Structure of the Seabird Assemblage Associated with Pelagic Longline Vessels in the Southwestern Atlantic: Implications for Bycatch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Report
Overseas Countries and Territories: Environmental Profiles FINAL REPORT PART 2 – DETAILED REPORT SECTION E – SOUTH ATLANTIC REGION Consortium January 201 5 EuropeAid/127054/C/SER/multi Request n° 2013/325768 DISCLAIMER This report has been prepared with the financial assistance of the European Commission. The views expressed herein are those of the consultants and therefore in no way reflect the official opinion of the European Commission Authors of the Report Contractor’s name and address José de Bettencourt Safège Consortium Helena Imminga-Berends Gulledelle 92 B-1200 Brussels - BELGIUM Project manager Camille Vassart on behalf of Prospect C&S Please consider the environment before printing this document Page 2 / 115 ABBREVIATIONS AND ACRONYMS ACAP Agreement on the Conservation of Albatrosses and Petrels ACOR Association Française pour les Récifs Coralliens ACP Africa Caribbean and the Pacific ACS Association of Caribbean States AEPS Arctic Environmental Protection Strategy AFD French Development Agency AMAP Arctic Monitoring and Assessment Programme AMOC Atlantic Meridional Overturning Circulation AOSIS Alliance of Small Island States APEC Asia–Pacific Economic Cooperation BAS British Antarctic Survey BEST EU Voluntary Scheme for Biodiversity and Ecosystem Services in Territories of European Overseas BRGM Bureau de Recherches Géologiques et Minières CAFF Conservation of Arctic Flora and Fauna CANARI Caribbean Natural Resources Institute CARICOM Caribbean Community CARIFORUM Caribbean Forum CBD Convention on Biological Diversity CCAMLR -
Copulation and Mate Guarding in the Northern Fulmar
COPULATION AND MATE GUARDING IN THE NORTHERN FULMAR SCOTT A. HATCH Museumof VertebrateZoology, University of California,Berkeley, California 94720 USA and AlaskaFish and WildlifeResearch Center, U.S. Fish and WildlifeService, 1011 East Tudor Road, Anchorage,Alaska 99503 USA• ABSTRACT.--Istudied the timing and frequency of copulation in mated pairs and the occurrenceof extra-paircopulation (EPC) among Northern Fulmars (Fulmarus glacialis) for 2 yr. Copulationpeaked 24 days before laying, a few daysbefore females departed on a prelaying exodus of about 3 weeks. I estimated that females were inseminated at least 34 times each season.A total of 44 EPC attemptswas seen,9 (20%)of which apparentlyresulted in insem- ination.Five successful EPCs were solicitated by femalesvisiting neighboring males. Multiple copulationsduring a singlemounting were rare within pairsbut occurredin nearly half of the successfulEPCs. Both sexesvisited neighborsduring the prelayingperiod, and males employed a specialbehavioral display to gain acceptanceby unattended females.Males investedtime in nest-siteattendance during the prelaying period to guard their matesand pursueEPC. However, the occurrenceof EPC in fulmars waslargely a matter of female choice. Received29 September1986, accepted 16 February1987. THEoccurrence and significanceof extra-pair Bjorkland and Westman 1983; Buitron 1983; copulation (EPC) in monogamousbirds has Birkhead et al. 1985). generated much interest and discussion(Glad- I attemptedto documentthe occurrenceand stone 1979; Oring 1982; Ford 1983; McKinney behavioral contextof extra-pair copulationand et al. 1983, 1984). Becausethe males of monog- mate guarding in a colonial seabird,the North- amous species typically make a large invest- ern Fulmar (Fulmarus glacialis). Fulmars are ment in the careof eggsand young, the costof among the longest-lived birds known, and fi- being cuckolded is high, as are the benefits to delity to the same mate and nest site between the successfulcuckolder. -
Pterodromarefs V1-5.Pdf
Index The general order of species follows the International Ornithological Congress’ World Bird List. A few differences occur with regard to the number and treatment of subspecies where some are treated as full species. Version Version 1.5 (5 May 2011). Cover With thanks to Kieran Fahy and Dick Coombes for the cover images. Species Page No. Atlantic Petrel [Pterodroma incerta] 5 Barau's Petrel [Pterodroma baraui] 17 Bermuda Petrel [Pterodroma cahow] 11 Black-capped Petrel [Pterodroma hasitata] 12 Black-winged Petrel [Pterodroma nigripennis] 18 Bonin Petrel [Pterodroma hypoleuca] 19 Chatham Islands Petrel [Pterodroma axillaris] 19 Collared Petrel [Pterodroma brevipes] 20 Cook's Petrel [Pterodroma cookii] 20 De Filippi's Petrel [Pterodroma defilippiana] 20 Desertas Petrel [Pterodroma deserta] 11 Fea's Petrel [Pterodroma feae] 8 Galapágos Petrel [Pterodroma phaeopygia] 17 Gould's Petrel [Pterodroma leucoptera] 19 Great-winged Petrel [Pterodroma macroptera] 3 Grey-faced Petrel [Pterodroma gouldi] 4 Hawaiian Petrel [Pterodroma sandwichensis] 17 Henderson Petrel [Pterodroma atrata] 16 Herald Petrel [Pterodroma heraldica] 14 Jamaica Petrel [Pterodroma caribbaea] 13 Juan Fernandez Petrel [Pterodroma externa] 13 Kermadec Petrel [Pterodroma neglecta] 14 Magenta Petrel [Pterodroma magentae] 6 Mottled Petrel [Pterodroma inexpectata] 18 Murphy's Petrel [Pterodroma ultima] 6 Phoenix Petrel [Pterodroma alba] 16 Providence Petrel [Pterodroma solandri] 5 Pycroft's Petrel [Pterodroma pycrofti] 21 Soft-plumaged Petrel [Pterodroma mollis] 7 Stejneger's Petrel [Pterodroma longirostris] 21 Trindade Petrel [Pterodroma arminjoniana] 15 Vanuatu Petrel [Pterodroma occulta] 13 White-headed Petrel [Pterodroma lessonii] 4 White-necked Petrel [Pterodroma cervicalis] 18 Zino's Petrel [Pterodroma madeira] 9 1 General Bailey, S.F. et al 1989. Dark Pterodroma petrels in the North Pacific: identification, status, and North American occurrence. -
Fledging Behaviour of Juvenile Northern Royal Albatrosses (Diomedea Sanfordi): a GPS Tracking Study
135 Notornis, 2010, Vol. 57: 135-147 0029-4470 © The Ornithological Society of New Zealand, Inc. Fledging behaviour of juvenile northern royal albatrosses (Diomedea sanfordi): a GPS tracking study BindI Thomas* Edward O. Minot John d. Holland Institute of Natural Resources, massey University, Private Bag 11-222, Palmerston North, New Zealand Abstract Using GPS technology, we tracked 3 juvenile northern royal albatrosses (Diomedea sanfordi) as they fledged from Taiaroa Head, Otago Peninsula, New Zealand. All birds flew north along the east coast of New Zealand before undertaking a trans-Pacific easterly migration to Chile. during their 8500 km migration, the maximum daily distance and speed reached were 1047 km and 110 km h-1, respectively, and the maximum altitude was 38 m a.s.l. Upon leaving New Zealand waters, the 3 albatrosses took between 16 to 34 days to reach the coast of Chile where they remained between 23°S and 58°S. The tracked albatrosses generally kept to within 100 km of the coast where the depth of water varied between 1000 and 2000 m. Overall, the tracked albatrosses on the Chilean coast spent 72% of the time resting on the water, primarily between 1800 h and 2400 h local time. Fix success rate of the GPS technology ranged from 56% to 85%. The use of solar charging and a long attachment period allowed birds to be followed continuously for 134 to 362 days. Our study confirms the value of GPS technology in uncovering the movements and life history of wide-ranging oceanic birds. Thomas, B.; minot, E.O.; Holland, J.d. -
The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships. -
Tube-Nosed Seabirds) Unique Characteristics
PELAGIC SEABIRDS OF THE CALIFORNIA CURRENT SYSTEM & CORDELL BANK NATIONAL MARINE SANCTUARY Written by Carol A. Keiper August, 2008 Cordell Bank National Marine Sanctuary protects an area of 529 square miles in one of the most productive offshore regions in North America. The sanctuary is located approximately 43 nautical miles northwest of the Golden Gate Bridge, and San Francisco California. The prominent feature of the Sanctuary is a submerged granite bank 4.5 miles wide and 9.5 miles long, which lay submerged 115 feet below the ocean’s surface. This unique undersea topography, in combination with the nutrient-rich ocean conditions created by the physical process of upwelling, produces a lush feeding ground. for countless invertebrates, fishes (over 180 species), marine mammals (over 25 species), and seabirds (over 60 species). The undersea oasis of the Cordell Bank and surrounding waters teems with life and provides food for hundreds of thousands of seabirds that travel from the Farallon Islands and the Point Reyes peninsula or have migrated thousands of miles from Alaska, Hawaii, Australia, New Zealand, and South America. Cordell Bank is also known as the albatross capital of the Northern Hemisphere because numerous species visit these waters. The US National Marine Sanctuaries are administered and managed by the National Oceanic and Atmospheric Administration (NOAA) who work with the public and other partners to balance human use and enjoyment with long-term conservation. There are four major orders of seabirds: 1) Sphenisciformes – penguins 2) *Procellariformes – albatross, fulmars, shearwaters, petrels 3) Pelecaniformes – pelicans, boobies, cormorants, frigate birds 4) *Charadriiformes - Gulls, Terns, & Alcids *Orders presented in this seminar In general, seabirds have life histories characterized by low productivity, delayed maturity, and relatively high adult survival. -
US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S. -
Bugoni 2008 Phd Thesis
ECOLOGY AND CONSERVATION OF ALBATROSSES AND PETRELS AT SEA OFF BRAZIL Leandro Bugoni Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, at the Institute of Biomedical and Life Sciences, University of Glasgow. July 2008 DECLARATION I declare that the work described in this thesis has been conducted independently by myself under he supervision of Professor Robert W. Furness, except where specifically acknowledged, and has not been submitted for any other degree. This study was carried out according to permits No. 0128931BR, No. 203/2006, No. 02001.005981/2005, No. 023/2006, No. 040/2006 and No. 1282/1, all granted by the Brazilian Environmental Agency (IBAMA), and International Animal Health Certificate No. 0975-06, issued by the Brazilian Government. The Scottish Executive - Rural Affairs Directorate provided the permit POAO 2007/91 to import samples into Scotland. 2 ACKNOWLEDGEMENTS I was very lucky in having Prof. Bob Furness as my supervisor. He has been very supportive since before I had arrived in Glasgow, greatly encouraged me in new initiatives I constantly brought him (and still bring), gave me the freedom I needed and reviewed chapters astonishingly fast. It was a very productive professional relationship for which I express my gratitude. Thanks are also due to Rona McGill who did a great job in analyzing stable isotopes and teaching me about mass spectrometry and isotopes. Kate Griffiths was superb in sexing birds and explaining molecular methods again and again. Many people contributed to the original project with comments, suggestions for the chapters, providing samples or unpublished information, identifyiyng fish and squids, reviewing parts of the thesis or helping in analysing samples or data. -
LAYSAN ALBATROSS Phoebastria Immutabilis
Alaska Seabird Information Series LAYSAN ALBATROSS Phoebastria immutabilis Conservation Status ALASKA: High N. AMERICAN: High Concern GLOBAL: Vulnerable Breed Eggs Incubation Fledge Nest Feeding Behavior Diet Nov-July 1 ~ 65 d 165 d ground scrape surface dip fish, squid, fish eggs and waste Life History and Distribution Laysan Albatrosses (Phoebastria immutabilis) breed primarily in the Hawaiian Islands, but they inhabit Alaskan waters during the summer months to feed. They are the 6 most abundant of the three albatross species that visit 200 en Alaska. l The albatross has been described as the “true nomad ff Pok e of the oceans.” Once fledged, it remains at sea for three to J ht ig five years before returning to the island where it was born. r When birds are eight or nine years old they begin to breed. y The breeding season is November to July and the rest of Cop the year, the birds remain at sea. Strong, effortless flight is commonly seen in the southern Bering Sea, Aleutian the key to being able to spend so much time in the air. The Islands, and the northwestern Gulf of Alaska. albatross takes advantage of air currents just above the Nonbreeders may remain in Alaska throughout the year ocean's waves to soar in perpetual fluid motion. It may not and breeding birds are known to travel from Hawaii to flap its wings for hours, or even for days. The aerial Alaska in search of food for their young. Albatrosses master never touches land outside the breeding season, but have the ability to concentrate the food they catch and it does rest on the water to feed and sleep. -
Southern Fulmar
SOUTHERN FULMAR Fulmarus glacialoides Document made by the French Southern and Antarctic Lands © TAAF Lands © Southern and Antarctic the French made by Document l l assessm iona asse a g ss b e e m lo n r • Size : 45-50 cm t F G e A n t A SOUTHERN FULMAR T • Wingspan : 114-120 cm Fulmarus glacialoides • Weight : 0.7-1kg Order : Procellariiformes — Family : Procellariidae as the ... It is also known GEOGRAPHIC RANGE : The species can be seen in the Southern Ocean but breeds on the coasts of Antarctica and outlying glaciated islands. HABITAT : Southern Fulmars nest on steep rocky slopes and cliff sides, mainly on the coast and on the Antarctic continent. They are highly nomadic outside the breeding season, generally moving north to open waters south of 30°S. © S. BLANC DIET : They eat krill, fish and squid depending on available prey. They also consume carrion and discards from Fulmar Antarctic fishing vessels. BEHAVIOR : REPRODUCTION : Most food is taken by surface-seizing whilst in The breeding season begins in November and egg- flocks. They also skim the surface in low flight laying takes place during the first two weeks of with their beak open. They also sometimes dive December. They breed in colonies on steep rocky at shallow depths to catch their prey. They are slopes and precipitous cliffs on sheltered ledges rather solitary birds that can form small groups or in hollows, sometimes with other species of outside the breeding season. Paired birds tend to petrels. Nests are a gravel-lined scrape in which © S. -
Onetouch 4.0 Scanned Documents
/ Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded. -
SEABIRDS RECORDED at the CHATHAM ISLANDS, 1960 to MAY 1993 by M.J
SEABIRDS RECORDED AT THE CHATHAM ISLANDS, 1960 TO MAY 1993 By M.J. IMBER Science and Research Directorate, Department of Conservation, P. 0. Box 10420, Wellington ABSTRACT Between 1960 and hlay 1993,62 species of seabirds were recorded at Chatham Islands, including 43 procellariiforms, 5 penguins, 5 pelecaniforms, and 9 hi.Apart &om the 24 breeding species, there were 14 regular visitors, 13 stragglers, 2 rarely seen on migration, and 9 found only beach-cast or as other remains. There is considerable endemism: 8 species or subspecies are confined, or largely confined, to breeding at the Chathams. INTRODUCTION The Chatham Islands (44OS, 176.5OW) are about 900 km east of New Zealand, and 560 km and 720 km respectively north-east of Bounty and Antipodes Islands. The Chatham Islands lie on the Subtropical Convergence (Fleming 1939) - the boundary between subtropical and subantarctic water masses; near the eastern end of the Chatham Rise - a shallow (4'500 m) submarine ridge extending almost to the New Zealand mainland. Chatham Island seabirds can feed over large areas of four marine habitats: the continental shelf of the Chatham Rise; the continental slope around it; and subtropical and subantarctic waters to the north, east, and south. The Chatham Islands' fauna and flora have, however, been very adversely affected by human colonisation for about 500 years (B. McFadgen, pers. cornrn.). Knowledge of the seabird fauna of the Chatham Islands gained up to 1960 is siunmarised in Oliver (1930), Fleming (1939), Dawson (1955, 1973), and papers quoted therein. The present paper summarises published and unpublished data on the seabirds of the archipelago from 1960 to May 1993, from when visits to these islands depended on infrequent passages by ship from Lyttelton, South Island, to the present, when a visit involves a 2-h scheduled flight from Napier, Wellington, or Christchurch, six dayslweek.