MEASURING the POLARIZATION of the CMB with the QUIJOTE EXPERIMENT Federica Guidi Phd Student at IAC CMB: Intensity and Polarization

Total Page:16

File Type:pdf, Size:1020Kb

MEASURING the POLARIZATION of the CMB with the QUIJOTE EXPERIMENT Federica Guidi Phd Student at IAC CMB: Intensity and Polarization MEASURING THE POLARIZATION OF THE CMB WITH THE QUIJOTE EXPERIMENT Federica Guidi PhD student at IAC CMB: Intensity and Polarization Radio foregrounds emission OVERVIEW The QUIJOTE experiment The Map-making process 6/08/2018 Padova, ICYAA 2018 THE COSMIC MICROWAVE BACKGROUND (CMB) History of the Universe in the Big Bang model: • Exponential expansion (Inflation) • Hot , dense and high pressure plasma of particles • Dark matter decouples and start building structures • Recombination: electrons and protons form atoms • Photons becomes free to propagate: Last scattering surface • Structure formation • … • The CMB is the light coming from the Last Scattering Surface: z=1100 age=380 000y T=3000k • The Universe continues to expand and cool down: T=3000 K To=3K • We cannot look deeper than the surface of the sun as we cannot go farther than the last scattering surface. The CMB is the oldest light we can observe! 6/08/2018 Padova, ICYAA 2018 1964: A.A. Penzias and R. W. THE COSMIC MICROWAVE BACKGROUND (CMB) Wilson measured a uniform radiation at T=3.5K : uniform emission from any 1992: COBE(FIRAS) measured direction of sky, Black Body spectrum the spectrum of the CMB peaked at 푇0 = 2.725 퐾. 2ℎν3푐2 퐵ν= ℎν 퐾푇0 : due to the relative motion 푒 − 1 of the Sun respect to the last scattering surface 풗 푣2 1− 푐2 ∆푇 = 푇 푣 ~3.3푚퐾 0 1− cos 휃 푐 at smaller angular scales (푙 > 2). The characteristic angular dimension of the anisotropies corresponds to the dimension of the horizon at the last scattering surface: ϑ~1°. ∆푇 ≈ 10−5 K 푇 6/08/2018 Padova, ICYAA 2018 ANGULAR POWER SPECTRA OF THE INTENSITY ANISOTROPIES ∞ 푙 푇 Harmonic decomposition: T 푛ො = σ푙=0 σ푚=−푙 푎푙푚푌푙푚( 푛ො) Angular power spectrum of anisotropies 퐶푙 : 푇 푇∗ 푇푇 푎푙푚푎푙′푚′ = 훿푙푙′훿푚푚′퐶푙 휃퐻 ≈ 1° 푙H ≈ 200 Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, A&A 594, A13 (2016) Constraint on the Cosmological Parameters: ΛCDM: {100 ∙ 휔푏, 휔푐푑푚, 푛푠, 퐴푠, ℎ, 휏푟푒표} 6/08/2018 Padova, ICYAA 2018 • Stokes parameters: (퐼, 푄, 푈, 푉 = 0) • Linear polarization invariant under rotation as a spin-2 quantity: CMB POLARIZATION 푄′ ± 푈′ = 푒±2휓 푄 ± 푈 • Spin-2 harmonic decomposition on the sky CMB light is linearly polarized ∞ +푙 ∞ +푙 ±2 푄 ± 푈 푛 = ෍ ෍ 푎푙푚 ±2푌푙푚 푛 = ෍ ෍ (푎퐸,푙푚 ± 푎퐵,푙푚)±2푌푙푚 푛 푙=2 푚=−푙 푙=2 푚=−푙 • Thomson scattering at recombination: Unpolarized photons are scattered by perturbations perturbations electrons on the last scattering surface. If the incoming light has a quadrupole momentum then the outgoing light is linearly polarized. • Primordial gravitational waves: 1 +2 −2 − +2 −2 푎퐸,푙푚 = (푎푙푚 + 푎푙푚) 푎 = (푎 − 푎 ) 2 퐵,푙푚 2 푙푚 푙푚 Quantum fluctuations in the primordial phase Invariant under Not invariant under induces isotropic and anisotropic stretching. parity transformation Parity transformation The anisotropic stretch is the seed of primordial linear polarization. The Inflation The polarization is a local measurement in the sky. From the harmonic enlarges it to macroscopic scales. decomposition of the polarization map we can identify E and B modes. 6/08/2018 Padova, ICYAA 2018 ANGULAR POWER SPECTRA OF POLARIZATION ANISOTROPIES Angular power spectra for polarization: 퐸 퐸∗ 퐸퐸 푎푙푚푎푙′푚′ = 훿푙푙′훿푚푚′퐶푙 푇 퐸∗ 푇퐸 푎푙푚푎푙′푚′ = 훿푙푙′훿푚푚′퐶푙 퐵 퐵∗ 퐵퐵 푎푙푚푎푙′푚′ = 훿푙푙′훿푚푚′퐶푙 Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, A&A 594, A13 (2016) 6/08/2018 Padova, ICYAA 2018 FOREGROUNDS The cosmological emission is strongly hidden by the . 6/08/2018 Padova, ICYAA 2018 Planck 2015 Results. I. Overview of products and scientific results. Planck Collaboration FOREGROUND: SYNCHROTRON • Cosmic ray electron (푁(퐸) ∝ 퐸−푝) emits photons spiralizing around the galactic magnetic field (B). 훾 퐵 훾 • The spectrum of synchrotron emission is 푝+3 푇 ∝ 퐵(푝+1)/2휈훽 훽 = − ~ − 2.5 휈 2 • Dominates in the lower frequency range. • Synchrotron radiation is polarized perpendicular to the magnetic fields lines. Polarization degree up to Π=40%. 6/08/2018 Padova, ICYAA 2018 Planck 2015 Results. I. Overview of products and scientific results. Planck Collaboration FOREGROUND: FREE-FREE • Electron-ion scattering in the interstellar plasma (thermal bremmstrahlung) • The correspondent brightness temperature depends on the frequency with a spectral index ~2 • The net free-free emission is almost unpolarized for a distribution of electrons. 6/08/2018 Padova, ICYAA 2018 Planck 2015 Results. I. Overview of products and scientific results. Planck Collaboration FOREGROUND: THERMAL DUST • Interstellar dust grains absorb the interstellar radiation and are heated up. In the cooling process it emits radiation. • The spectrum is a modified black-body at 푇~14 − 15 퐾 표푢푡푒푟 푔푎푙푎푐푡푐 푟푒푔표푛 푇~19 퐾 (푛푛푒푟 푔푎푙푎푐푡푔 푟푒푔표푛): 훽푑 퐼휈~휈 퐵휈(푇) 훽~1.8 • Dominates at frequencies 휈 > 70GHz. • The grains emit (and absorb) photons most efficiently along the longest axis, while with the alignment mechanism grains tend to align the longer axis perpendicular to the local magnetic field. In dust emission region we will mainly measure polarization perpendicular to the magnetic field. In dust absorption region we will measure polarization parallel to the background field. • Dust polarization can produce a B mode contamination. 6/08/2018 Padova, ICYAA 2018 Planck 2015 Results. I. Overview of products and scientific results. Planck Collaboration FOREGROUND: ANOMALOUS MICROWAVE EMISSION (AME) • Radiation produced by spinning small dust grains with an electric dipole moment. • AME is spatially correlated with thermal dust emission. Poidevin et al. 2018 al. et • Low polarization is expected (in W43 best upper limit on AME polarization up to date: П<0.39% at 17 GHz (QUIJOTE), П<0.22% at 41 GHz (WMAP) ) 6/08/2018 Padova, ICYAA 2018 QUIJOTE : Q-U-I JOint TEnerife CMB Experiment ➢ Site: Teide Observatory (altitude 2400 m, 28,3° N, 16.5° W) ➢ Sky coverage: -32° < Dec < 88° (fsky=0.65) 6/08/2018 Padova, ICYAA 2018 QUIJOTE CMB EXPERIMENT QT1 & MFI (Multi Frequency Instrument) QT2 & TFGI • 4 Horns, 32 channels, 4 (Thirty and Forty GHz frequency bands: Instrument) ( , , , ) GHz • 14 pixels at GHz, • Angular resolution: 15 pixels at GHz 0.92°-0.63° • Angular resolution: • Sensitivity: 0.32°-0.26° 휇퐾 ∙ 푠−1/2 • Sensitivity: 500-600 −1/2 • Stepping polar 85-71 휇퐾 ∙ 푠 modulator (HWP) for • Operative soon (June polarization 2018) • Operative since Nov 2012 6/08/2018 Padova, ICYAA 2018 OBSERVATIONS WITH QUIJOTE : 20.000 푑푒푔2 of the sky covered, more that 21.000 hours휇퐾 of observation, sensitivity of 30 . 1° 푏푒푎푚 Nominal observation: 8h azimuth scans at fixed elevation (30°, 35°, 40°, 50°, 60°, 65°, 70°, 75°, 80°) 3.000 푑푒푔2 : in휇퐾 three separed fields. Expected sensitivity 10 1° 푏푒푎푚 after 1 year휇퐾 with the MFI (@ 11, 13, 17, 19 GHz) and 1 after 1 year with TFGI (@ 30, 40 GHz).1° 푏푒푎푚 : reach 푟~0.05 in three years of operation of the TFGI. 푑푒푔2 covering휇퐾 few hundred sensitivity 30-40 . : 1° 푏푒푎푚 • Perseus molecular complex (Génova-Santos et al. (2015)) : radio foregrounds characterization in those • W44 supernova remnant, W43 and W47 molecular complexes regions. (Génova-Santos et al. (2017)) Raster observation: scans in a azimuth interval and • Taurus molecular cloud (Poidevin et al. submitted) fixed elevation. 6/08/2018 Padova, ICYAA 2018 MAPMAKING • The science with microwave observations is mostly done using maps. The map-making has an important role for CMB. • Map-making consists of properly combine the data to produce an image of the sky: o Project the Data from the Time Order domain (TOD) to the corresponding position on the sky (Healpix pixel). o Minimize the instrumental and atmospheric noise. 푚 = 푚1 , 푚2 , 푚3 , … 퐻푒푎푙푝푥 푎푟푟푎푦: 푝푥푒푙 표푛 푡ℎ푒 푠푘푦 TOD t 6/08/2018 Padova, ICYAA 2018 THE ATMOSPHERE The atmospheric emission at mm wavelengths is a big source of disturbance in ground base experiments. It is mainly due by the Precipitable Water Vapor (PWV). Time and space variations of PWV enter in the data as a 1/f noise component. 퐺퐻푧 22 6/08/2018 Padova, ICYAA 2018 THE NOISE : random gaussian signal (uncorrelated), with zero mean and standard deviation 휎푤. 푇푠푦푠 휎푤 = (Radiometer formula) ∆휈 ∙ 휏푠 2 휎푤 푃푤 휈 = (Power spectral density) 푓푠 : correlated noise component, with power spectral density depending on the inverse of the frequency^훾. It is due to drifts on the gain of the instrument or atmospheric variations. 2 훾 휎푤 휈푘 푃1/푓 휈 = 푓푠 휈 6/08/2018 Padova, ICYAA 2018 ) 푚퐾 ( THE NOISE 푇 : random gaussian signal (uncorrelated), with zero mean and standard deviation 휎푤. 푇푠푦푠 휎푤 = (Radiometer formula) ∆휈 ∙ 휏푠 2 휎푤 푃푤 휈 = (Power spectral density) 푓푠 #푠푎푚푝푙푒 : correlated noise component, with power spectral density depending on the inverse of the frequency^훾. It is due to drifts on the gain of the instrument or atmospheric variations. 2 훾 휎푤 휈푘 푃1/푓 휈 = 푓푠 휈 Clean the data removing offsets with a determined time length: BASELINES. 푚퐾 6/08/2018 Padova, ICYAA 2018 THE DESTRIPER METHOD Example: Total noise 8 data in a tod 4 pixel map 2 baselines Maximum likelihood estimation for the map 푚푠푘푦 and the baselines 푎. (neglecting polarization) 6/08/2018 Padova, ICYAA 2018 QUIJOTE WIDE SURVEY MAP: INTENSITY 6/08/2018 Padova, ICYAA 2018 QUIJOTE WIDE SURVEY MAP: POLARIZATION Q 6/08/2018 Padova, ICYAA 2018 WMAP MAP: POLARIZATION Q 6/08/2018 Padova, ICYAA 2018 QUIJOTE WIDE SURVEY MAP: POLARIZATION U 6/08/2018 Padova, ICYAA 2018 WMAP MAP: POLARIZATION U 6/08/2018 Padova, ICYAA 2018 FITTING A FUNCTION WITH THE DESTRIPER METHOD 1 푓Ԧ= A = T sin(푒푙) atm Ԧ Linear dependence 푓 = ∆푇푑푝표푙푒 푔푙, 푔푏 퐴 = 1 of the data from a known function 푓Ԧ 6/08/2018 Padova, ICYAA 2018 FITTING A FUNCTION WITH THE DESTRIPER METHOD: ATMOSPHERE Ԧ 1 • An imperfect inclination of the zenithal axis of the 푓= Tatm ∙ telescope leads to variations of the atmospheric sin(푒푙) emission, as a function of 1/ sin(푒푙).
Recommended publications
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • The QUIJOTE CMB Experiment: Status and First Results with the Multi-Frequency Instrument
    The QUIJOTE CMB Experiment: status and first results with the multi-frequency instrument M. L´opez-Caniegoa, R. Rebolob;c;h, M. Aguiarb, R. G´enova-Santosb;c, F. G´omez-Re~nascob, C. Gutierrezb, J.M. Herrerosb, R.J. Hoylandb, C. L´opez-Caraballob;c, A.E. Pelaez Santosb;c, F. Poidevinb, J.A. Rubi~no-Mart´ınb;c, V. Sanchez de la Rosab, D. Tramonteb, A. Vega-Morenob, T. Viera-Curbelob, R. Vignagab, E. Mart´ınez-Gonzaleza, R.B. Barreiroa, B. Casaponsa a, F.J. Casasa, J.M. Diegoa, R. Fern´andez-Cobosa, D. Herranza, D. Ortiza, P. Vielvaa, E. Artald, B. Ajad, J. Cagigasd, J.L. Canod, L. de la Fuented, A. Mediavillad, J.V. Ter´and, E. Villad, L. Piccirilloe, R. Battyee, E. Blackhurste, M. Browne, R.D. Daviese, R.J. Davise, C. Dickinsone, K. Graingef , S. Harpere, B. Maffeie, M. McCulloche, S. Melhuishe, G. Pisanoe, R.A. Watsone, M. Hobsonf , A. Lasenbyf;g, R. Saundersf , and P. Scottf aInstituto de F´ısica de Cantabria, CSIC-UC, Avda. los Castros, s/n, E-39005 Santander, Spain bInstituto de Astrof´ısica de Canarias, C/Via Lactea s/n, E-38200 La Laguna, Tenerife, Spain cDepartamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain dDepartamento de Ingenier´ıade COMunicaciones (DICOM), Laboratorios de I+D de Telecomunicaciones, Plaza de la Ciencia s/n, E-39005 Santander, Spain eJodrell Bank Centre for Astrophysics, University of Manchester, Oxford Rd, Manchester M13 9PL, UK f Astrophysics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK gKavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA hConsejo Superior de Investigaciones Cient´ıficas, Spain arXiv:1401.4690v2 [astro-ph.IM] 5 Feb 2014 The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is designed to observe the polar- ization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10{40 GHz.
    [Show full text]
  • Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler
    remote sensing Article Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler Luisa de la Fuente 1,* , Beatriz Aja 1 , Enrique Villa 2 and Eduardo Artal 1 1 Departamento de Ingeniería de Comunicaciones, Universidad de Cantabria, 39005 Santander, Spain; [email protected] (B.A.); [email protected] (E.A.) 2 IACTEC, Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain; [email protected] * Correspondence: [email protected] Abstract: This paper presents a built-in calibration procedure of a 10-to-20 GHz polarimeter aimed at measuring the I, Q, U Stokes parameters of cosmic microwave background (CMB) radiation. A full-band square waveguide double directional coupler, mounted in the antenna-feed system, is used to inject differently polarized reference waves. A brief description of the polarimetric microwave radiometer and the system calibration injector is also reported. A fully polarimetric calibration is also possible using the designed double directional coupler, although the presented calibration method in this paper is proposed to obtain three of the four Stokes parameters with the introduced microwave receiver, since V parameter is expected to be zero for the CMB radiation. Experimental results are presented for linearly polarized input waves in order to validate the built-in calibration system. Keywords: radiometer; polarimeter calibration; microwave polarimeter; radiometer calibration; radio astronomy receiver; cosmic microwave background receiver; Stokes parameters Citation: de la Fuente, L.; Aja, B.; Villa, E.; Artal, E. Calibration of a 1. Introduction Polarimetric Microwave Radiometer Remote sensing applications employ sensitive instruments to fulfill the scientific goals Using a Double Directional Coupler. of dedicated missions or projects, either space or terrestrial.
    [Show full text]
  • Wide-Survey of the QUIJOTE CMB Experiment Presented By: Federica Guidi (IAC, ULL), on Behalf of the QUIJOTE Collaboration
    Wide-survey of the QUIJOTE CMB experiment Presented by: Federica Guidi (IAC, ULL), on behalf of the QUIJOTE collaboration. I present the status and the recent results of the QUIJOTE (Q-U-I JOint TEnerife) experiment. QUIJOTE is a project that operates from the Teide Observatory, with the aim to characterize the emission of the galactic foregrounds at microwave wavelengths, and to study the polarization of the Cosmic Microwave Background, targeting the detection of the primordial gravitational waves, the so called ”B-modes”, down to a value of the tensor to scalar ratio of r = 0.05. Recently, one of the two instruments of QUIJOTE, the Multi Frequency Instrument (MFI), concluded a wide-survey campaign, during which we observed the full northern sky, at 11, 13, 17 and 19 GHz. The wide survey maps of QUIJOTE will be delivered soon to the community. Here I present the current status of the maps, and I summarize few scientific results related to them, with special emphasis on the low frequency Galactic foregrounds, such as the Synchrotron and the Anomalous Microwave Emission. XIV.0 Reunión Científica 13-15 julio 2020 Context of the research: QUIJOTE: a polarimetric CMB experiment for the characterization of the low frequency galactic foregrounds ● CMB polarization experiments are searching for the polarization pattern imprinted by primordial gravitational waves: the “B-modes”. ● QUIJOTE is a polarimetric CMB experiment installed at the Teide observatory since 2012. ● QUIJOTE extends the Planck and WMAP coverage to low frequency, with two instruments: ○ Multi Frequency Instrument (MFI): 11, 13, 17, 19 GHz; ○ Thirty and Forty GHz Instrument (TFGI): Q Q Q Q J J 30-40 GHz.
    [Show full text]
  • Planck 2011 Conference the Millimeter And
    PLANCK 2011 CONFERENCE THE MILLIMETER AND SUBMILLIMETER SKY IN THE PLANCK MISSION ERA 10-14 January 2011 Paris, Cité des Sciences (Abstracts version Jan 14th) Planck mission status, Performances, Cross-calibration Herschel - update with a Planck perspective Pilbratt Goran, European Space Agency The Herschel Space Observatory was launched together with Planck on 14 May 2009. Herschel carries a 3.5 m diameter Cassegrain telescope and three instruments: PACS, SPIRE, and HIFI. It covers the wavelength range ~55-671 um for photometry and spectroscopy, with an angular resolution of approximately 7"/100 um. Early Herschel science performance and science results will be presented, with an attempt of a Planck perspective. The observing opportunities for follow-up of Planck results, in particular the ERCSC, will be outlined. Radio sources A Bayesian technique to detect point sources in CMB maps Argueso Francisco, Departamento de Matematicas. Universidad de Oviedo and E. Salerno, D. Herranz, J. L. Sanz, E. Kuruoglu, K. Kayabol; IFCA, CSIC, Santander, Spain. ISTI, CNR, Pisa, Italy The detection and flux estimation of point sources in cosmic microwave background (CMB) maps is a very important task in order to clean the maps and also to obtain relevant astrophysical information. We propose a new strategy based on Bayesian methodology which can be applied to the blind detection of point sources in CMB maps. The method incorporates three prior distributions: a uniform distribution on the source locations, an extended power law on the source fluxes, following the De Zotti counts model, and a Poisson distribution on the number of point sources per patch. Together with a Gaussian likelihood, these priors produce a posterior distribution.
    [Show full text]
  • The Large Scale Polarization Explorer (LSPE) for CMB Measurements: Performance Forecast
    Prepared for submission to JCAP The large scale polarization explorer (LSPE) for CMB measurements: performance forecast The LSPE collaboration G. Addamo,a P. A. R. Ade,b C. Baccigalupi,c A. M. Baldini,d P. M. Battaglia,e E. S. Battistelli, f;g A. Baù,h P. de Bernardis, f;g M. Bersanelli,i; j M. Biasotti,k;l A. Boscaleri,m B. Caccianiga, j S. Caprioli,i; j F. Cavaliere,i; j F. Cei, f;n K. A. Cleary,o F. Columbro, f;g G. Coppi,p A. Coppolecchia, f;g F. Cuttaia,q G. D’Alessandro, f;g G. De Gasperis,r;s M. De Petris, f;g V. Fafone,r;s F. Farsian,c L. Ferrari Barusso,k;l F. Fontanelli,k;l C. Franceschet,i; j T.C. Gaier,u L. Galli,d F. Gatti,k;l R. Genova-Santos,t;v M. Gerbino,D;C M. Gervasi,h;w T. Ghigna,x D. Grosso,k;l A. Gruppuso,q;H R. Gualtieri,G F. Incardona,i; j M. E. Jones,x P. Kangaslahti,o N. Krachmalnicoff,c L. Lamagna, f;g M. Lattanzi,D;C M. Lumia,a R. Mainini,h D. Maino,i; j S. Mandelli,i; j M. Maris,y S. Masi, f;g S. Matarrese,z A. May,A L. Mele, f;g P. Mena,B A. Mennella,i; j R. Molina,B D. Molinari,q;E;C;D G. Morgante,q U. Natale,C;D F. Nati,h P. Natoli,C;D L. Pagano,C;D A. Paiella, f;g F.
    [Show full text]
  • A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection
    sensors Article A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection Francisco J. Casas 1,*, David Ortiz 1, Beatriz Aja 2 , Luisa de la Fuente 2, Eduardo Artal 2 , Rubén Ruiz 3 and Jesús M. Mirapeix 3,4,5 1 Instituto de Física de Cantabria (IFCA), Avda. Los Castros s/n, 39005 Santander, Spain; [email protected] 2 Departamento Ingeniería de Comunicaciones (DICOM), Universidad de Cantabria, Plaza de la Ciencia s/n, 39005 Santander, Spain; [email protected] (B.A.); [email protected] (L.d.l.F.); [email protected] (E.A.) 3 Grupo de Ingeniería Fotónica, Universidad de Cantabria, Plaza de la Ciencia s/n, 39005 Santander, Spain; [email protected] (R.R.); [email protected] (J.M.M.) 4 Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Plaza de la Ciencia s/n, 39005 Santander, Spain 5 Instituto de Investigacion Sanitaria Valdecilla (IDIVAL), Calle Cardenal Herrera Oria, 39011 Santander, Spain * Correspondence: [email protected]; Tel.: +34-942-200-892; Fax: +34-942-200-935 Received: 4 March 2019; Accepted: 16 April 2019; Published: 19 April 2019 Abstract: This paper presents a 10 to 20 GHz bandwidth microwave polarimeter demonstrator, based on the implementation of a near-infra-red frequency up-conversion stage that allows both the optical correlation, when operating as a synthesized-image interferometer, and signal detection, when operating as a direct-image instrument. The proposed idea is oriented towards the implementation of ultra-sensitive instruments presenting several dozens or even thousands of microwave receivers operating in the lowest bands of the cosmic microwave background.
    [Show full text]
  • Desarrollos Tecnológicos Orientados a Interferómetros De Gran Formato Con Aplicaciones En Radioastronomía
    UNIVERSIDAD DE CANTABRIA Departamento de Ingeniería de Comunicaciones TESIS DOCTORAL Desarrollos Tecnológicos Orientados a Interferómetros de Gran Formato con Aplicaciones en Radioastronomía Autor: David Ortiz García Directores: Francisco Javier Casas Reinares -Eduardo Artal Latorre Tesis doctoral para la obtención del título de Doctor por la Universidad de Cantabria en Tecnologías de la Información y Comunicaciones en Redes Móviles Santander, Abril de 2017 A mis padres, mi hermana y a Mari Carmen. i ii Agradecimientos Después de todo este tiempo, es complejo reunir en unos pocos párrafos a todas las personas que gracias a su apoyo han hecho que mi tesis esté llegando a su punto final. Lo primero y más importante, quiero agradecer a Eduardo Artal por confiar en mí y darme la oportunidad de comenzar a trabajar en el mundo de la investigación, más concretamente en el campo de la instrumentación dirigida a la radioastronomía. Tras una breve etapa en el Departamento de Ingeniería de Comunicaciones de la Universidad de Cantabria, llegó el momento de trabajar con la gente del grupo de Cosmología Observacional e Instrumentación del Instituto de Física de Cantabria. Fue aquí donde Patxi Casas apostó por dirigirme junto a Eduardo todo el trabajo que está descrito en este documento. Gracias también a él por su ayuda, su experiencia y sus consejos para seguir adelante. Agradecer a Jesús Mirapeix y Rubén Ruiz del departamento TEISA y a Ángel Valle del IFCA por haberme refrescado los conocimientos adquiridos durante la carrera sobre el interesante mundo de la ingeniería fotónica. Gracias a su apoyo se ha realizado una caracterización de diferentes circuitos ópticos que ayudará a proseguir con trabajos futuros dentro de este campo.
    [Show full text]
  • WATTS-DISSERTATION-2018.Pdf (5.233Mb)
    How to see the forest for the trees: Constraining the large-scale cosmic microwave background in the presence of polarized Galactic foregrounds by Duncan Joseph Watts A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2018 © 2018 by Duncan Joseph Watts All rights reserved Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment designed to constrain the amplitude of primordial gravitational waves generated during inflation. CLASS will do this by measuring the largest angular scales of the sky at 40, 90, 150, and 220 GHz across 70% of the sky to characterize all known sources of polarized microwave emission at these frequencies, the Galactic synchrotron and thermal dust emission, and the cosmic microwave background (CMB). This thesis begins by describing the CMB and how it is generated, as well as enumerating the Galactic foregrounds that must be removed in order to accurately characterize the CMB. I then describe in detail an optimal method for removing foregrounds while constraining the primordial gravitational waves’ amplitude. I then use a power spectrum method to show that CLASS will be able to use its large angular scale data to constrain the reionization optical depth to near its cosmic variance limit, and describe how this will enable a measurement of the effects of massive neutrinos on galaxy clustering. Primary Reader: Tobias A. Marriage Secondary Reader: Charles L. Bennett ii Acknowledgments No man is an island, entire of itself; every man is a piece of the continent, a part of the main.
    [Show full text]
  • Análisis Cosmológicos Con No-Gaussianidad Primordial Y
    DEPARTAMENTO DE F´ISICAMODERNA INSTITUTODEF´ISICA DE CANTABRIA UNIVERSIDAD DE CANTABRIA IFCA (CSIC-UC) Analisis´ cosmologicos´ con no-Gaussianidad primordial y magnificacion´ debida al efecto lente debil´ Memoria presentada para optar al t´ıtulo de Doctor otorgado por la Universidad de Cantabria por Biuse Casaponsa Gal´ı Declaraci´on de Autor´ıa Rita Bel´en Barreiro Vilas, Doctor en Ciencias F´ısicas y Profesor Contratado Doctor de la Universidad de Cantabria y Enrique Mart´ınez Gonz´alez, Doctor en Ciencias F´ısicas y Profesor de Investigaci´on del Consejo Superior de Investigaciones Cient´ıficas, CERTIFICAN que la presente memoria An´alisis cosmol´ogicos con no-Gaussianidad primordial y magnificaci´on debida al efecto lente d´ebil ha sido realizada por Biuse Casaponsa Gal´ıbajo nuestra direcci´on en el Instituto de F´ısica de Cantabria, para optar al t´ıtulo de Doctor por la Universidad de Cantabria. Consideramos que esta memoria contiene aportaciones cient´ıficas suficientemente rele- vantes como para constituir la Tesis Doctoral de la interesada. En Santander, a 18 de Marzo de 2014, Rita Bel´en Barreiro Vilas Enrique Mart´ınez Gonz´alez A la Iaia Trini VII Agradecimientos Primero de todo, y aunque no est´ede moda, me gustar´ıa empezar por agradecer al Gobierno de Espa˜na, por las becas recibidas al estudiar la licenciatura de f´ısica, porque cuando tienes pocos recursos, pagar las matr´ıculas acad´emicas no es f´acil. Tambi´en por ofrecer becas FPI, de la que he sido beneficiaria, y que me ha permitido formarme como investigadora cobrando un sueldo y cotizando.
    [Show full text]
  • The QUIJOTE-CMB Experiment: Studying the Polarisation of the Galactic and Cosmological Microwave Emissions
    The QUIJOTE-CMB Experiment: studying the polarisation of the Galactic and Cosmological microwave emissions J.A. Rubi˜no-Mart´ına,b,R.Reboloa,b,h,M.Aguiara,R.G´enova-Santosa,b,F.G´omez-Re˜nascoa, J.M. Herrerosa, R.J. Hoylanda,C.L´opez-Caraballoa,b,A.E.PelaezSantosa,b,V.Sanchezdela Rosaa, A. Vega-Morenoa,T.Viera-Curbeloa,E.Mart´ınez-Gonzalezc, R.B. Barreiroc, F.J. Casasc, J.M. Diegoc,R.Fern´andez-Cobosc, D. Herranzc,M.L´opez-Caniegoc,D.Ortizc, P. Vielvac,E.Artald,B.Ajad, J. Cagigasd, J.L. Canod,L.delaFuented, A. Mediavillad, J.V. Ter´and, E. Villad, L. Piccirilloe,R.Battyee, E. Blackhurste,M.Browne, R.D. Daviese, R.J. Davise,C.Dickinsone,S.Harpere,B.Maffeie,M.McCulloche, S. Melhuishe,G.Pisanoe, R.A. Watsone,M.Hobsonf,K.Graingef, A. Lasenbyf,g, R. Saundersf, and P. Scottf aInstituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38200 La Laguna, Tenerife, Spain; bDepartamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain; cInstituto de Fisica de Cantabria (IFCA), CSIC-Univ. de Cantabria, Avda. los Castros, s/n, E-39005 Santander, Spain; dDepartamento de Ingenieria de COMunicaciones (DICOM), Laboratorios de I+D de Telecomunicaciones, Plaza de la Ciencia s/n, E-39005 Santander, Spain; eJodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK; fAstrophysics Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK; gKavli Institute for Cosmology, Univ. of Cambridge, Madingley Road, Cambridge CB3 0HA; hConsejo Superior de Investigaciones Cientificas, Spain ABSTRACT The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10–40 GHz and at large and medium angular scales.
    [Show full text]
  • The QUIJOTE Experiment: Project Overview and First Results
    Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8 – 12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-Monteagudo, J. Trujillo, and L. Valdivielso (eds.) The QUIJOTE experiment: project overview and first results R. G´enova-Santos1;6, J.A. Rubi~no-Mart´ın1;6, R. Rebolo1;6;7, M. Aguiar1, F. G´omez-Re~nasco1, C. Guti´errez1;6, R.J. Hoyland1, C. L´opez-Caraballo1;6;8, A.E. Pel´aez-Santos1;6, M.R. P´erez-de-Taoro1, F. Poidevin1;6 , V. S´anchez de la Rosa1, D. Tramonte1;6, A. Vega-Moreno1, T. Viera-Curbelo1, R. Vignaga1;6, E. Mart´ınez-Gonz´alez2, R.B. Barreiro2, B. Casaponsa2, F.J. Casas2, J.M. Diego2, R. Fern´andez-Cobos2, D. Herranz2, M. L´opez-Caniego2, D. Ortiz2, P. Vielva2, E. Artal3, B. Aja3, J. Cagigas3, J.L. Cano3, L. de la Fuente3, A. Mediavilla3, J.V. Ter´an3, E. Villa3, L. Piccirillo4, Davies4, R.J. Davis4, C. Dickinson4, K. Grainge4, S. Harper4, B. Maffei4, M. McCulloch4, S. Melhuish4, G. Pisano4, R.A. Watson4, A. Lasenby5;9, M. Ashdown5;9, M. Hobson5, Y. Perrott5, N. Razavi-Ghods5, R. Saunders6, D. Titterington6 and P. Scott6 1 Instituto de Astrofis´ıcade Canarias, 38200 La Laguna, Tenerife, Canary Islands, Spain 2 Instituto de F´ısicade Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, 39005 Santander, Spain 3 Departamento de Ingenieria de COMunicaciones (DICOM), Laboratorios de I+D de Telecomunicaciones, Universidad de Cantabria, Plaza de la Ciencia s/n, E-39005 Santander, Spain 4 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K 5 arXiv:1504.03514v1 [astro-ph.CO] 14 Apr 2015 Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J.
    [Show full text]