Complete List of All U.S. Nuclear Weapons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NIKE-HERCULES Système D'arme Sol-Air À Longue Portée États-Unis
NIKE-HERCULES Système d’arme sol-air à longue portée États-Unis Genèse du NIKE-HERCULES Le système Nike-Hercules est une évolution du système Nike-Ajax (cf. tableau comparatif des missiles en annexe). L’engin Nike-Hercules (MIM-14) est également un missile à deux étages. Son booster, beaucoup plus puissant (puissance 173.000 livres), lui permet d’être très rapidement supersonique. Après 3,4 secondes, le booster se sépare du missile, ce qui déclenche la mise à feu du second étage ; celui-ci fonctionne pendant 29 secondes et permet au missile d’atteindre une vitesse dépassant Mach 3 et une altitude de 100.000 pieds. Le Nike-Hercules peut emporter une ogive nucléaire ou une ogive conventionnelle. Initialement, la version nucléarisée emportait la tête nucléaire W-7 Mod 2, offrant des puissances de 2,5 ou 28 KT. En 1961, les anciennes ogives furent remplacées par des charges W-31 avec des puissances de 2 KT (Y1) ou 30 KT (Y2). Les dernières versions comportèrent l'ogive W31 Mod2, offrant des puissances de 2 ou 20 KT. En raison de l’efficacité du missile contre certains ICBM, Le Nike-Hercules fut pris en considération dans les accords SALT. Une utilisation sol-sol a été expérimentée en Alaska et appliquée à certaine versions. Le Nike-Hercules a connu une évolution majeure améliorant sa résistance aux contre-mesures électroniques et augmentant sa capacité de détection. Les missiles ainsi modifiés ont été désignés Nike-Hercules Improved (NHI). Système de guidage du Nike-Hercules Déploiements du Nike-Hercules Le Nike-Hercules est entré en service opérationnel en juin 1958 et fut tout d'abord déployé à Chicago. -
Historic Context of the Nike Missile Site
HISTORIC CONTEXT OF THE NIKE MISSILE SITE The NIKE Missile sites were the first nationwide U.S. air defense system designed to protect against a Soviet nuclear attack. In the 1950s, they were highly visible, powerful symbols of U.S. military power as well as the Soviet threat. The sites were the outgrowth of an increasing concern over the Soviet ability to equip jet aircraft with nuclear bombs, and continued to develop into an early defense against Inter-Continental Ballistic Missiles (ICBMs). During World War II, the U.S. military began to experiment with missiles and rockets in response to the German rocket program. In 1943, the U.S. Army established the Rocket Branch of the Ordnance Corps, and in 1945 recruited Bell Laboratories and the Douglas Aircraft Company as part of the team (USACE 1997:5; Bright 1997:321). Although Bell Laboratories and Douglas had completed a prototype weapon by 1946, funding cutbacks after the war delayed further progress. In 1951, Western Electric, then the prime contractor of the project, had developed a 34-foot, two- stage missile guided by a system of three radars. The new missile could travel at Mach 2 (Bright 1997:321). This missile used a highly volatile liquid fuel composed of jet fuel and nitric acid, and had to be handled with full protective gear in specially constructed magazines. This was exceptionally revolutionary and complex technology for the time. The first radar would identify the target 125 miles away, the second would track the target, and a third would track the missile's course and alter it in response to the target tracking radar. -
Winning the Salvo Competition Rebalancing America’S Air and Missile Defenses
WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK WINNING THE SALVO COMPETITION REBALANCING AMERICA’S AIR AND MISSILE DEFENSES MARK GUNZINGER BRYAN CLARK 2016 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2016 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004. Mark was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2005–2006 Quadrennial Defense Review. Following the QDR, he served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, a Master of Public Administration from Central Michigan University, and a B.S. in chemistry from the United States Air Force Academy. -
Army Ballistic Missile Programs at Cape Canaveral 1953 – 1988
ARMY BALLISTIC MISSILE PROGRAMS AT CAPE CANAVERAL 1953 – 1988 by Mark C. Cleary 45th SPACE WING History Office TABLE OF CONTENTS Preface…………………………………………………… iii INTRODUCTION……………………………………… 1 REDSTONE……………………………………………… 15 JUPITER…………………………………………………. 44 PERSHING………………………………………………. 68 CONCLUSION………………………………………….. 90 ii Preface The United States Army has sponsored far fewer launches on the Eastern Range than either the Air Force or the Navy. Only about a tenth of the range’s missile and space flights can be attributed to Army programs, versus more than a third sponsored by each of the other services. Nevertheless, numbers seldom tell the whole story, and we would be guilty of a grave disservice if we overlooked the Army’s impressive achievements in the development of rocket- powered vehicles, missile guidance systems, and reentry vehicle technologies from the late 1940s onward. Several years of experimental flights were conducted at the White Sands Proving Ground before the Army sponsored the first two ballistic missile launches from Cape Canaveral, Florida, in July 1950. In June 1950, the Army moved some of its most important guided missile projects from Fort Bliss, Texas, to Redstone Arsenal near Huntsville, Alabama. Work began in earnest on the REDSTONE ballistic missile program shortly thereafter. In many ways, the early Army missile programs set the tone for the development of other ballistic missiles and range instrumentation by other military branches in the 1950s. PERSHING missile launches continued at the Cape in the 1960s, and they were followed by PERSHING 1A and PERSHING II launches in the 1970s and 1980s. This study begins with a summary of the major events leading up to the REDSTONE missile program at Cape Canaveral. -
Rockets of the Armed Forces.Pdf
NUIWX4)- j623.4519 Bk&ro. Bergaust l^OS'lcT; Rockets of the Armed Forces O O u- - "5« ^" CO O PUBLIC LIBRARY Fort Wayne c.r.d Allen County, Indiana 81-1 JT r PUHI I IBRAFU sno IC fflimiivN 3 1833 00476 4350 Rockets of the Armed Forces Between primitive man's rock-hurling days, and modern technology's refined rocket systems, man has come a long way in missile combat. Beginning with the principles of rocketry from early time to the present, Erik Bergaust classifies all forty-two current operational missiles into four basic categories : air-to-air ; air-to-surface ; surface- to-air; and surface-to-surface. From the Navy's highly sophisticated Polaris to the Sidewinder, widely used in Vietnam, the author pinpoints the type, propulsion, guid- ance, performance, and construction of each rocket. A picture and a short paragraph describing each rocket's military use, plus a glossary, are included. Inspection of liquid hydrogen engines. Hydro- gen is a powerful fuel and is often used in combination with liquid oxygen. Fuels are car- ried in the missile in separate tanks and are mixed in the rocket's combustion chamber where the burning takes place. / Bell ROCKETS of the ARMED FORCES By Erik Bergaust 76 6. P. Putnam's Sons New York | 80 260 4 1 ' © 1966 by Erik Bergaust All Rights Reserved Published simultaneously in the Dominion of Canada by Longmans Canada Limited, Toronto Library of Congress Catalog Card Number: AC 66-1025A PRINTED IN THE UNITED STATES OF AMERICA Second Impression 1430318 ACKNOWLEDGMENTS The cooperation of the Office of the Assistant Secre- tary of Defense, Magazine and Book Branch, Directorate of Information Services, made it possible to compile in this book the latest information and data on all opera- tional United States military rockets. -
The Benefits of Moving to an All-W87 ICBM Force the NNSA Is Proposing
The Benefits of Moving to an All-W87 ICBM Force The NNSA is proposing to replace the W78 ICBM warhead with a new W87-1 warhead using a “W87- like” pit. A better alternative Replacing the 200 deployed W78s with the some of the 340 W87s in storage would bring several benefits: 1. Enhanced safety—much sooner: A major feature of the W87-1 is that it would use insensitive high explosives (IHE). As NNSA states in its report W78 Replacement Program (W87-1): Cost Estimates and Insensitive High Explosives: “Replacing the conventional high explosives (CHE) in the current W78 warhead with IHE is the single most significant weapon system change that improves the warhead’s safety and security.” But the W87 also uses IHE and could be deployed now, not in several decades. 2. Less demanding pit production schedule: The W87-1 would use new plutonium pits, which requires the NNSA to start up and then quickly ramp up its pit production from the current zero (and none since 2013) to 80 per year by 2030. As the NNSA states, this will be “challenging.” The alternative would obviate or significantly delay the need to produce 80 pits by 2030. 3. More realistic schedule overall: The NNSA faces significant schedule challenges in producing the W87-1, as it states in the FY19 Stockpile Stewardship & Management Plan: “Production is predicated on all newly manufactured components and a nuclear material manufacturing modernization strategy that relies on large, multi-year investments in component and material capabilities.” 4. Reduced NNSA workload: The NNSA and the weapons complex are already struggling to manage five simultaneous major work programs on weapons in the stockpile while also building the UPF and trying to establish a pit production capacity. -
Bob Farquhar
1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano. -
Ballistic, Cruise Missile, and Missile Defense Systems: Trade and Significant Developments, June 1994-September 1994
Missile Developments BALLISTIC, CRUISE MISSILE, AND MISSILE DEFENSE SYSTEMS: TRADE AND SIGNIFICANT DEVELOPMENTS, JUNE 1994-SEPTEMBER 1994 RUSSIA WITH AFGHANISTAN AND AFGHANISTAN TAJIKISTAN AUSTRALIA 8/10/94 According to Russian military forces in Dushanbe, the 12th post of the Moscow INTERNAL DEVELOPMENTS border troops headquarters in Tajikistan is INTERNAL DEVELOPMENTS attacked by missiles fired from Afghan ter- 9/27/94 ritory. The Russians respond with suppres- 7/94 Rocket and mortar attacks leave 58 people sive fire on the missile launcher emplace- It is reported that Australia’s University of dead and 224 wounded in Kabul. Kabul ment; no casualties are reported. Queensland can produce a scramjet air- radio attributes this attack to factions op- Itar-Tass (Moscow), 8/11/94; in FBIS-SOV-94-155, breathing engine, which may offer payload posing President Burhanuddin Rabbani. 8/11/94, p. 36 (4564). and cost advantages over conventional SLVs. More than 100 rockets and mortar shells Chris Schacht, Australian (Sydney), 7/20/94, p. 6; are fired on residential areas of Kabul by 8/27/94 in FBIS-EAS-94-152, 8/8/94, pp. 89-90 (4405). anti-Rabbani militia under the control of During the early morning hours, Tajik Prime Minister Gulbuddin Hekmatyar and Mujaheedin launch several missiles at the 7/94 northern warlord General Abdul Rashid Russian Frontier Guard observation posi- It is reported that the Australian government Dostam. tion and post on the Turk Heights in awarded Australia’s AWA Defence Industries Wall Street Journal, 9/28/94, p. 1 (4333). Tajikistan. The missiles are launched from (AWADI) a $17 million contract to produce the area of the Afghan-Tajik border and from the Active Missile Decoy (AMD) system, a Afghan territory, according to the second “hovering rocket-propelled anti-ship missile commander of Russian border guards in decoy system” providing for ship defense against sea-skimming missiles. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
Nuclear Weapons Technology 101 for Policy Wonks Bruce T
NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex . -
Nuclear Weapons Databook
Nuclear Weapons Databook Volume I11 U.S. Nuclear Warhead Facility Profiles Nuclear Weapons Databook Volume I11 U.S. Nuclear Warhead Facility Profiles Thomas B. Cochran, William M. Arkin, Robert S. Morris, and Milton M. Hoenig A book by the Natural Resources Defense Council, Inc. BALUNGER PUBLISHING COMPANY Cambridge, Massachusetts A Subsidiary of Harper & Row, Publishers, Inc. Copyright a 1987 by the Natural Resources Defense Council, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopy, recording or otherwise, without the prior written consent of the publisher. International Standard Book Number: 0-88730-126-6 (CL) 0-88730-146-0 (PB) Library of Congress Catalog Card Number: 82-24376 Printed in the United States of America Library of Congress CataloGng-iii-PublicationData U.S. nuclear warhead facility profiles. (Nuclear weapons databook ;v. 3) "A book by the Natural Resources Defense Council, Inc." Includes bibliographical references and index. 1. Nuclear weapons-United States. 2. Munitions-United States. I. Cochran, Thomas B. 11. Natural Resources Defense Council. 111. Title: US nuclear warhead facility profiles. IV. Title: United States nuclear warhead facility profiles. V. Series: Cochran, Thomas B. Nuclear weapons databook ;v. 3. U264.C6 1984 vol. 3 355.8'25119'0973 87-14552 [U264] ISBN 0-88410-172-X (v. 1) ISBN 0-88410-173-8 (pbk. : v. 1) ISBN 0-88730-124-X (v. 2) ISBN 0-88730-125-8 (pbk. : v. 2) ISBN 0-88730-126-6 (v. 3) ISBN 0-88730-146-0 (pbk. -
Uranium-238 Which Inhibits Fission by Absorbing Neutrons Not Emitting Them
The Mushroom Farm By Joseph Cleveland Brown, III U. S. Army Corps of Engineers (Fellow of the Society of Naval Architects and Marine Engineers, (Retired Civil Works Project Engineer, (Retired) CONTENTS Introduction Chapter 1: Einstein’s Legacy. Chapter 2: The Stars of Nuclear Physics. Chapter 3: Nuclear Energy Explained. Chapter 4: Our Race for the Bomb. Chapter 5: Our Bombs. Chapter 6: The Weapon Delivery Systems. Chapter 7: Our Nuclear Warheads. Chapter 8: Our Missiles. Chapter 9: Our Nuclear Powered Navy. Chapter 10: The Anatomy of a Nuclear Explosion. Chapter 11: U. S. Military Nuclear Safety record! Chapter 12: The Cuban Missile Crisis! Chapter 13: Our Testing. Chapter 14: Our Atomic Power Generation versus the World. Chapter 15: Our Planned Nuclear Waste Repository. Chapter 16: Our Cost so far. Chapter 17: How to prepare for the future. Glossary References and Sources Introduction OOPS! In 2007 I watched a one hour documentary on TV. I was shocked to learn that our government, Yes, You guessed it, the same government that looses all of our money in the Stock Market and Mortgage Market and puts space shuttles up, launches missiles that attack and kill other missiles and builds Nuclear Submarines so sophisticated that they are impossible to detect underwater has lost a Hydrogen Bomb close to a major American city and can’t find it! And as a middle manager in the U. S. Army Corps of Engineers for over 30 years I was never officially informed of this fact! I had to learn of this disturbing event on TV! It was on The Discovery Channel one day and titled, “America’s Lost H- Bomb” and was indeed an eye opener.