SP412 Color Update.P65
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chorioactidaceae: a New Family in the Pezizales (Ascomycota) with Four Genera
mycological research 112 (2008) 513–527 journal homepage: www.elsevier.com/locate/mycres Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera Donald H. PFISTER*, Caroline SLATER, Karen HANSENy Harvard University Herbaria – Farlow Herbarium of Cryptogamic Botany, Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA article info abstract Article history: Molecular phylogenetic and comparative morphological studies provide evidence for the Received 15 June 2007 recognition of a new family, Chorioactidaceae, in the Pezizales. Four genera are placed in Received in revised form the family: Chorioactis, Desmazierella, Neournula, and Wolfina. Based on parsimony, like- 1 November 2007 lihood, and Bayesian analyses of LSU, SSU, and RPB2 sequence data, Chorioactidaceae repre- Accepted 29 November 2007 sents a sister clade to the Sarcosomataceae, to which some of these taxa were previously Corresponding Editor: referred. Morphologically these genera are similar in pigmentation, excipular construction, H. Thorsten Lumbsch and asci, which mostly have terminal opercula and rounded, sometimes forked, bases without croziers. Ascospores have cyanophilic walls or cyanophilic surface ornamentation Keywords: in the form of ridges or warts. So far as is known the ascospores and the cells of the LSU paraphyses of all species are multinucleate. The six species recognized in these four genera RPB2 all have limited geographical distributions in the northern hemisphere. Sarcoscyphaceae ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Sarcosomataceae SSU Introduction indicated a relationship of these taxa to the Sarcosomataceae and discussed the group as the Chorioactis clade. Only six spe- The Pezizales, operculate cup-fungi, have been put on rela- cies are assigned to these genera, most of which are infre- tively stable phylogenetic footing as summarized by Hansen quently collected. -
2. Typification of Gyromitra Fastigiata and Helvella Grandis
Preliminary phylogenetic and morphological studies in the Gyromitra gigas lineage (Pezizales). 2. Typification of Gyromitra fastigiata and Helvella grandis Nicolas VAN VOOREN Abstract: Helvella fastigiata and H. grandis are epitypified with material collected in the original area. Matteo CARBONE Gyromitra grandis is proposed as a new combination and regarded as a priority synonym of G. fastigiata. The status of Gyromitra slonevskii is also discussed. photographs of fresh specimens and original plates illustrate the article. Keywords: ascomycota, phylogeny, taxonomy, four new typifications. Ascomycete.org, 11 (3) : 69–74 Mise en ligne le 08/05/2019 Résumé : Helvella fastigiata et H. grandis sont épitypifiés avec du matériel récolté dans la région d’origine. 10.25664/ART-0261 Gyromitra grandis est proposé comme combinaison nouvelle et regardé comme synonyme prioritaire de G. fastigiata. le statut de Gyromitra slonevskii est également discuté. Des photographies de spécimens frais et des planches originales illustrent cet article. Riassunto: Helvella fastigiata e H. grandis vengono epitipificate con materiale raccolto nelle rispettive zone d’origine. Gyromitra grandis viene proposta come nuova combinazione e ritenuta sinonimo prioritario di G. fastigiata. Viene inoltre discusso lo status di Gyromitra slonevskii. l’articolo viene corredato da foto di esem- plari freschi e delle tavole originali. Introduction paul-de-Varces, alt. 1160 m, 45.07999° n 5.627088° e, in a mixed for- est, 11 May 2004, leg. e. Mazet, pers. herb. n.V. 2004.05.01. During a preliminary morphological and phylogenetic study in the subgenus Discina (Fr.) Harmaja (Carbone et al., 2018), especially Results the group of species close to Gyromitra gigas (Krombh.) Quél., we sequenced collections of G. -
Molecular Identification of Fungi
Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere. -
A Case of the Yellow Morel from Israel Segula Masaphy,* Limor Zabari, Doron Goldberg, and Gurinaz Jander-Shagug
The Complexity of Morchella Systematics: A Case of the Yellow Morel from Israel Segula Masaphy,* Limor Zabari, Doron Goldberg, and Gurinaz Jander-Shagug A B C Abstract Individual morel mushrooms are highly polymorphic, resulting in confusion in their taxonomic distinction. In particu- lar, yellow morels from northern Israel, which are presumably Morchella esculenta, differ greatly in head color, head shape, ridge arrangement, and stalk-to-head ratio. Five morphologically distinct yellow morel fruiting bodies were genetically character- ized. Their internal transcribed spacer (ITS) region within the nuclear ribosomal DNA and partial LSU (28S) gene were se- quenced and analyzed. All of the analyzed morphotypes showed identical genotypes in both sequences. A phylogenetic tree with retrieved NCBI GenBank sequences showed better fit of the ITS sequences to D E M. crassipes than M. esculenta but with less than 85% homology, while LSU sequences, Figure 1. Fruiting body morphotypes examined in this study. (A) MS1-32, (B) MS1-34, showed more then 98.8% homology with (C) MS1-52, (D) MS1-106, (E) MS1-113. Fruiting bodies were similar in height, approxi- both species, giving no previously defined mately 6-8 cm. species definition according the two se- quences. Keywords: ITS region, Morchella esculenta, 14 FUNGI Volume 3:2 Spring 2010 MorchellaFUNGI crassipes Volume, phenotypic 3:2 Spring variation. 2010 FUNGI Volume 3:2 Spring 2010 15 Introduction Materials and Methods Morchella sp. fruiting bodies (morels) are highly polymorphic. Fruiting bodies: Fruiting bodies used in this study were collected Although morphology is still the primary means of identifying from the Galilee region in Israel in the 2003-2007 seasons. -
80130Dimou7-107Weblist Changed
Posted June, 2008. Summary published in Mycotaxon 104: 39–42. 2008. Mycodiversity studies in selected ecosystems of Greece: IV. Macrofungi from Abies cephalonica forests and other intermixed tree species (Oxya Mt., central Greece) 1 2 1 D.M. DIMOU *, G.I. ZERVAKIS & E. POLEMIS * [email protected] 1Agricultural University of Athens, Lab. of General & Agricultural Microbiology, Iera Odos 75, GR-11855 Athens, Greece 2 [email protected] National Agricultural Research Foundation, Institute of Environmental Biotechnology, Lakonikis 87, GR-24100 Kalamata, Greece Abstract — In the course of a nine-year inventory in Mt. Oxya (central Greece) fir forests, a total of 358 taxa of macromycetes, belonging in 149 genera, have been recorded. Ninety eight taxa constitute new records, and five of them are first reports for the respective genera (Athelopsis, Crustoderma, Lentaria, Protodontia, Urnula). One hundred and one records for habitat/host/substrate are new for Greece, while some of these associations are reported for the first time in literature. Key words — biodiversity, macromycetes, fir, Mediterranean region, mushrooms Introduction The mycobiota of Greece was until recently poorly investigated since very few mycologists were active in the fields of fungal biodiversity, taxonomy and systematic. Until the end of ’90s, less than 1.000 species of macromycetes occurring in Greece had been reported by Greek and foreign researchers. Practically no collaboration existed between the scientific community and the rather few amateurs, who were active in this domain, and thus useful information that could be accumulated remained unexploited. Until then, published data were fragmentary in spatial, temporal and ecological terms. The authors introduced a different concept in their methodology, which was based on a long-term investigation of selected ecosystems and monitoring-inventorying of macrofungi throughout the year and for a period of usually 5-8 years. -
Gyromitra Ambigua, Birchy Brook SECRETARY Nordic Ski Club Trails, Goose Bay, Labrador, August Jim Cornish AUDITOR 8, 2012
V OMPHALINISSN 1925-1858 Foray registration & information issue Vol. VI, No 3 Newsletter of Apr. 16, 2015 OMPHALINA OMPHALINA, newsletter of Foray Newfoundland & Labrador, has no fi xed schedule of publication, and no promise to appear again. Its primary purpose is to serve as a conduit of information to registrants of the upcoming foray and secondarily as a communications tool with members. Issues of OMPHALINA are archived in: is an amateur, volunteer-run, community, Library and Archives Canada’s Electronic Collection <http://epe. not-for-profi t organization with a mission to lac-bac.gc.ca/100/201/300/omphalina/index.html>, and organize enjoyable and informative amateur Centre for Newfoundland Studies, Queen Elizabeth II Library mushroom forays in Newfoundland and (printed copy also archived) <collections.mun.ca/cdm/search/ collection/omphalina/>. Labrador and disseminate the knowledge gained. The content is neither discussed nor approved by the Board of Directors. Therefore, opinions expressed do not represent the views of the Board, Webpage: www.nlmushrooms.ca the Corporation, the partners, the sponsors, or the members. Opinions are solely those of the authors and uncredited opinions solely those of the Editor. ADDRESS Foray Newfoundland & Labrador Please address comments, complaints, contributions to the self-appointed Editor, Andrus Voitk: 21 Pond Rd. Rocky Harbour NL seened AT gmail DOT com, A0K 4N0 CANADA … who eagerly invites contributions to OMPHALINA, dealing with any aspect even remotely related to mushrooms. E-mail: info AT nlmushrooms DOT ca Authors are guaranteed instant fame—fortune to follow. Authors retain copyright to all published material, and submission indicates permission to publish, subject to the usual editorial decisions. -
Toxic Fungi of Western North America
Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms ..................................................................................... -
Phd. Thesis Sana Jabeen.Pdf
ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8. -
Pseudotsuga Menziesii)
120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P. -
Systematic Study of Fungi in the Genera Underwoodia and Gymnohydnotrya (Pezizales) with the Description of Three New South American Species
Persoonia 44, 2020: 98–112 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.04 Resurrecting the genus Geomorium: Systematic study of fungi in the genera Underwoodia and Gymnohydnotrya (Pezizales) with the description of three new South American species N. Kraisitudomsook1, R.A. Healy1, D.H. Pfister2, C. Truong3, E. Nouhra4, F. Kuhar4, A.B. Mujic1,5, J.M. Trappe6,7, M.E. Smith1,* Key words Abstract Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses Geomoriaceae on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Under Helvellaceae woodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydno trya Patagonia lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relation- South American fungi ship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described truffle systematics in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of Tuberaceae this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage. -
This File Was Created by Scanning the Printed Publication. Text Errors Identified by the Software Have Been Corrected: However
pp. l'v1vcu/ogia, 102(5),2010, 1058-1065.001: 10.3852/09,232 by The Mycolog-icai Society of America, Lawrence, ( 2010 KS 66044-8897 Kalapuya brunnea gen. & sp. nov. and its relationship to the other sequestrate genera in Morchellaceae Matthew J. Trappe' it from Leucangium and other known genera. Here James M. Trappe we describe this genus and its only known species, co.',�s,tenH and Society, Oregon Kalapuya 1Yrunnea, and discuss its relationship with Oregon 97331,5752 other genera \\ithin the Morchellaceae. Gregory M. Bonito Department oj Biology, Duke Durham, MATERIALS AND y[ETHODS North Carolina 27708 Sections were prepared for light microscopy by hand and mounted in dH20, Melzer's reagent and cotton blue as well as by microtoming of paraffin-embedded specimens and Kalapuya is described as a new, monotypic Abstract: staining the thin sections in safranin-fast gTeen. All truffle genus in the Morchellaceae knovm only from microscopic measurements were made in dH20 mounts at the Pacific northwestern United States. Its relationship 400X or 1000X with a Zeiss GSL research microscope. to other hypogeous genera within Morchellaceae is Melzer's reagent was used to test for amyloid reactions and explored by phylogenetic analysis of the ribosomal LSU cotton blue for cyanescent reactions. EFlcx Glebal tissue samples were sequenced at the Institute for and protein coding region. The type species, K lxrunnea, occurs in Douglas-fir forests up to about 50 y Genome Sciences and Policy at Duke University. Clean old on the west slope of the Cascade Range in Oregon fungal tissue was removed from within sporocarps, placed in and in the Coastal Ranges of Oregon and northern microcentrifuge tubes and ground with micropestles. -
Style Specifications Thesis
Root Rot in North-Temperate Forest Stands: Biology, Management and Communities of Associated Fungi Vaidotas Lygis Forestry Faculty Department of Forest Mycology and Pathology Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2005 Acta Universitatis Agriculturae Sueciae 2005:4 ISSN 1652-6880 ISBN 91-576-7003-X © 2005 Vaidotas Lygis, Uppsala Tryck: SLU Service/Repro, Uppsala 2005 Abstract Lygis, V. 2005. Root rot in north-temperate forest stands: biology, management and communities of associated fungi. Doctor’s dissertation. ISSN 1652-6880, ISBN 91-576-7003-X The aim of the present thesis was to study the biology and to evaluate possible means of silvicultural control of tree root pathogens Heterobasidion spp., Armillaria spp. and Rhizina undulata. First investigated option was the prevention of Heterobasidion spp. by establishing mixed coniferous-deciduous tree plantations, which would allow thinning delay and thus the absence of stumps that are main infection courts for the pathogen. Results showed that full prevention can be achieved, and that mixed stands also produced a better yield than pure plantations. During the second experiment it was demonstrated that the treatment of stumps with biological (Rotstop) and chemical (urea) control agents can also effectively prevent the Heterobasidion infections, and that the biological control is more environmentally friendly than the chemical. Furthermore, the prevention of loss in forest areas that already were heavily infested by Heterobasidion spp. was investigated. It was shown that in such areas the pathogen persists in root systems of killed trees for decades and readily attacks replanted deciduous trees, e.g. birch. Despite that, the results indicated clearly that the loss could be minimised by replanting the infested sites with more resistant tree species.