fish Dis 7:525-34. Epub 2008 May 13. Paper-V. Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Kamaishi T (2009) Elevation of Francisella philomiragia ssp. noatunensis Mikalsen et al. 2007 to Francisella noatunensis comb. nov. (syn. Francisella piscicida Ottem et al. 2008 syn. nov.) and characterization of Francisella noatunensis ssp. orientalis ssp. nov., two important fish pathogens. J Appl Microbiol 4: 1231- 1243. 4 CONTENTS AKNOWLEGDEMENT..................................................................................................................................... 2 LIST OF PAPERS............................................................................................................................................... 3 INTRODUCTION............................................................................................................................................... 5 NORWEGIAN FISH -FARMING ........................................................................................................................... 5 DISEASES OF ATLANTIC COD .......................................................................................................................... 5 FRANCISELLA SPP . IN FISH ............................................................................................................................... 7 THE ECOLOGY OF FRANCISELLA SPP ............................................................................................................ 13 TRANSMISSION AND RESERVOIRS OF F. NOATUNENSIS ................................................................................ 16 FRANCISELLA SPP . AND HOST -CELL INTERACTIONS .................................................................................... 18 TAXONOMY OF GENUS FRANCISELLA ........................................................................................................... 19 PHYLOGENETIC RELATIONSHIP AMONG FRANCISELLA SPP . ....................................................................... 22 BACTERIAL TAXONOMY AND CURRENT PRACTICES .................................................................................... 25 BACTERIAL TAXONOMY AND CRITIQUES ..................................................................................................... 27 DNA-DNA hybridization........................................................................................................................... 27 Gene-sequence comparison and analysis................................................................................................. 28 EVOLUTION OF BACTERIA ............................................................................................................................ 30 AIMS OF THE PRESENT STUDY................................................................................................................. 33 SUMMARY OF PAPERS ................................................................................................................................ 34 SYNTHESIS ...................................................................................................................................................... 37 THE TAXONOMY OF GENUS FRANCISELLA .................................................................................................... 37 PHENOTYPIC CHARACTERISTICS OF FRANCISELLA SPP ............................................................................... 37 Phenotype and biochemical properties..................................................................................................... 37 Fatty acids content.................................................................................................................................... 39 Serology.................................................................................................................................................... 41 Conclusions phenotypic characteristics ................................................................................................... 42 GENETIC CHARACTERISTICS OF FRANCISELLA SPP . .................................................................................... 43 16S rRNA gene-sequences ........................................................................................................................ 43 DNA-DNA hybridization........................................................................................................................... 44 House-keeping genes ................................................................................................................................ 46 Conclusions genetic characteristics ......................................................................................................... 47 CRITERIA FOR SPECIES SEPARATION IN THE GENUS FRANCISELLA ............................................................ 49 SOME CLARIFICATIONS REGARDING THE TAXONOMY AND NOMENCLATURE OF FISH PARASITIC FRANCISELLA SPP .. ........................................................................................................................................ 51 CONCLUSION.................................................................................................................................................. 56 OUTLOOK........................................................................................................................................................ 57 SUPPLEMENTARY MATERIAL.................................................................................................................. 58 LITERATURE CITED..................................................................................................................................... 71 5 INTRODUCTION Norwegian fish-farming The Norwegian fish-farming industry has grown substantially during the last 30-40 years from the onset as a small industry until today where it represents a multi million dollar industry. During this time of development the industry has experienced numerous problems affecting the profitability, in particular those related to fish- health. From an industry mainly producing Atlantic salmon ( S. salar ), Norwegian aquaculture are now producing several marine species, such as Atlantic cod ( Gadus morhua ), Atlantic halibut ( Hippoglossus hippoglossus ), turbot ( Psetta maxima ), blue mussel ( Mytilus edulis ), oyster ( Ostrea edulis ) and the great scallop ( Pecten maximus ). In 2008 the sale of farmed Atlantic cod was the largest of these species. When including catch-based aquaculture, it amounted to 18052 metric tons or 2.14 % out of a total of 841776 metric tons of farmed fish sold (Statistics from Norwegian Directorate of Fisheries 2009). It was expected that the production of farmed Atlantic cod should increase further in the coming years, with a prognose for 2010 in the order 150-200 000 tons (Kjesbu et al. 2006). However, in 2009 and 2010 the industry experienced a serious set-back mainly due to poor economy
Recommended publications
  • Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
    ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp.
    [Show full text]
  • Effects of Dietary Protein and Lipid Levels on Growth Performances of Two African Cichlids (Pseudotropheus Socolofi and Haplochr
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 635-640 (2012) DOI: 10.4194/1303-2712-v12_3_11 Effects of Dietary Protein and Lipid Levels on Growth Performances of Two African Cichlids (Pseudotropheus socolofi and Haplochromis ahli) Fatime Erdogan1,*, Mete Erdogan1, Erkan Gümüş2 1 Muğla Sıtkı Koçman Üniversitesi, Ortaca Vocational School, Fisheries Programme, 48600, Muğla, Turkey. 2 Akdeniz University, Faculty of Fisheries, 07058, Antalya, Turkey. * Corresponding Author: Tel.:+90.252 2825619, Fax: +90.252 2822579; Received 21 October 2011 E-mail: [email protected] Accepted 24 June 2012 Abstract Effects of experimental diets with varying protein and lipid levels on weight gain (WG), specific growth rate (SGR), survival rate (SR), feed conversion rate (FCR), hepatosomatic and viscerosomatic indices (HSI and VSI) of two popular ornamental cichlid species, omnivorous (Pseudotropheus socolofi) and carnivorous (Haplochromis ahli) were studied for 56 days. Two crude proteins (38%CP and 56%CP) and two crude lipids (9%CL and 16%CL) rates were applied to four formulated diets: R1 (38%CP:16%CL), R2 (38%CP:9%CL), R3 (56%CP:16%CL) and R4 (56%CP:9%CL). The SR was 100% in H. ahli while that of P. socolofi ranged from 66.6% to 93.3% in the two groups, respectively. The highest WG and SGR were seen in the H. ahli and P. socolofi groups fed with R2 feed. The best FCR values were obtained in R2 groups of H. ahli (1.64) and R groups of P. socolofi (1.41). HSI values for H. ahli and P.
    [Show full text]
  • Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard (Calotes Versicolor)
    animals Article Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard (Calotes versicolor) Lin Zhang 1,2,*,† , Fang Yang 3,†, Ning Li 4 and Buddhi Dayananda 5 1 School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China 2 State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China 3 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; [email protected] 4 College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; [email protected] 5 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Simple Summary: The different gut sections potentially provide different habitats for gut microbiota. We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut micro- biota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend from the small intestine to the large intestine, and there was a higher abun- dance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in Citation: Zhang, L.; Yang, F.; Li, N.; different parts of the lizards’ intestine. Dayananda, B. Environment- Dependent Variation in Gut Abstract: Vertebrates maintain complex symbiotic relationships with microbiota living within their Microbiota of an Oviparous Lizard gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and (Calotes versicolor).
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • Bioinformatics Resource Centers Systems Biology (Brcs) Centers
    Fondation Merieux – J Craig Venter Institute Bioinformatics Workshop December 5 – 8, 2017 Module 3: Genomic Data & Sequence Annotations in Public Databases NIH/NIAID Genomics and Bioinformatics Program SlideSource:A.S.Fauci SlideSource:A.S.Fauci Conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases. NIAIDGenomicsProgram Proteomics Systems Sequencing Functional Structural Biology Genomics Genomics Genomic Clinical Functional Systems Sequencing Proteomics Structural Genomic Biology Centers Centers Genomics Research Centers Centers Centers Bioinformatics BioinformaticsResource Centers GenomicResearchResources Genomic/OmicsDataSets,Databases,BioinformaticsTools,Biomarkers,3DStructures,ProteinClones,PredictiveModels Toaddresskeyquestionsin microbiologyandinfectious disease NIAID Genome Sequencing Center Influenza Genome Sequencing Project at JCVI • 2004: 80 influenza genomes in GenBank • 3OCT2017: ~20,000 influenza genomes sequenced at JCVI • 75% complete influenza genomes in GenBank by JCVI Slide source: Maria Giovanni * Genome Sequencing Centers Bioinformatics Resource Centers Systems Biology (BRCs) Centers Structure Genomics Centers Clinical Proteomics Centers Courtesy of Alison Yao, DMID *Bioinformatics Resource Centers (BRCs) Goal: Provide integrated bioinformatics resources in support of basic and applied infectious diseases research • Data and metadata management and integration solutions • Computational analysis and visualization tools • Work
    [Show full text]
  • Francisella Tularensis Subspecies Holarctica and Tularemia in Germany
    microorganisms Review Francisella tularensis Subspecies holarctica and Tularemia in Germany 1, 2, 3 1 1 Sandra Appelt y, Mirko Faber y , Kristin Köppen , Daniela Jacob , Roland Grunow and Klaus Heuner 3,* 1 Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; [email protected] (S.A.); [email protected] (D.J.); [email protected] (R.G.) 2 Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; [email protected] 3 Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-301-8754-2226 These authors contributed equally to this work. y Received: 27 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation—noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging.
    [Show full text]
  • Brucellosis 2014 International Research Conference
    SCHEDULE 2014 Federal Institute for Risk Assessment Brucellosis 2014 International Research Conference BERLIN | 9–12 September 2014 Imprint Abstracts Brucellosis 2014 International Research Conference All authors are responsible for the content of their respective abstracts. Federal Institute for Risk Assessment Communication and Public Relations Office Max-Dohrn-Straße 8–10 10589 Berlin Germany Berlin 2014 222 Pages Photo: flobox/Quelle: PHOTOCASE Printing: cover, content pages and bookbinding BfR-printing house Brucellosis 2014 International Research Conference 3 Welcoming Addresses Andreas Hensel President of the Federal Institute for Risk Assessment (BfR) Welcoming address by the President of the Federal Institute for Risk Assessment More than 100 years after the first description of Micrococcus melitensis by Sir David Bruce, brucellosis is still of major public health concern both in endemic and non-endemic countries all over the world. The impact on animal and human health is tremendous and eradication and control of this zoonotic disease remains a global and interdisciplinary challenge. Alt- hough eradicated in German livestock brucellosis is still a matter of interest because it has emerged as a disease among immigrants associated with diagnostic delays, possibly result- ing in treatment failures, relapses, chronic courses, focal complications, and a high case- fatality rate. The identification of health risks is the guiding principle for our work in the field of food safety and consumer protection. A total of 800 employees spare no effort to prove that no risk is more fun . I am delighted to host the Brucellosis 2014 International Research Conference at the Federal Institute for Risk Assessment, here in Berlin, the capital city of Germany, which was home and domain of so many Nobel laureates.
    [Show full text]
  • Product Information Sheet for NR-50276
    Product Information Sheet for NR-50276 Brucella melitensis, Strain 16MΔvjbR abortion and infertility. Transmission from animal to human via contact with infected animal products or through the air may lead to Malta (or undulant) fever, a long debilitating Catalog No. NR-50276 disease treatable by a prolonged course of antibiotics. This reagent is the property of the U.S. Government. Brucella species are recognized as potential agricultural, civilian, and military bioterrorism agents.4 For research use only. Not for human use. Material Provided: Contributor: Each vial contains approximately 0.7 mL of bacterial culture Thomas A. Ficht, Professor, College of Veterinary Medicine in Tryptic Soy broth supplemented with 10% glycerol. and Biological Sciences, Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, Note: If homogeneity is required for your intended use, please USA purify prior to initiating work. Manufacturer: Packaging/Storage: BEI Resources NR-50276 was packaged aseptically, in screw-capped plastic cryovials. The product is provided frozen and should be Product Description: stored at -60°C or colder immediately upon arrival. For long- Bacteria Classification: Brucellaceae, Brucella term storage, the vapor phase of a liquid nitrogen freezer is Species: Brucella melitensis recommended. Freeze-thaw cycles should be avoided. Biotype/Biovar: 1 Strain: 16MΔvjbR Growth Conditions: Original Source: Brucella melitensis (B. melitensis), strain Note: Passage of this organism can result in the accumulation 16MΔvjbR
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Francisella Tularensis
    The Genetic Composition and Diversity of Francisella tularensis Pär Larsson Akademisk avhandling som med vederbörligt tillstånd av rektorsämbetet vid Umeå Universitet för avläggande av medicine doktorsexamen i klinisk mikrobiologi med inriktning mot bakteriologi vid Medicinska fakulteten, framlägges till offentligt försvar vid Institutionen för Klinisk Mikrobiologi, sal E04 byggnad 6, torsdagen den 31 maj 2007, klockan 09.00. Avhandlingen kommer att försvaras på engelska. Fakultetsopponent: Dr. Andrew K Benson Department of Food Science & Technology University of Nebraska–Lincoln Lincoln, Nebraska USA Department of Clinical Microbiology, Clinical Bacteriology Umeå University Umeå 2007 Organization Document type UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Clinical Microbiology Date of publication SE-901 87 Umeå, Sweden May 2007 Author Pär Larsson Title The Genetic Composition and Diversity of Francisella tularensis Abstract Francisella tularensis is the causative agent of the debilitating, sometimes fatal zoonotic disease tularemia. Despite all F. tularensis bacteria having very similar genotypes and phenotypes, the disease varies significantly in severity depending on the subspecies of the infectious strain. To date, little information has been available on the genetic makeup of this pathogen, its evolution, and the genetic differences which characterize subspecific lineages. These are the main areas addressed in this thesis. Using the F. tularensis subsp. tularensis SCHU S4 strain as a genetic reference, microarray-based comparative genomic hybridisations were used to investigate the differences in genomic composition of F. tularensis isolates. Overall, the strains analysed were very similar, matching the high degree of conservation previously observed at the sequence level. One striking finding was that subsp. mediasiatica was most similar to subsp. tularensis, despite their natural confinement to Central Asia and North America, respectively.
    [Show full text]
  • Francisella Tularensis Blue-Grey Phase Variation Involves Structural
    Francisella tularensis blue-grey phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Shilpa Soni Graduate Program in Microbiology The Ohio State University 2010 Master's Examination Committee: John Gunn, Ph.D. Advisor Mark Wewers, M.D. Robert Munson, Ph.D. Copyright by Shilpa Soni 2010 Abstract Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long- standing issue with potential Francisella vaccines is strain phase variation to a grey form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a grey variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the grey variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology.
    [Show full text]
  • Tularemia – Epidemiology
    This first edition of theWHO guidelines on tularaemia is the WHO GUIDELINES ON TULARAEMIA result of an international collaboration, initiated at a WHO meeting WHO GUIDELINES ON in Bath, UK in 2003. The target audience includes clinicians, laboratory personnel, public health workers, veterinarians, and any other person with an interest in zoonoses. Tularaemia Tularaemia is a bacterial zoonotic disease of the northern hemisphere. The bacterium (Francisella tularensis) is highly virulent for humans and a range of animals such as rodents, hares and rabbits. Humans can infect themselves by direct contact with infected animals, by arthropod bites, by ingestion of contaminated water or food, or by inhalation of infective aerosols. There is no human-to-human transmission. In addition to its natural occurrence, F. tularensis evokes great concern as a potential bioterrorism agent. F. tularensis subspecies tularensis is one of the most infectious pathogens known in human medicine. In order to avoid laboratory-associated infection, safety measures are needed and consequently, clinical laboratories do not generally accept specimens for culture. However, since clinical management of cases depends on early recognition, there is an urgent need for diagnostic services. The book provides background information on the disease, describes the current best practices for its diagnosis and treatment in humans, suggests measures to be taken in case of epidemics and provides guidance on how to handle F. tularensis in the laboratory. ISBN 978 92 4 154737 6 WHO EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Guidelines on Tularaemia EPIDEMIC AND PANDEMIC ALERT AND RESPONSE WHO Library Cataloguing-in-Publication Data WHO Guidelines on Tularaemia.
    [Show full text]