T Cell Differentiation + Memory CD8 Id2-Mediated Inhibition of E2A

Total Page:16

File Type:pdf, Size:1020Kb

T Cell Differentiation + Memory CD8 Id2-Mediated Inhibition of E2A Id2-Mediated Inhibition of E2A Represses Memory CD8 + T Cell Differentiation Frederick Masson, Martina Minnich, Moshe Olshansky, Ivan Bilic, Adele M. Mount, Axel Kallies, Terence P. Speed, This information is current as Meinrad Busslinger, Stephen L. Nutt and Gabrielle T. Belz of October 2, 2021. J Immunol 2013; 190:4585-4594; Prepublished online 27 March 2013; doi: 10.4049/jimmunol.1300099 http://www.jimmunol.org/content/190/9/4585 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/03/27/jimmunol.130009 Material 9.DC1 References This article cites 34 articles, 8 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/190/9/4585.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Id2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation Frederick Masson,* Martina Minnich,† Moshe Olshansky,‡ Ivan Bilic,†,1 Adele M. Mount,†,2 Axel Kallies,*,x Terence P. Speed,‡,{ Meinrad Busslinger,† Stephen L. Nutt,*,x and Gabrielle T. Belz*,x The transcription factor inhibitor of DNA binding (Id)2 modulates T cell fate decisions, but the molecular mechanism underpinning this regulation is unclear. In this study we show that loss of Id2 cripples effector differentiation and instead programs CD8+ T cells to adopt a memory fate with increased Eomesodermin and Tcf7 expression. We demonstrate that Id2 restrains CD8+ T cell memory differentiation by inhibiting E2A-mediated direct activation of Tcf7 and that Id2 expression level mirrors T cell memory recall capacity. As a result of the defective effector differentiation, Id2-deficient CD8+ T cells fail to induce sufficient Tbx21 expression to + generate short-lived effector CD8 T cells. Our findings reveal that the Id2/E2A axis orchestrates T cell differentiation through the Downloaded from induction or repression of downstream transcription factors essential for effector and memory T cell differentiation. The Journal of Immunology, 2013, 190: 4585–4594. uccessful eradication and protection from reinfection by ory CD8+ T cells poised to rapidly respond to a second encounter intracellular pathogens such as viruses and bacteria depend with the pathogen. on the generation of effector and memory CD8+ T cells. Several transcription factors are essential for the specification http://www.jimmunol.org/ S + Naive CD8 T cells, on encounter with dendritic cells presenting and differentiation of peripheral T cells following Ag encounter. pathogen Ags, undergo multiple rounds of proliferation and rap- These include the basic helix-loop-helix proteins inhibitor of DNA idly differentiate into short-lived Ag-specific effector T cells with binding (Id)2 and Id3 (1–3), the T-box transcription factors T-bet cytotoxic and cytokine producing capacity. After resolution of the and eomesodermin (Eomes) (4), B lymphocyte–induced matura- infection, effector CD8+ T cell numbers contract significantly, tion protein 1 (Blimp1) (5–7), Bcl-6 (8), and Tcf7 (also known leaving a small (5–10%) residual population of long-lived mem- as TCF-1) (9). T-bet (encoded by Tbx21) and Blimp1 (encoded by Prdm1) direct the terminal differentiation of effector T cells. Ablation of either T-bet or Blimp1 results in a complete loss of *Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical by guest on October 2, 2021 + low Research, Melbourne, Victoria 3052, Australia; †Research Institute of Molecular KLRG1 IL-7R short-lived effector cells. Furthermore, T-bet ‡ Pathology, Vienna Biocenter, 1030 Vienna, Austria; Division of Bioinformatics, drives effector cell formation in a dose-dependent manner at the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia; xDepartment of Medical Biology, University of Melbourne, Melbourne, expense of the formation of memory cells (10). Maintenance of Victoria 3010, Australia; and {Department of Mathematics and Statistics, University memory cells appears to depend on the induction of Eomes (4). of Melbourne, Melbourne, Victoria 3010, Australia Although our understanding of Eomes regulation is incomplete, 1 Current address: Akron Molecules GmbH, Vienna, Austria. recent evidence suggests that Tcf7, a critical mediator of the Wnt/ 2Current address: CSL Limited, Parkville, VIC, Australia. b-catenin pathway, regulates CD8+ T cell memory by direct Received for publication January 11, 2013. Accepted for publication February 20, binding to the Eomes locus (9). However, the interactions among 2013. these transcription factors, as well as the signals that drive effector This work was supported by grants and fellowships from the National Health and and memory CD8+ T cell fate decisions, are still poorly understood. Medical Research Council of Australia (to G.T.B., S.L.N., and T.P.S.), the Wellcome Trust (to G.T.B.), the Viertel Foundation and the Howard Hughes Medical Institute It is now established that peripheral T cell differentiation is (to G.T.B.), the Australian Research Council (to T.P.S.), and the Australian Research regulated by the activity of Id proteins (11). Four Id proteins (Id1, Council Future Fellowship (to G.T.B., A.K., and S.L.N.). Research of the Busslinger Id2, Id3, Id4), which lack a DNA-binding domain, are capable of Group was supported by Boehringer Ingelheim and the Genome Research in Austria initiative (financed by the Bundesminsterium fu¨r Bildung und Wissenschaft). This binding the E proteins, E2A (possessing two isoforms, E47 and work was also supported by Victorian State Government operational infrastructure E12), HEB, and E2-2. The recent development of reporter mice support and by the Australian Government National Health and Medical Research Council Independent Research Institute Infrastructure Support Scheme. for Id2 and Id3 has identified that these two transcriptional reg- ulators are expressed in a reciprocal manner and regulate distinct Address correspondence and reprint requests to Dr. Gabrielle T. Belz, Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, 1G functions in the differentiation of peripheral T cells (3). For ex- Royal Parade, Parkville, VIC 3052, Australia. E-mail address: [email protected] ample, Id2 is upregulated in effector T cells. In contrast, induction The online version of this article contains supplemental material. of Id3 reflects the emergence of precursors of long-lived memory Abbreviations used in this article: Blimp1, B lymphocyte–induced maturation protein T cells, and repression by Blimp1 limits formation of memory 1; ChIP, chromatin immunoprecipitation; DE, differentially expressed; Eomes, eome- CD8+ T cells, thus dispelling the notion that Id2 and Id3 are sodermin; Gzm, granzyme; Id, inhibitor of DNA binding; i.n., intranasal(ly); IRES, internal ribosome entry site; Lm-OVA, Listeria monocytogenes encoding OVA; LN, simply redundant (2, 3). lymph node; MSCV, murine stem cell virus; NP, nucleoprotein; PA, acidic polymer- Id2 has multiple essential functions in the hematopoietic sys- ase; shRNA, short hairpin RNA. tem. It is required for the development of CD103+ and CD8a+ den- This article is distributed under The American Association of Immunologists, Inc., dritic cells, NK cells, a subset of intraepithelial T cells, and lym- Reuse Terms and Conditions for Author Choice articles. phoid tissue inducer cells (12, 13). In Ag-specific CD8+ Tcells,Id2 Copyright Ó 2013 by The American Association of Immunologists, Inc. 0022-1767/13/$16.00 has been proposed to act mainly by regulating their survival during www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300099 4586 Id2 INHIBITS T CELL MEMORY infection (1), but the precise molecular mechanisms downstream BD Pharmingen). Viable cells were analyzed by flow cytometry using of Id2 that determine T cell fate are poorly defined. propidium iodide or Sytox blue exclusion (Invitrogen). Analysis was To understand this pathway in greater depth we generated mice performed on a FACSCanto or a FACS LSRFortessa (BD Biosciences) and data were analyzed using FlowJo flow cytometry analysis software. with a reporter allele encoding GFP under the endogenous Id2 promoter (12) and a conditional allele allowing specific deletion Generation of bone marrow chimeras of Id2 in T cells. This enabled us to examine the cellular and mo- Mixed bone marrow chimeras were established by reconstituting lethally lecular pathway resulting from the loss of Id2 and to explore the irradiated (2 3 0.55 Gy) B6.Ly5.1 or Ly5.1 3 Ly5.2 (F1) recipient mice mechanisms affecting effector and memory T cell fate outcomes with a mixture of Id2fl/flLckCre (3.4 3 106) and wild-type (Ly5.1+, 1.6 3 in an infection setting. We demonstrated that Id2 was essential for 106) T cell–depleted bone marrow cells and allowed to reconstitute for the induction of high levels of Tbx21 and this was required for the 6–8 wk (5, 21). + + generation of short-lived effector CD8 cells. Loss of Id2 in CD8 Microarray analysis T cells impaired effector T cell differentiation and programmed b + + T cells to adopt a memory cell phenotype with increased Eomes D NP366 CD8 T cells were purified by flow cytometric sorting (FAC- SAria flow cytometer; BD Biosciences) from day 9 HKx31-infected PR8- and Tcf7 expression.
Recommended publications
  • The Utility of Genetic Risk Scores in Predicting the Onset of Stroke March 2021 6
    DOT/FAA/AM-21/24 Office of Aerospace Medicine Washington, DC 20591 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke Diana Judith Monroy Rios, M.D1 and Scott J. Nicholson, Ph.D.2 1. KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510 Bogotá D.C. Colombia 2. FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 March 2021 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. _________________ This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: (www.faa.gov/go/oamtechreports) Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AM-21/24 4. Title and Subtitle 5. Report Date March 2021 The Utility of Genetic Risk Scores in Predicting the Onset of Stroke 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Diana Judith Monroy Rios M.D1, and Scott J. Nicholson, Ph.D.2 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 1 KR 30 # 45-03 University Campus, Building 471, 5th Floor, Office 510, Bogotá D.C. Colombia 11. Contract or Grant No. 2 FAA Civil Aerospace Medical Institute, 6500 S. MacArthur Blvd Rm. 354, Oklahoma City, OK 73125 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Conserved Human Effector Treg Cell Transcriptomic and Epigenetic Signature in Arthritic Joint Inflammation
    ARTICLE https://doi.org/10.1038/s41467-021-22975-7 OPEN Conserved human effector Treg cell transcriptomic and epigenetic signature in arthritic joint inflammation Gerdien Mijnheer1,6, Lisanne Lutter 1,6, Michal Mokry 1,2,3, Marlot van der Wal 1, Rianne Scholman1, Veerle Fleskens4, Aridaman Pandit 1, Weiyang Tao1, Mark Wekking3, Stephin Vervoort1,5, Ceri Roberts 4, Alessandra Petrelli1, Janneke G. C. Peeters 1, Marthe Knijff1, Sytze de Roock1, Sebastiaan Vastert1, ✉ Leonie S. Taams 4, Jorg van Loosdregt1,5,7 & Femke van Wijk 1,7 1234567890():,; Treg cells are critical regulators of immune homeostasis, and environment-driven Treg cell differentiation into effector (e)Treg cells is crucial for optimal functioning. However, human Treg cell programming in inflammation is unclear. Here, we combine transcriptional and epigenetic profiling to identify a human eTreg cell signature. Inflammation-derived functional Treg cells have a transcriptional profile characterized by upregulation of both a core Treg cell (FOXP3, CTLA4, TIGIT) and effector program (GITR, BLIMP-1, BATF). We identify a specific human eTreg cell signature that includes the vitamin D receptor (VDR) as a predicted regulator in eTreg cell differentiation. H3K27ac/H3K4me1 occupancy indicates an altered (super-)enhancer landscape, including enrichment of the VDR and BATF binding motifs. The Treg cell profile has striking overlap with tumor-infiltrating Treg cells. Our data demonstrate that human inflammation-derived Treg cells acquire a conserved and specific eTreg cell profile guided by epigenetic changes, and fine-tuned by environment-specific adaptations. 1 Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
    [Show full text]
  • Theranostics MICAL2 Mediates P53 Ubiquitin Degradation Through Oxidating P53 Methionine 40 and 160 and Promotes Colorectal Cance
    Theranostics 2018, Vol. 8, Issue 19 5289 Ivyspring International Publisher Theranostics 2018; 8(19): 5289-5306. doi: 10.7150/thno.28228 Research Paper MICAL2 Mediates p53 Ubiquitin Degradation through Oxidating p53 Methionine 40 and 160 and Promotes Colorectal Cancer Malignance Jinping Lu1,3*, Yuejin Li1*, Yuanzhong Wu2,*, Shan Zhou1, Chaojun Duan1, Zigang Dong4, Tiebang Kang2, Faqing Tang1,3 1. Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China 2. State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China 3. Department of Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China 4. Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912 *Lu J, Li Y, and Wu Y contributed equally to this work. Corresponding authors: Dr. Faqing Tang, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China. E-mail: [email protected]; Tel.: 86-731-89762688; Fax: 86-731-89762688; Dr. Tiebang Kang, State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China. E-mail: [email protected]. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.07.01; Accepted: 2018.09.17; Published: 2018.10.22 Abstract Molecule interacting with CasL2 (MICAL2), a microtubule-associated monooxygenase, is highly expressed in various cancers and is involved in cancer pathogenesis, but the mechanisms underlying its regulation in carcinogenesis are unclear.
    [Show full text]
  • Expression and Gene Regulation Network of RBM8A in Hepatocellular Carcinoma Based on Data Mining
    www.aging-us.com AGING 2019, Vol. 11, No. 2 Research Paper Expression and gene regulation network of RBM8A in hepatocellular carcinoma based on data mining Yan Lin1,*, Rong Liang1,*, Yufen Qiu2,*, Yufeng Lv3, Jinyan Zhang1, Gang Qin4, Chunling Yuan1, Zhihui Liu1, Yongqiang Li1, Donghua Zou4, Yingwei Mao5 1Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China 2Maternal and Child Health Hospital and Obstetrics and Gynecology Hospital of Guangxi Zhuang Autonomous Region, Guangxi 530021, People’s Republic of China 3Department of Medical Oncology, Affiliated Langdong Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China 4The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China 5Department of Biology, Pennsylvania State University, University Park, PA 16802, USA *Equal contribution Correspondence to: Donghua Zou, Yingwei Mao; email: [email protected], [email protected] Keywords: RBM8A, HCC, prognosis, functional network analysis Received: October 12, 2018 Accepted: December 25, 2018 Published: January 22 Copyright: Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT RNA binding motif protein 8A (RBM8A) is an RNA binding protein in a core component of the exon junction complex. Abnormal RBM8A expression is associated with carcinogenesis. We used sequencing data from the Cancer Genome Atlas database and Gene Expression Omnibus, analyzed RBM8A expression and gene regula- tion networks in hepatocellular carcinoma (HCC).
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • Supplementary Material Peptide-Conjugated Oligonucleotides Evoke Long-Lasting Myotonic Dystrophy Correction in Patient-Derived C
    Supplementary material Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice Arnaud F. Klein1†, Miguel A. Varela2,3,4†, Ludovic Arandel1, Ashling Holland2,3,4, Naira Naouar1, Andrey Arzumanov2,5, David Seoane2,3,4, Lucile Revillod1, Guillaume Bassez1, Arnaud Ferry1,6, Dominic Jauvin7, Genevieve Gourdon1, Jack Puymirat7, Michael J. Gait5, Denis Furling1#* & Matthew J. A. Wood2,3,4#* 1Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, CRM, F-75013 Paris, France 2Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK 3Department of Paediatrics, John Radcliffe Hospital, University of Oxford, Oxford, UK 4MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK 5Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK 6Sorbonne Paris Cité, Université Paris Descartes, F-75005 Paris, France 7Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, QC, Canada † These authors contributed equally to the work # These authors shared co-last authorship Methods Synthesis of Peptide-PMO Conjugates. Pip6a Ac-(RXRRBRRXRYQFLIRXRBRXRB)-CO OH was synthesized and conjugated to PMO as described previously (1). The PMO sequence targeting CUG expanded repeats (5′-CAGCAGCAGCAGCAGCAGCAG-3′) and PMO control reverse (5′-GACGACGACGACGACGACGAC-3′) were purchased from Gene Tools LLC. Animal model and ASO injections. Experiments were carried out in the “Centre d’études fonctionnelles” (Faculté de Médecine Sorbonne University) according to French legislation and Ethics committee approval (#1760-2015091512001083v6). HSA-LR mice are gift from Pr. Thornton. The intravenous injections were performed by single or multiple administrations via the tail vein in mice of 5 to 8 weeks of age.
    [Show full text]
  • Membranes of Human Neutrophils Secretory Vesicle Membranes And
    Downloaded from http://www.jimmunol.org/ by guest on September 30, 2021 is online at: average * The Journal of Immunology , 25 of which you can access for free at: 2008; 180:5575-5581; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.180.8.5575 http://www.jimmunol.org/content/180/8/5575 Comparison of Proteins Expressed on Secretory Vesicle Membranes and Plasma Membranes of Human Neutrophils Silvia M. Uriarte, David W. Powell, Gregory C. Luerman, Michael L. Merchant, Timothy D. Cummins, Neelakshi R. Jog, Richard A. Ward and Kenneth R. McLeish cites 44 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2008/04/01/180.8.5575.DC1 This article http://www.jimmunol.org/content/180/8/5575.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 30, 2021. The Journal of Immunology Comparison of Proteins Expressed on Secretory Vesicle Membranes and Plasma Membranes of Human Neutrophils1 Silvia M.
    [Show full text]
  • Dysregulation of Cotranscriptional Alternative Splicing Underlies
    Dysregulation of cotranscriptional alternative splicing PNAS PLUS underlies CHARGE syndrome Catherine Bélangera,b,1, Félix-Antoine Bérubé-Simarda,b,1, Elizabeth Leduca,b, Guillaume Bernasa,b, Philippe M. Campeauc,d, Seema R. Lalanie, Donna M. Martinf,g, Stephanie Bielash,i, Amanda Mocciah,i, Anshika Srivastavah,i, David W. Silversidesj, and Nicolas Pilona,b,2 aMolecular Genetics of Development Laboratory, Department of Biological Sciences, University of Quebec at Montreal, Montreal, QC H2X 3Y7, Canada; bBioMed Research Center, University of Quebec at Montreal, Montreal, QC H2X 3Y7, Canada; cDepartment of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada; dCentre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada; eDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; fDepartment of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109; gDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109; hDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109; iDepartment of Neuroscience, University of Michigan Medical School, Ann Arbor, MI 48109; and jDepartment of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC J2S 2M2, Canada Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved December 11, 2017 (received for review August 31, 2017) CHARGE syndrome—which stands for coloboma of the eye, heart also because an important subset of cases remains genetically un- defects, atresia of choanae, retardation of growth/development, explained (1, 2). genital abnormalities, and ear anomalies—is a severe develop- Heterozygous mutation of CHD7 (chromodomain helicase mental disorder with wide phenotypic variability, caused mainly DNA-binding protein 7) is currently the only known genetic cause by mutations in CHD7 (chromodomain helicase DNA-binding pro- of CHARGE syndrome (8).
    [Show full text]
  • 1 Supplementary Material Figure S1. Volcano Plot of Differentially
    Supplementary material Figure S1. Volcano Plot of differentially expressed genes between preterm infants fed own mother’s milk (OMM) or pasteurized donated human milk (DHM). Table S1. The 10 most representative biological processes filtered for enrichment p- value in preterm infants. Biological Processes p-value Quantity of DEG* Transcription, DNA-templated 3.62x10-24 189 Regulation of transcription, DNA-templated 5.34x10-22 188 Transport 3.75x10-17 140 Cell cycle 1.03x10-13 65 Gene expression 3.38x10-10 60 Multicellular organismal development 6.97x10-10 86 1 Protein transport 1.73x10-09 56 Cell division 2.75x10-09 39 Blood coagulation 3.38x10-09 46 DNA repair 8.34x10-09 39 Table S2. Differential genes in transcriptomic analysis of exfoliated epithelial intestinal cells between preterm infants fed own mother’s milk (OMM) and pasteurized donated human milk (DHM). Gene name Gene Symbol p-value Fold-Change (OMM vs. DHM) (OMM vs. DHM) Lactalbumin, alpha LALBA 0.0024 2.92 Casein kappa CSN3 0.0024 2.59 Casein beta CSN2 0.0093 2.13 Cytochrome c oxidase subunit I COX1 0.0263 2.07 Casein alpha s1 CSN1S1 0.0084 1.71 Espin ESPN 0.0008 1.58 MTND2 ND2 0.0138 1.57 Small ubiquitin-like modifier 3 SUMO3 0.0037 1.54 Eukaryotic translation elongation EEF1A1 0.0365 1.53 factor 1 alpha 1 Ribosomal protein L10 RPL10 0.0195 1.52 Keratin associated protein 2-4 KRTAP2-4 0.0019 1.46 Serine peptidase inhibitor, Kunitz SPINT1 0.0007 1.44 type 1 Zinc finger family member 788 ZNF788 0.0000 1.43 Mitochondrial ribosomal protein MRPL38 0.0020 1.41 L38 Diacylglycerol
    [Show full text]
  • Structure-Function Relationships of Rna and Protein in Synaptic Plasticity
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Structure-Function Relationships Of Rna And Protein In Synaptic Plasticity Sarah Middleton University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Biology Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Middleton, Sarah, "Structure-Function Relationships Of Rna And Protein In Synaptic Plasticity" (2017). Publicly Accessible Penn Dissertations. 2474. https://repository.upenn.edu/edissertations/2474 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2474 For more information, please contact [email protected]. Structure-Function Relationships Of Rna And Protein In Synaptic Plasticity Abstract Structure is widely acknowledged to be important for the function of ribonucleic acids (RNAs) and proteins. However, due to the relative accessibility of sequence information compared to structure information, most large genomics studies currently use only sequence-based annotation tools to analyze the function of expressed molecules. In this thesis, I introduce two novel computational methods for genome-scale structure-function analysis and demonstrate their application to identifying RNA and protein structures involved in synaptic plasticity and potentiation—important neuronal processes that are thought to form the basis of learning and memory. First, I describe a new method for de novo identification of RNA secondary structure motifs enriched in co-regulated transcripts. I show that this method can accurately identify secondary structure motifs that recur across three or more transcripts in the input set with an average recall of 0.80 and precision of 0.98. Second, I describe a tool for predicting protein structural fold from amino acid sequence, which achieves greater than 96% accuracy on benchmarks and can be used to predict protein function and identify new structural folds.
    [Show full text]