QUIJOTE-MFI: Optics Characterisation and Polarisation Measurements of CMB Foregrounds
Total Page:16
File Type:pdf, Size:1020Kb
DEPARTAMENTO DE ASTROFISICA Universidad de La Laguna QUIJOTE-MFI: Optics Characterisation and Polarisation Measurements of CMB Foregrounds Memoria que presenta D. Riccardo Vignaga para optar al grado de Doctor en Ciencias F´ısicas. Trabajo dirigido por el Dr. Ricardo G´enova Santos Dr. Rafael Rebolo L´opez INSTITUTO D- ASTROFISICA D- CANARIAS julio de 2018 Examination date: July 2018 Thesis supervisor: Ricardo G´enova Santos, Rafael Rebolo L´opez c Riccardo Vignaga 2018 ISBN: xx-xxx-xxxx-x Dep´osito legal: TF-xxxx/2018 Abstract The study of the Cosmic Microwave Background (CMB) anisotropies is one of the key tools of Modern Cosmology. The most important limitations of the experiments aimed at measuring both the intensity and the polarisation of the CMB are the systematics and the foregrounds, i.e. the Milky Way diffuse emission. This thesis will be devoted to the characterisation of these two as- pects, with particular regard to the Multi-Frequency Instrument (MFI) of the QUIJOTE (Q-U-I JOint TEnerife) experiment. The MFI consists of four horns that can measure intensity and polarisa- tion between 10 and 20 GHz at angular resolutions between 40’ and 57’. It has been operative almost continuously since November 2012, providing data of several calibrators, Galactic sources and extended fields for cosmological anal- yses. The first part of this thesis consists in the full characterisation of the optics of the MFI. The main beams are obtained through geostationary satel- lites observations and the results are confirmed with simulations and Cassiopeia A observations. We measure ellipticities > 0.92 and beam efficiencies > 0.90 in all horns. We estimate the level of the first sidelobe at -40 dB at 11 GHz, and the far sidelobes are found at a level of -70 dB, which is unprecedented for a microwave experiment. The M¨uller matrices formalism is used to analyse the polarisation response of the instrument. The main contaminant to CMB obser- vation is the intensity-to-polarisation leakage, which is below 1% at 11 GHz in the MFI. The major contaminants to the CMB polarisation are the synchrotron ra- diation and the dust emission of our Galaxy. The MFI is specifically designed to characterise the former type of emission, which is found mainly along the Galactic plane and in a region around the Galactic centre called Haze but can be found also at higher Galactic latitudes. In the second part of thesis we analyse 1300 hours of MFI data, covering four fields: W44, W49, W63 and the Haze. ≈ We produce the spectral energy distributions of 13 compact sources and adjust v vi them with physical parameters that model the synchrotron, free-free and ther- mal dust emission. Also, a phenomenological model is used for the anomalous microwave emission, which has been found in 11 sources. The diffuse emission is studied in the Haze region. We found that its main component is free-free at low Galactic latitudes and synchrotron at b 8o. In polarisation, we measure ≈ a spectral index of -2.54 in temperature, which is in agreement with the Haze spectrum measured by Planck. Resumen El estudio de las anisotrop´ıas de la Radiaci´on C´osmica de Microondas (RCM) es uno de las herramientas clave de la cosmolog´ıa moderna. Las principales lim- itaciones en los experimentos dedicados a las medidas tanto de intensidad como de polarizaci´on de la RCM son los errores sistem´aticos de la instrumentaci´on y los contaminantes en el cielo, principalmente la emisi´on difusa de nuestra Galaxia. Esta tesis es dedicada a la caracterizaci´on de estos dos aspectos en relaci´on con el Instrumento MultiFrequencia (MFI) del experimento QUIJOTE (Q-U-I JOint TEnerife). El MFI consta de cuatro bocinas que miden intensidad y polarizaci´on entre 10 y 20 GHz con una resoluci´on entre 40 y 57 minutos de arco. Est´aoperativo desde noviembre de 2012 habiendo proporcionado datos de varios calibradores, fuentes Gal´acticas y campos extensos para an´alisis cosmol´ogico. La primera parte de esta tesis consiste en la completa caracterizaci´on de los haces del MFI. Los haces principales son medidos a trav´es de observaciones de sat´elites geoesta- cionarios, y los resultados son confirmados con simulaciones y observaciones de Cassiopeia A. Se han medido ellipticidades > 0.92 y eficiencias del haz > 0.90 en todas las bocinas. La estimaci´on del nivel del primer l´obulo lateral es de -40 dB a 11 GHz, mientras los l´obulos laterales lejanos se encuentran a un nivel de -70 dB, lo cual no tiene antecedentes en experiementos de microondas. La respuesta en polarizaci´on del instrumento es estudiada con el formalismo de las matrices de M¨uller. El principal contaminante a las observaciones de la RCM es constituido por las p´erdidas de intensidad a polarizaci´on, que est´an por debajo del 1% a 11 GHz en el MFI. Los mayores contaminantes en polarizaci´on de la RCM son la radiaci´on de sincrotr´on y la emisi´on del polvo de nuestra Galaxia. El MFI est´aespecialmente dise˜nado para caracterizar el primer tipo de radiaci´on que, aunque se encuentra principalmente a lo largo del plano de la Galaxia y en una zona cercana al centro Gal´actico llamada “Haze”, puede alcanzar latitudes Gal´acticas bastante vii viii elevadas. En la segunda parte de esta tesis se analizan 1300 horas de datos ≈ del MFI, repartidos en cuatro campos: W44, W49, W63 y el Haze. Se producen las distribuciones espectrales de energia de 13 fuentes compactas y se ajustan con par´ametros f´ısicos que modelan la emisi´on de sincrotr´on, de libre-libre y de polvo t´ermico. Un modelo fenomenol´ogico es usado para la emisi´on an´omala de microondas, que ha sido encontrada en 11 fuentes. La emisi´on difusa es estudiada en la regi´on del Haze. Su componente principal es libre-libre a bajas latitudes Gal´acticas y sincrotr´on a b 8o. En polarisaci´on, se mide un ´ındice ≈ espectral de -2.54 en temperatura, lo cual est´aen acuerdo con el espectro del Haze que midi´oPlanck. Contents Abstract v Resumen vii 1 Introduction 1 1.1 The Hot Big Bang Model ...................... 1 1.1.1 Inflation ........................... 2 1.1.2 Primordial Nucleosynthesis ................. 4 1.1.3 Recombination Epoch .................... 5 1.2 CMB Anisotropies and the Angular Power Spectrum ...... 5 1.2.1 General Features ....................... 5 1.2.2 The Angular Power Spectrum of the CMB Anisotropies . 6 1.2.3 Cosmic Variance ....................... 9 1.2.4 Window Function ...................... 10 1.3 CMB Polarisation .......................... 11 1.3.1 Definition of the Stokes Parameters ............ 13 1.3.2 E and B modes ....................... 15 1.3.3 Observational Status .................... 16 1.4 External Contaminants to the CMB ................ 18 1.4.1 Atmosphere ......................... 21 1.4.2 Extragalactic Foregrounds ................. 22 1.4.3 Galactic Foregrounds .................... 24 1.5 Motivation .............................. 29 1.6 Objectives .............................. 29 1.7 Outline ................................ 30 ix x CONTENTS 2 The QUIJOTE experiment 33 2.1 The QUIJOTE project ....................... 33 2.1.1 Scientific Goals ....................... 33 2.1.2 Project Baseline ....................... 34 2.2 Telescopes and Instruments ..................... 36 2.2.1 Telescopes and Enclosure .................. 36 2.2.2 Multi-Frequency Instrument (MFI) ............ 36 2.2.3 Modifications of the MFI .................. 39 2.2.4 Thirty-GHz Instrument (TGI) ............... 41 2.2.5 Forty-GHz Instrument (FGI) ................ 41 2.3 Observing Modes of the MFI .................... 42 2.4 The MFI Pipeline .......................... 45 2.4.1 Raw Data .......................... 45 2.4.2 Time Ordered Data (TOD) ................. 47 2.4.3 Calibration Files and Binned Time Ordered Data (BTOD) 47 2.4.4 Flagging ........................... 48 2.4.5 Calibrated Time Ordered Data (CTOD) ......... 49 2.5 Map-making Methods ........................ 49 2.6 Calibration and Commissioning of the MFI ............ 53 2.6.1 Geometry of the Focal Plane ................ 53 2.6.2 Pointing Model ....................... 54 2.6.3 Bandpass Characterisation ................. 55 2.6.4 Beams ............................ 57 2.6.5 1/f Noise ........................... 57 2.6.6 Amplitude Calibration ................... 58 2.6.7 Polar Modulator Angle ................... 59 2.6.8 Polar Modulator Absorption ................ 60 2.7 Internal calibration of the MFI ................... 60 2.7.1 Description .......................... 60 2.7.2 Stability and Warming Curve ............... 61 2.7.3 Data Correction ....................... 61 2.8 Observational Status ........................ 66 3 Optics characterisation of the MFI+QT1 system 67 3.1 Motivation .............................. 67 3.2 Calibration Sources and Special Map-making ........... 68 3.3 Simulations .............................. 69 3.4 Intensity Beams ........................... 71 3.4.1 Preliminary Approach .................... 71 3.4.2 Main Beams ......................... 73 CONTENTS xi 3.4.3 Near Sidelobes ........................ 76 3.4.4 Far Sidelobes ......................... 79 3.4.5 Window Functions ...................... 82 3.5 Polarisation Beams ......................... 86 3.5.1 Jones and M¨uller Matrices ................. 86 3.5.2 Case of Horn 1 ........................ 88 3.5.3 Results and Discussion ................... 90 3.6 Conclusions .............................. 91 4 QUIJOTE-MFI Observations, Data Reduction and Maps of the Fields W44, W49, W63 and the Haze 95 4.1 Fields Selection ........................... 95 4.2