Olfactory Behavior of Foraging Procellariiforms

Total Page:16

File Type:pdf, Size:1020Kb

Olfactory Behavior of Foraging Procellariiforms The Auk 111(2):285-291, 1994 OLFACTORY BEHAVIOR OF FORAGING PROCELLARIIFORMS CHRISTOPHEVERHEYDEN AND PIERREJOUVENTIN Centred'Etudes Biologiques de Chiz•,Centre National de la RechercheScientifique, 79360 Beauvoir-sur-Niort, France ABSTRACT.--OIfactoryforaging, although very rare among birds, is frequently found in membersof the Procellariiformes;this finding is basedon a small number of field studies using a standardized method (i.e. raft tests). Reactions of seven speciespreviously tested under artificial conditionswere testedagain under natural feeding conditions(fish-oil slicks) to check validity. Concurrently, we comparedthe flight behavior of two groups of species (with and without olfactory capacities) when approaching an odor source. A large-scale experiment was then conductedin pelagic waters to test the reaction of a community of procellariiforms (15 species)to a food-related odor diffusing within a principal feeding area. We observed the same reactions (attraction or indifference) to oil slicks as to test rafts in all speciesevaluated. Results obtained with the standardized method thus hold under natural conditions.Species guided by oilaction approachedthe odor sourceby flying against the wind very dose to (< 1 m) the surface, whereas other speciesapproached from a direction independentof wind direction and from a greater height (>6 m). Thus, specificsearching behavioris associatedwith olfactoryforaging and we found it to be closelyrelated to direction, height, and speed of odor diffusion by wind. Reactionto the odor test varied accordingto families or subfamilies,some taxa showing consistentresponses (attraction or indifference) to several experimentsand some taxa showing conflicting reactions.We obtained some ev- idence that olfactory behavior may differ before and after locating odor sources,as well as vary according to oceanic zones (coastalvs. pelagic). We discussthe hypothesisthat certain speciesrely mainly on visual cues,recognizing and following speciesthat are tracking food- related odors. Finally, we proposesome new ideasabout the evolution of oilaction in birds. Received3 August 1992, accepted25 November1992. ALTHOUGHOLFACTORY sensitivity in birds is from a small number of field studies in the North now documented in a growing number of spe- Atlantic (Grubb 1972), the North Pacific (Hutch- cies (seea review in Waldvogel 1989), olfactory ison and Wenzel 1980, Hutchison et al. 1984), foraging remains unusual. In terrestrial envi- the Antarctic (Jouventin and Robin 1983), and ronments, only two specieshave been shown the South Indian Ocean (Lequette et al. 1989). to locate their food by smell: the Kiwi (Apteryx These studies used a standardized method un- australis;Wenzel 1971) and the Turkey Vulture der artificial conditions (rafts) and showed that (Cathartesaura; Stager 1964). Some others have olfactory capacities are partly related to phy- shown good capacities under artificial condi- logeny and anatomy. Feeding ecology, partic- tions, including honeyguides(Indicator indicator ularly diet and feeding techniques,also play a and 1.minor; Stager 1967) and Black-billedMag- role in olfactory ability (Lequette et al. 1989). pies (Picapica; Buitron and Nuechterlein 1985). Seabirdsusing olfaction employ searchpatterns In contrast, there is evidence that at least 22 that seem to depend on wind conditions procellariiform speciesmay use olfactionwhen (Hutchison and Wenzel 1980, Hutchison et al. foraging (reviewed in Lequette et al. 1989). The 1984). Nonetheless, important questions re- existence of such a widespread ability and the main unsolved. First, can we extend the results extreme development of olfactory structures obtained under the artificial conditions of the (Wood Jones1937, Cobb 1960,Bang 1966, 1971, standardized method to natural feeding situa- Bang and Cobb 1968) make this order unique tions? Second, are there specific searchbehav- among birds, and may explain its successin iors in those specieswhich do rely on olfactory exploiting the pelagic environment. Very few cuesand, if so, how are they related to wind? laboratory studieshave been conducted(Wen- We report the results of field experiments de- zel 1967, Wenzel and Sieck 1972, Jouventin signed to answer these questions,and provide 1977). Our present knowledge comes mainly new data for 15 speciesof procellariiforms. We 285 286 VERH•DENAND JOUVENTIN [Auk, Vol. 111 give details about the behavior of olfactoryfor- represent the main feeding area of most procellari- aging, and describethe role olfaction plays in iforms, unlike coastal waters where most previous the foraging strategiesof these seabirds. studies have been conducted. This choice also per- mitted the exclusion of larids that may attract other seabirds(including procellariiforms) to the yacht (Ha- STUDY AREA AND METHODS ney et al. 1992). We operated only when the boat was Two series of experiments were conducted from sailing close (+ 40ø) to the wind at speedsvarying from 5.3 to 9.7 knots in order to create a linear odor August 1991 to March 1992 on board a 36-m yacht during a cruise from the American to the African trail behind us. Immediately after closing the box, sector of the Southern Ocean (35-64•S, 70øW-10øE). birds flying within a radius of 300 m around the yacht Whole cod-liver oil was used as an odor stimulus since were identified to speciesand counted for 10 min. it has been shown to be attractive in previous field Each period was divided into five circular counts of studies of procellariiforms. 2 min each to reduce the risk of counting the same Fine-scaleexperiment.--The odor stimulus was pre- bird several times. The highest count for eachspecies sented for 15 min by spreading 0.5 L on the ocean in a unit period was retained to compensatefor po- surface,thereby creating isolated surface slicks. Ex- tential underestimates.We separatedbirds flying up- periments were attempted only when the yacht was wind in our wake (within 45ø on either side of the anchored near the shore (500-1,000 m) of an open vesselaxis) from thoseflying in other directions.Con- bay in order to allow prolonged observations,and trol conditions were based on a 10-min count prior only when the wind was blowing from land to the to opening the box, and another count (also for 10 mouth of the bay so as to enhance the diffusion of min) 50 min after the closing of the box. We con- the odor towards the open ocean. Under these con- ducted a total of 26 trials, including 10 around the ditions, the slick tended to float away from the boat ScotiaSea and Drake Passage,and 16 during a cruise (maximum distance 100 m) and closely resembled in the South Atlantic from Tierra del Fuego to Cape Town. slicks frequently observed at sea (oily material orig- inating from dead animals, excreta, krill swarms) Comparisons.--Inboth experiments, we compared where many birds feed. Each bird sighted within 50 groupsof birds (e.g. having vs. not having olfactory m of the slickwas identified to specieswith binoculars capacities),experimental conditions (control vs. test), and followed by eye until it left the spot. Each bird and bird distributions (observed vs. expected) using was counted as a single event, including those that chi-square statistics (when n > 5 in all classes) or sometimesapproached repeatedly. Directions of ap- G-test(when n < 5 at leastin one class).Contingency proach were recordedas upwind approachesif they tests(chi-square with Yate's correction or G-test) were occured within 45 ø on either side of the wind source, applied to 2 x 2 tables.Our basicnull hypothesiswas and as indifferent approach if they did not. Flight that birds were distributed in proportion to the num- heightswere measuredwith graduatedbinoculars and ber of classesthat were compared. assignedto one of three classes(<1 m, 1-6 m, >6 m). Special behaviors such as landing or feeding on the RESULTS slick also were recorded. Control conditions consisted of a period of 15 min before spreadingthe oil, during Fine-scaleexperiment.--When confronted with which all the birds present within 50 m of the future a simulatedfeeding situation(oil slick),the four location of the slick were identified and counted. We speciesthat had previously been shown to re- also took into accountbirds present within 500 m of spond positively with the standard method (Gi- the spotduring the sameperiod. Ambient conditions on the ocean surface, such as wind direction and ve- ant Petrel [Macronectesgiganteus], Antarctic Ful- locity, as well as wave direction and height, were mar [Fulmarusglacialoides], Cape Pigeon [Daption recorded at the beginning of each trial (control + capense]and Wilson's Storm-Petrel [Oceanites odor test). oceanicus])also showed a positive response;their We conducted 16 experiments in several locations: frequency of occurrence(32.8%) and total num- CapeHorn and Diego RamirezIslands (3 tests);South- bers (n = 65) around slicks were, respectively, Shetlands (6 tests); and Western Antarctic Peninsula 5 and 13 times those recorded in the sameplace (7 tests).These locations were chosen for the presence free from oil (frequency = 6.2%, n = 5). This of procellariiform and nonprocellariiformspecies that distribution is significantly different (X 2 = 29.4, we had already tested in previous work using the P < 0.001) from that expectedif birds were not standard method (Lequette et al. 1989). attracted to the slick. Large-scaleexperiment.--The odor stimulus (0.2 L) was kept in an airtight metal box (diameter 12 cm, Three speciesknown as indifferent to odors height 19 cm) fixed on the back of the yacht and was (Kelp Gull [Larus dominicanus],Antarctic Tern releasedin the air for 50 min after opening the box. [Sternavittata] and Imperial Shag [Phalacrocorax Trials were conductedin pelagic waters becausethey atriceps])showed no interest in oil slicks.Their April1994] ProcellariiformForaging and Olfaction 287 frequencies of occurrence (25%) and numbers TABLE1. Flight features(percent) of two groups of (n = 22) around slicks were close to those ob- seabird speciesdiffering in their olfactory capaci- ties and way of approaching an oil slick: (group 1) served under control conditions (frequency = attracted by odor (Daption capense,Fulmarus glaci- 20.8%, n = 16).
Recommended publications
  • Copulation and Mate Guarding in the Northern Fulmar
    COPULATION AND MATE GUARDING IN THE NORTHERN FULMAR SCOTT A. HATCH Museumof VertebrateZoology, University of California,Berkeley, California 94720 USA and AlaskaFish and WildlifeResearch Center, U.S. Fish and WildlifeService, 1011 East Tudor Road, Anchorage,Alaska 99503 USA• ABSTRACT.--Istudied the timing and frequency of copulation in mated pairs and the occurrenceof extra-paircopulation (EPC) among Northern Fulmars (Fulmarus glacialis) for 2 yr. Copulationpeaked 24 days before laying, a few daysbefore females departed on a prelaying exodus of about 3 weeks. I estimated that females were inseminated at least 34 times each season.A total of 44 EPC attemptswas seen,9 (20%)of which apparentlyresulted in insem- ination.Five successful EPCs were solicitated by femalesvisiting neighboring males. Multiple copulationsduring a singlemounting were rare within pairsbut occurredin nearly half of the successfulEPCs. Both sexesvisited neighborsduring the prelayingperiod, and males employed a specialbehavioral display to gain acceptanceby unattended females.Males investedtime in nest-siteattendance during the prelaying period to guard their matesand pursueEPC. However, the occurrenceof EPC in fulmars waslargely a matter of female choice. Received29 September1986, accepted 16 February1987. THEoccurrence and significanceof extra-pair Bjorkland and Westman 1983; Buitron 1983; copulation (EPC) in monogamousbirds has Birkhead et al. 1985). generated much interest and discussion(Glad- I attemptedto documentthe occurrenceand stone 1979; Oring 1982; Ford 1983; McKinney behavioral contextof extra-pair copulationand et al. 1983, 1984). Becausethe males of monog- mate guarding in a colonial seabird,the North- amous species typically make a large invest- ern Fulmar (Fulmarus glacialis). Fulmars are ment in the careof eggsand young, the costof among the longest-lived birds known, and fi- being cuckolded is high, as are the benefits to delity to the same mate and nest site between the successfulcuckolder.
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • Bugoni 2008 Phd Thesis
    ECOLOGY AND CONSERVATION OF ALBATROSSES AND PETRELS AT SEA OFF BRAZIL Leandro Bugoni Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, at the Institute of Biomedical and Life Sciences, University of Glasgow. July 2008 DECLARATION I declare that the work described in this thesis has been conducted independently by myself under he supervision of Professor Robert W. Furness, except where specifically acknowledged, and has not been submitted for any other degree. This study was carried out according to permits No. 0128931BR, No. 203/2006, No. 02001.005981/2005, No. 023/2006, No. 040/2006 and No. 1282/1, all granted by the Brazilian Environmental Agency (IBAMA), and International Animal Health Certificate No. 0975-06, issued by the Brazilian Government. The Scottish Executive - Rural Affairs Directorate provided the permit POAO 2007/91 to import samples into Scotland. 2 ACKNOWLEDGEMENTS I was very lucky in having Prof. Bob Furness as my supervisor. He has been very supportive since before I had arrived in Glasgow, greatly encouraged me in new initiatives I constantly brought him (and still bring), gave me the freedom I needed and reviewed chapters astonishingly fast. It was a very productive professional relationship for which I express my gratitude. Thanks are also due to Rona McGill who did a great job in analyzing stable isotopes and teaching me about mass spectrometry and isotopes. Kate Griffiths was superb in sexing birds and explaining molecular methods again and again. Many people contributed to the original project with comments, suggestions for the chapters, providing samples or unpublished information, identifyiyng fish and squids, reviewing parts of the thesis or helping in analysing samples or data.
    [Show full text]
  • Southern Fulmar
    SOUTHERN FULMAR Fulmarus glacialoides Document made by the French Southern and Antarctic Lands © TAAF Lands © Southern and Antarctic the French made by Document l l assessm iona asse a g ss b e e m lo n r • Size : 45-50 cm t F G e A n t A SOUTHERN FULMAR T • Wingspan : 114-120 cm Fulmarus glacialoides • Weight : 0.7-1kg Order : Procellariiformes — Family : Procellariidae as the ... It is also known GEOGRAPHIC RANGE : The species can be seen in the Southern Ocean but breeds on the coasts of Antarctica and outlying glaciated islands. HABITAT : Southern Fulmars nest on steep rocky slopes and cliff sides, mainly on the coast and on the Antarctic continent. They are highly nomadic outside the breeding season, generally moving north to open waters south of 30°S. © S. BLANC DIET : They eat krill, fish and squid depending on available prey. They also consume carrion and discards from Fulmar Antarctic fishing vessels. BEHAVIOR : REPRODUCTION : Most food is taken by surface-seizing whilst in The breeding season begins in November and egg- flocks. They also skim the surface in low flight laying takes place during the first two weeks of with their beak open. They also sometimes dive December. They breed in colonies on steep rocky at shallow depths to catch their prey. They are slopes and precipitous cliffs on sheltered ledges rather solitary birds that can form small groups or in hollows, sometimes with other species of outside the breeding season. Paired birds tend to petrels. Nests are a gravel-lined scrape in which © S.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • SEABIRDS RECORDED at the CHATHAM ISLANDS, 1960 to MAY 1993 by M.J
    SEABIRDS RECORDED AT THE CHATHAM ISLANDS, 1960 TO MAY 1993 By M.J. IMBER Science and Research Directorate, Department of Conservation, P. 0. Box 10420, Wellington ABSTRACT Between 1960 and hlay 1993,62 species of seabirds were recorded at Chatham Islands, including 43 procellariiforms, 5 penguins, 5 pelecaniforms, and 9 hi.Apart &om the 24 breeding species, there were 14 regular visitors, 13 stragglers, 2 rarely seen on migration, and 9 found only beach-cast or as other remains. There is considerable endemism: 8 species or subspecies are confined, or largely confined, to breeding at the Chathams. INTRODUCTION The Chatham Islands (44OS, 176.5OW) are about 900 km east of New Zealand, and 560 km and 720 km respectively north-east of Bounty and Antipodes Islands. The Chatham Islands lie on the Subtropical Convergence (Fleming 1939) - the boundary between subtropical and subantarctic water masses; near the eastern end of the Chatham Rise - a shallow (4'500 m) submarine ridge extending almost to the New Zealand mainland. Chatham Island seabirds can feed over large areas of four marine habitats: the continental shelf of the Chatham Rise; the continental slope around it; and subtropical and subantarctic waters to the north, east, and south. The Chatham Islands' fauna and flora have, however, been very adversely affected by human colonisation for about 500 years (B. McFadgen, pers. cornrn.). Knowledge of the seabird fauna of the Chatham Islands gained up to 1960 is siunmarised in Oliver (1930), Fleming (1939), Dawson (1955, 1973), and papers quoted therein. The present paper summarises published and unpublished data on the seabirds of the archipelago from 1960 to May 1993, from when visits to these islands depended on infrequent passages by ship from Lyttelton, South Island, to the present, when a visit involves a 2-h scheduled flight from Napier, Wellington, or Christchurch, six dayslweek.
    [Show full text]
  • An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
    FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR).
    [Show full text]
  • Appendix, French Names, Supplement
    685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U.
    [Show full text]
  • Ardery Island and Odbert Island, Budd Coast, Wilkes Land, East Antarctica
    Measure 3 (2015) Management Plan for Antarctic Specially Protected Area No. 103 ARDERY ISLAND AND ODBERT ISLAND, BUDD COAST, WILKES LAND, EAST ANTARCTICA Introduction Ardery Island and Odbert Island (66°22’20”S; 110°29’10”E, Map A) were originally designated as Specially Protected Area No. 3, through Recommendation IV-III (1966), after a proposal by Australia. A management plan for the Area was adopted under Recommendation XVII-2 (1992). In accordance with Decision 1 (2002), the site was redesignated and renumbered as Antarctic Specially Protected Area (ASPA) No. 103. Revised management plans for the ASPA were adopted under Measure 2 (2005) and Measure 3 (2010). The Area is primarily designated to protect the unusual assemblage of breeding colonies of several species of petrel. The Antarctic petrel (Thalassoica antarctica) and the southern fulmar (Fulmarus glacialoides) are of particular scientific interest. 1. Description of values to be protected The Area is designated primarily to protect the assemblage of four fulmarine petrels at Ardery Island and Odbert Island (Map B and C). The four species of fulmarine petrels, all belonging to different genera, are Antarctic petrels, southern fulmars, Cape petrels (Daption capense), and snow petrels (Pagodroma nivea). All breed in the Area in sufficient numbers to allow comparative study. Study of these four genera at one location is of high ecological importance in understanding their responses to changes in the Southern Ocean ecosystem. The Antarctic petrel is the only species in the genus Thalassoica; they occur most commonly in the Ross and Weddell seas and are much less abundant in East Antarctica.
    [Show full text]
  • Estimating Mortality of Black-Browed Albatross
    Polar Biol DOI 10.1007/s00300-015-1747-3 ORIGINAL PAPER Estimating mortality of black-browed albatross (Thalassarche melanophris, Temminck, 1828) and other seabirds in the Argentinean factory trawl fleet and the use of bird-scaring lines as a mitigation measure 1 1 2,3 Leandro Luis Tamini • Leandro Nahuel Chavez • Marı´a Eva Go´ngora • 4 5 6 Oliver Yates • Fabia´n Leandro Rabuffetti • Ben Sullivan Received: 21 October 2014 / Revised: 21 May 2015 / Accepted: 23 June 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Seabird bycatch represents one of the main we identified black-browed albatross mortality rates of threats to vulnerable seabird populations, particularly 0.013 and 0.093 birds/haul for net entanglement and cable albatross and petrels, and requires urgent conservation collision (corpses hauled aboard), respectively. From management interventions at a global scale. We studied counts of birds killed or injured by cable collisions, we seabird mortality associated with demersal factory trawl estimate a black-browed albatross mortality rate of 0.237 vessels that target Argentine Hake Merluccius hubbsi along birds/h. We use official fishing effort data to consider the the Argentine Patagonian Shelf and tested the efficacy of potential scale of seabird mortality for the entire fleet and bird-scaring lines as a seabird bycatch mitigation measure. identify the main factors contributing to seabird mortality From November 2008 to June 2010, dedicated seabird in this fishery. Bird-scaring lines eliminated seabird mor- observers recorded three sources of seabird mortality: tality caused by collisions with trawl cables and are rec- entanglements with the trawl net; collisions with the trawl ommended as a short- to medium-term measure to mitigate cables (corpses hauled aboard); and collisions with trawl seabird mortality in this fishery.
    [Show full text]
  • The Incidence, Functions and Ecological Significance of Petrel Stomach Oils
    84 PROCEEDINGS OF THE NEW ZEALAND ECOLOGICAL SOCIETY, VOL. 24, 1977 THE INCIDENCE, FUNCTIONS AND ECOLOGICAL SIGNIFICANCE OF PETREL STOMACH OILS JOHN WARHAM Department of Zoology, University of Canterbury, Chrb;tchurch SUMMARY: Recent research into the origins and compositions of the stomach oils unique to sea~birds of the order Procellariifonnes is reviewed. The sources of these oils, most of which contain mainly wax esters and/or trigIycerides, is discussed in relation to the presence of such compounds in the marine environment. A number of functions are proposed as the ecological roles of the oils, including their use as slowIy~mobilisable energy and water reserves for adults and chicks and as defensive weaponry for surface-nesting species. Suggestions are made for further research, particularly into physiological and nutritional aspects. INTRODUCTION their table, a balm for their wounds, and a medicine Birds of the Order Procellariiforrnes (albatrosses, for their distempers." In New Zealand, Travers and fuJmars, shearwaters and other petrels) are peculiar Travers (1873) described how the Chatham Island in being able to store oil in their large, glandular and Morioris held young petrels over their mouths and very distensible fore-guts or proventriculi.. All petrel allowed the oil to drain directly into them. In some spedes so far examined, with the significant excep- years the St Kildans exported part of thei.r oil har~ tion of the diving petrels, Fam. Pelecanoididae, have vest, as the Australian mutton-birders stilI do with been found to contain oil at various times. The oi.1 oil from the chicks of P. tenuirostris. This has been occurs in both adults and chicks, in breeders and used as a basis for sun~tan lotions, but most nowa- non~breeders, and in birds taken at sea and on land.
    [Show full text]
  • Louchart Et Al 2018 Bony Teeth
    Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions Antoine Louchart, Vivian De Buffrénil, Estelle Bourdon, Maitena Dumont, Laurent Viriot, Jean-Yves Sire To cite this version: Antoine Louchart, Vivian De Buffrénil, Estelle Bourdon, Maitena Dumont, Laurent Viriot, etal.. Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. Scientific Reports, Nature Publishing Group, 2018, 8 (1), 10.1038/s41598-018-31022-3. hal-02363288 HAL Id: hal-02363288 https://hal.archives-ouvertes.fr/hal-02363288 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed Received: 4 May 2018 Accepted: 26 July 2018 through a response of bone cells Published: xx xx xxxx to tooth-specifc epithelial signals under unique conditions Antoine Louchart1,2, Vivian de Bufrénil3, Estelle Bourdon 4,5, Maïtena Dumont1,6, Laurent Viriot1 & Jean-Yves Sire7 Modern birds (crown group birds, called Neornithes) are toothless; however, the extinct neornithine Odontopterygiformes possessed bone excrescences (pseudoteeth) which resembled teeth, distributed sequentially by size along jaws.
    [Show full text]