Composants Millimétriques Supra-Conducteurs Pour La Mesure De La Polarisation Du Fond Diffus Cosmologique - Application À L’Interférométrie Bolométrique

Total Page:16

File Type:pdf, Size:1020Kb

Composants Millimétriques Supra-Conducteurs Pour La Mesure De La Polarisation Du Fond Diffus Cosmologique - Application À L’Interférométrie Bolométrique Composants millim´etriquessupra-conducteurs pour la mesure de la polarisation du fond diffus cosmologique - Application `al'interf´erom´etriebolom´etrique Adnan Ghribi To cite this version: Adnan Ghribi. Composants millim´etriquessupra-conducteurs pour la mesure de la polarisa- tion du fond diffus cosmologique - Application `al'interf´erom´etriebolom´etrique. Cosmologie et astrophysique extra-galactique [astro-ph.CO]. Universit´eParis-Diderot - Paris VII, 2009. Fran¸cais. <tel-00726118> HAL Id: tel-00726118 https://tel.archives-ouvertes.fr/tel-00726118 Submitted on 29 Aug 2012 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. COMPOSANTS MILLIMETRIQUES SUPRA-CONDUCTEURS Pour la Mesure de la Polarisation du Fond Diffus Cosmologique & Application à l’Interférométrie Bolométrique Thèse de doctorat de l’Université Paris Diderot Présentée par GHRIBI Adnan Dirigée par PIAT Michel Présentée, le 25 novembre 2009, devant le jury : BINETRUY Pierre, Professeur de l’Université Paris Diderot – APC ALQUIE Georges, Professeur de l’Université Pierre et Marie Curie – L2E GIARD Martin, Directeur de recherche – CESR LAMARRE Jean Michel, Directeur de recherche – LERMA NAVARRINI Alessandro, Chargé de Recherche – INAF– Osservatorio Astronomico di Cagliari Ecole Doctorale Astronomie et Astrophysique d’Ile de France Laboratoire AstroParticule et Cosmologie – UMR7164 Centre National de la Recherche Scientifique Centre National des Etudes Spatiales Université Paris Diderot (Paris 7) AUTEUR GHRIBI Adnan TITRE Composants millimétriques supra-conducteurs pour la mesure de la polarisation du fond diffus cosmologique - Application à l’interférométrie bolométrique. DIRECTEUR DE THÈSE PIAT Michel RÉSUMÉ La mesure du fond diffus cosmologique est depuis les années 1980 au centre des pré- occupations majeures de la cosmologie observationnelle. Aujourd’hui, le défis est la détection des modes B de polarisation de ce rayonnement. Ceux-ci constituent une signature des ondes gravi- tationnelles primordiales. Afin de pouvoir atteindre cet objectif, nous avons besoin d’instruments offrant des performances exceptionnelles autant au niveau des composants que de l’architecture. Cette thèse s’intéresse de près à des composants planaires supra-conducteurs conçus pour être intégrés dans ces instruments : en particulier des filtres, des diplexeurs de polarisation et des mo- dulateurs de phase. Ces composants pourront être utilisés dans l’interférométrie bolométrique, une architecture de détection particulièrement novatrice. L’expérience QUBIC dédié à l’observation des modes B est basé sur une telle architecture. Titre et résumé en anglais au recto de la dernière page. MOTS CLÉS Fond diffus cosmologique • Modes B de polarisation • Interférométrie bolomé- trique • QUBIC • Instrumentation millimétrique • Composants micro-ondes • Technologie planaire • supra-conducteurs • Filtres • OMT diplexeurs de polarisation • déphaseurs. DISCIPLINE ADMINISTRATIVE Astronomie et Astrophysique Adresse Laboratoire AstroParticule et Cosmologie (UMR7164) Université Paris Diderot 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13 2 A ma petite Sabah, Bienvenue dans ce monde et que ta vie soit pleine de bonheur. 3 Rermerciements Je tiens à remercier tous ceux avec qui j’ai collaboré et sans qui ce travail n’aurait pas pu s’accomplir. Je pense d’abord à l’équipe d’instrumentation et services de l’APC : Michel, Eric, J-C, Damien, Fabrice, Michel (Pairat), Dominique, Nathan, Cyril, Jean Pierre, Yannick (je n’ai jamais vu quelqu’un d’aussi occupé être aussi disponible pour chacun). Merci aussi à Benoit, Frédérique, Faouzi, Frédéric, Andrea et toute l’équipe de Milan (Gigies) pour le temps, la patience et l’amitié qu’ils m’ont offert. Merci aussi aux anciens comme aux nouveaux étudiants qui maintiennent une ambiance aussi agréable. Je parle de : Antoine, Marcella, Florian, Clément, Sébastien, Romain, Silvia, Guillaume, Joseph. Finalement merci Leila pour ton soutient durant ces trois années de thèse. 5 Avant propos a science est pour moi la plus noble des quêtes, la quête d’une vérité enfantée par le doute ▲ qui habite le coeur de tout homme. La question des origines et du devenir, non le sien, mais celui de toute chose, est, sans doute, l’un de ses plus fidèles démons. Longtemps, ces questions sans réponses ont occupé la métaphysique et la philosophie. Depuis peu, la technique a sorti la cosmologie de l’ombre pour l’élever au rang de science. Cependant, cette “technique” est loin d’avoir la même noblesse car elle doit ses progrès les plus fulgurants aux vils besoins de domination et à l’appât du gain. On raconte que Galilée développa sa lunette astronomique grâce aux dons généreux d’un seigneur qui avait comme souci son application militaire. Plus tard, c’est à l’aide d’un télescope que Hubble observa le redshift des galaxies et en déduisit l’expansion de l’Univers. Au début du XX`eme siècle, la deuxième guerre mondiale a grandement contribué au développement des technologies de radar et de télécommunication. Aussi est-ce à l’aide d’une antenne prévue pour des liaisons satellites que le fond diffus cosmologique fut découvert. Cette lumière, vestige d’un passé lointain, est une source inépuisable d’information sur la physique des premiers instants de notre Univers. Afin d’introduire le contexte cosmologique, la première partie du présent document est consa- crée à la description du rayonnement fossile. Les développements présentés ont pour but premier l’amélioration des technologies et des méthodes d’observation nécessaires à sa détection et à sa caractérisation. Une attention particulière est portée sur une technique de mesure novatrice : l’in- terférométrie bolométrique, décrite dans la deuxième partie. Quant à la troisième partie, elle est consacrée aux développements instrumentaux qui constituent le coeur de mon travail. Filtres, di- plexeurs de polarisation et modulateurs de phase y sont étudiés. Dans ce manuscrit, la technique sert la cosmologie. L’on ne peut cependant détourner le regard de l’énorme apport de la physique du solide et des états condensés et de l’impact probable sur la vie quotidienne. Ceci pourrait être particulièrement le cas des supra-conducteurs et des métamatériaux. Il reste, évidemment, beaucoup à faire dans ce domaine et je suis content que cela serve directement une science aussi noble. 7 Table des matières Avant propos 7 Table des matières 9 Table des figures 13 Liste des tableaux 19 Liste des abréviations 21 Liste des symboles 23 I CONTEXTE SCIENTIFIQUE 25 1 Le Rayonnement Fossile & La Cosmologie 27 1.1 Introduction ........................................ 27 1.2 Historique ......................................... 27 1.3 Le modèle standard du Big-Bang ............................ 29 1.4 Le fond diffus cosmologique ............................... 32 1.4.1 Le corps noir ................................... 32 1.4.2 Le dipôle ..................................... 32 1.4.3 Les anisotropies primordiales .......................... 33 1.4.3.1 Anisotropies de température ..................... 34 1.4.3.2 Polarisation ............................... 35 1.5 A la recherche des modes B ............................... 37 1.6 Conclusion ........................................ 39 II INTERFÉROMÉTRIE BOLOMÉTRIQUE 41 2 Généralités sur l’Interférométrie Bolométrique 43 2.1 Introduction ........................................ 43 2.2 Raisons .......................................... 43 2.3 Architecture et Principe ................................. 45 2.4 Problématiques et Défis ................................. 47 2.5 Conclusion ........................................ 47 3 Démonstrateur d’Interférométrie Bolométrique 49 3.1 Introduction ........................................ 50 3.2 Fonctionnement ...................................... 50 3.3 Système d’analyse .................................... 51 3.4 Banc expérimental .................................... 52 3.4.1 Montage Bolométrique .............................. 52 3.4.2 Montage à température ambiante ........................ 53 3.5 Résultats ......................................... 54 3.5.1 Caractérisation des composants ......................... 54 9 3.5.2 Mesures larges-bande ............................... 55 3.5.2.1 Analyse ................................. 55 3.5.3 Réponse angulaire (4K) ............................. 58 3.6 Conclusion ........................................ 59 4 Q and U Bolometric Interferometer for Cosmology 61 4.1 Historique ......................................... 61 4.1.1 L’expérience MBI (2002) ............................ 61 4.1.2 L’expérience BRAIN (2005) ........................... 61 4.2 QUBIC aujourd’hui ................................... 62 4.2.1 Conception .................................... 62 4.2.2 Composants .................................... 63 4.3 Conclusion ........................................ 65 IIICOMPOSANTS MILLIMETRIQUES 67 5 Lignes de Transmission 69 5.1 Introduction ........................................ 69 5.2 Généralités ........................................ 69 5.3 Les Supra-conducteurs
Recommended publications
  • Detection of Polarization in the Cosmic Microwave Background Using DASI
    Detection of Polarization in the Cosmic Microwave Background using DASI Thesis by John M. Kovac A Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy The University of Chicago Chicago, Illinois 2003 Copyright c 2003 by John M. Kovac ° (Defended August 4, 2003) All rights reserved Acknowledgements Abstract This is a sample acknowledgement section. I would like to take this opportunity to The past several years have seen the emergence of a new standard cosmological model thank everyone who contributed to this thesis. in which small temperature di®erences in the cosmic microwave background (CMB) I would like to take this opportunity to thank everyone. I would like to take on degree angular scales are understood to arise from acoustic oscillations in the hot this opportunity to thank everyone. I would like to take this opportunity to thank plasma of the early universe, sourced by primordial adiabatic density fluctuations. In everyone. the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the uni- verse. Given knowledge of the temperature angular power spectrum, this theoretical framework yields a prediction for the level of the CMB polarization with essentially no free parameters. A determination of the CMB polarization would therefore provide a critical test of the underlying theoretical framework of this standard model. In this thesis, we report the detection of polarized anisotropy in the Cosmic Mi- crowave Background radiation with the Degree Angular Scale Interferometer (DASI), located at the Amundsen-Scott South Pole research station.
    [Show full text]
  • Analysis and Measurement of Horn Antennas for CMB Experiments
    Analysis and Measurement of Horn Antennas for CMB Experiments Ian Mc Auley (M.Sc. B.Sc.) A thesis submitted for the Degree of Doctor of Philosophy Maynooth University Department of Experimental Physics, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland. October 2015 Head of Department Professor J.A. Murphy Research Supervisor Professor J.A. Murphy Abstract In this thesis the author's work on the computational modelling and the experimental measurement of millimetre and sub-millimetre wave horn antennas for Cosmic Microwave Background (CMB) experiments is presented. This computational work particularly concerns the analysis of the multimode channels of the High Frequency Instrument (HFI) of the European Space Agency (ESA) Planck satellite using mode matching techniques to model their farfield beam patterns. To undertake this analysis the existing in-house software was upgraded to address issues associated with the stability of the simulations and to introduce additional functionality through the application of Single Value Decomposition in order to recover the true hybrid eigenfields for complex corrugated waveguide and horn structures. The farfield beam patterns of the two highest frequency channels of HFI (857 GHz and 545 GHz) were computed at a large number of spot frequencies across their operational bands in order to extract the broadband beams. The attributes of the multimode nature of these channels are discussed including the number of propagating modes as a function of frequency. A detailed analysis of the possible effects of manufacturing tolerances of the long corrugated triple horn structures on the farfield beam patterns of the 857 GHz horn antennas is described in the context of the higher than expected sidelobe levels detected in some of the 857 GHz channels during flight.
    [Show full text]
  • La Radiación Del Fondo Cósmico De Microondas Abstracts
    Simposio Internacional: La radiación del Fondo Cósmico de Microondas: mensajera de los orígenes del universo International Symposium: CMB Radiation: Messenger of the Origins of Our Universe Madrid, 6 de noviembre de 2014 Madrid, November 6, 2014 I The seeds of structure: A view of the Cosmic Microwave Background, Joseph Silk The shape of the universe as seen by Planck, Enrique Martínez-González Deciphering the beginnings of the universe with CMB polarization, Matías Zaldarriaga 30 years of Cosmic Microwave Background experiments in Tenerife: From temperature to polarization maps, Rafael Rebolo Cosmology from Planck: Do we need a new Physics?, Nazzareno Mandolesi FUNDACIÓN RAMÓN ARECES Simposio Internacional: La radiación del Fondo Cósmico de Microondas: mensajera de los orígenes del universo International Symposium: CMB Radiation: Messenger of the Origins of Our Universe Madrid, 6 de noviembre de 2014 Madrid, November 6, 2014 The seeds of structure: A view of the Cosmic Microwave Background, Joseph Silk One of our greatest challenges is understanding the origin of the structure of the universe.I will describe how the fossil radiation from the beginning of the universe, the cosmic microwave background, has provided a window for probing the initial conditions from which structure evolved. Infinitesimal variations in temperature on the sky, first discovered in 1992, provide the fossil fluctuations that seeded the formation of the galaxies. The cosmic microwave background radiation has now been mapped with ground-based, balloon-borne and satellite telescopes. These provide the basis for our current ``precision cosmology'' in which the universe not only contains Dark Matter but also ``DarkEnergy'', which has accelerated its expansion exponentially in the last 4 billion years.
    [Show full text]
  • A Bayesian Method for Point Source Polarisation Estimation D
    A&A 651, A24 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039741 & c ESO 2021 Astrophysics A Bayesian method for point source polarisation estimation D. Herranz1, F. Argüeso2,4, L. Toffolatti3,4, A. Manjón-García1,5, and M. López-Caniego6 1 Instituto de Física de Cantabria, CSIC-UC, Av. de Los Castros s/n, 39005 Santander, Spain e-mail: [email protected] 2 Departamento de Matemáticas, Universidad de Oviedo, C. Federico García Lorca 18, 33007 Oviedo, Spain 3 Departamento de Física, Universidad de Oviedo, C. Federico García Lorca 18, 33007 Oviedo, Spain 4 Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Escuela de Ingeniería de Minas, Materiales y Energía de Oviedo, C. Independencia 13, 33004 Oviedo, Spain 5 Departamento de Física Moderna, Universidad de Cantabria, 39005 Santander, Spain 6 ESAC, Camino Bajo del Castillo s/n, 28692 Villafranca del Castillo, Madrid, Spain Received 22 October 2020 / Accepted 2 March 2021 ABSTRACT The estimation of the polarisation P of extragalactic compact sources in cosmic microwave background (CMB) images is a very important task in order to clean these images for cosmological purposes –for example, to constrain the tensor-to-scalar ratio of primordial fluctuations during inflation– and also to obtain relevant astrophysical information about the compact sources themselves in a frequency range, ν ∼ 10–200 GHz, where observations have only very recently started to become available. In this paper, we propose a Bayesian maximum a posteriori approach estimation scheme which incorporates prior information about the distribution of the polarisation fraction of extragalactic compact sources between 1 and 100 GHz.
    [Show full text]
  • CMB Telescopes and Optical Systems to Appear In: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation
    CMB Telescopes and Optical Systems To appear in: Planets, Stars and Stellar Systems (PSSS) Volume 1: Telescopes and Instrumentation Shaul Hanany ([email protected]) University of Minnesota, School of Physics and Astronomy, Minneapolis, MN, USA, Michael Niemack ([email protected]) National Institute of Standards and Technology and University of Colorado, Boulder, CO, USA, and Lyman Page ([email protected]) Princeton University, Department of Physics, Princeton NJ, USA. March 26, 2012 Abstract The cosmic microwave background radiation (CMB) is now firmly established as a funda- mental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB ob- servations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by arXiv:1206.2402v1 [astro-ph.IM] 11 Jun 2012 the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We con- clude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.
    [Show full text]
  • The QUIJOTE Experiment: Project Overview and First Results
    Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society held on September 8–12, 2014, in Teruel, Spain. A. J. Cenarro, F. Figueras, C. Hernández-Monteagudo, J. Trujillo Bueno, and L. Valdivielso (eds.) The QUIJOTE experiment: project overview and first results R. G´enova-Santos1;6, J. A. Rubi~no-Mart´ın1;6, R. Rebolo1;6;7, M. Aguiar1, F. G´omez-Re~nasco1, C. Guti´errez1;6, R. J. Hoyland1, C. L´opez-Caraballo1;6;8, A. E. Pel´aez-Santos1;6, M. R. P´erez-de-Taoro1, F. Poidevin1;6 , V. S´anchez de la Rosa1, D. Tramonte1;6, A. Vega-Moreno1, T. Viera-Curbelo1, R. Vignaga1;6, E. Mart´ınez-Gonz´alez2, R. B. Barreiro2, B. Casaponsa2, F. J. Casas2, J. M. Diego2, R. Fern´andez-Cobos2, D. Herranz2, M. L´opez-Caniego2, D. Ortiz2, P. Vielva2, E. Artal3, B. Aja3, J. Cagigas3, J. L. Cano3, L. de la Fuente3, A. Mediavilla3, J. V. Ter´an3, E. Villa3, L. Piccirillo4, R. Davies4, R. J. Davis4, C. Dickinson4, K. Grainge4, S. Harper4, B. Maffei4, M. McCulloch4, S. Melhuish4, G. Pisano4, R. A. Watson4, A. Lasenby5;9, M. Ashdown5;9, M. Hobson5, Y. Perrott5, N. Razavi-Ghods5, R. Saunders6, D. Titterington6 and P. Scott6 1 Instituto de Astrofis´ıcade Canarias, 38200 La Laguna, Tenerife, Canary Islands, Spain 2 Instituto de F´ısicade Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, 39005 Santander, Spain 3 Departamento de Ingenieria de COMunicaciones (DICOM), Laboratorios de I+D de Telecomunicaciones, Universidad de Cantabria, Plaza de la Ciencia s/n, E-39005 Santander, Spain 4 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K 5 Astrophysics Group, Cavendish Laboratory, University of Cambridge, J.J.
    [Show full text]
  • Quasi-Optical Design and Analysis of a Bolometric Interferometer for Cosmic Microwave Background Radiation Experiments
    Quasi-Optical Design and Analysis of a Bolometric Interferometer for Cosmic Microwave Background Radiation Experiments Maynooth University Department of Experimental Physics Stephen Scully BSc (Eng) HDip (App Phy) A thesis submitted for the degree of Doctor of Philosophy February 2016 Department Head Prof. J. Anthony Murphy Supervisor Dr. Créidhe O’Sullivan TABLE OF CONTENTS 1 INTRODUCTION ....................................................................................................................... 1 1.1 COSMOLOGY AND THE CMB ........................................................................................................ 1 1.1.1 Historical........................................................................................................................... 1 1.1.2 The Big Bang Theory ......................................................................................................... 3 1.1.3 Inflation ............................................................................................................................ 7 1.1.4 Angular power spectrum of the CMB ............................................................................... 7 1.2 MEASURING THE CMB ............................................................................................................... 8 1.2.1 Temperature ..................................................................................................................... 9 1.2.2 Polarisation....................................................................................................................
    [Show full text]
  • Optimal Reconstruction of Cosmological Density Fields by Benjamin A. Horowitz a Dissertation Submitted in Partial Satisfaction O
    Optimal Reconstruction of Cosmological Density Fields By Benjamin A. Horowitz Adissertationsubmittedinpartialsatisfactionofthe requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Uros Seljak, Chair Professor Aaron Parson Professor Martin White Fall 2019 Optimal Reconstruction of Cosmological Density Fields Copyright 2019 by Benjamin A. Horowitz 1 Abstract Optimal Reconstruction of Cosmological Density Fields by Benjamin A. Horowitz Doctor of Philosophy in Physics University of California, Berkeley Professor Uros Seljak, Chair Akeyobjectiveofmoderncosmologyistodeterminethecompositionanddistributionof matter in the universe. While current observations seem to match the standard cosmological model with remarkable precision, there remains tensions between observations as well as mysteries relating to the true nature of dark matter and dark energy. Despite the recent in- creased availability of cosmological data across a wide redshift, these tensions have remained or been further worsened. With the explosion of astronomical data in the coming decade, it has become increasingly critical to extract the maximum possible amount of information available across all available scales. As the available volume for analysis increases, we are no longer sample variance limited and existing summary statistics (as well as related estima- tors) need to be re-examined. Fortunately, parallel with the construction of these surveys there is significant development in the computational techniques used to analyze that data. Algorithmic developments over the past decade and expansion of computational resources allow large cosmological simulations to be run with relative simplicity and parallel theoretical developments motivate increased interest in recovering the underlying large scale structure of the universe beyond the power spectra.
    [Show full text]
  • The Effect of a Scanning Flat Fold Mirror on a CMB B-Mode Experiment
    The effect of a scanning flat fold mirror on a CMB B-mode experiment William F. Grainger, Chris E. North, Peter. A. R. Ade Astronomy Instrumentation Group, Cardiff University. (Dated: November 19, 2018) We investigate the possibility of using a flat-fold beam steering mirror for a CMB B-mode exper- iment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated and a possible method of correction applied. I. INTRODUCTION a fiducal scan strategy and simulation pipeline. Results from this pipeline are then presented and discussed, along with other potential problems in Section IV. The prevailing ΛCDM cosmological model has been very successful in explaining many observations of the universe. However, inflation - exponential expansion II. METHOD within the first 10−35 s - has many uncertain details; indeed it lacks strong∼ confirmation. Inflationary models predict a background of gravity waves [1, 9, 20, 22, 23] For this investigation, we consider a horn fed receiver which produce a curl-like, or “B-mode” pattern of po- and compact range antenna (CRA), placed in a ground- larization on the cosmic microwave background (CMB) screen, nominally observing the horizon. The output on scales greater than 1◦, which cannot be produced by beam of the CRA is then steered to the sky with a single, density perturbations [11, 25]. The amplitude of this sig- flat, fold mirror. Although the flat mirror would be large; 4 4 m, such a system can be considered.
    [Show full text]
  • The Thirty Gigahertz Instrument Receiver for the Q-U-I Joint Tenerife Experiment: Concept and Experimental Results Enrique Villa,1,A) Juan L
    REVIEW OF SCIENTIFIC INSTRUMENTS 86, 024702 (2015) The thirty gigahertz instrument receiver for the Q-U-I Joint Tenerife experiment: Concept and experimental results Enrique Villa,1,a) Juan L. Cano,1 Jaime Cagigas,1 David Ortiz,2 Francisco J. Casas,2 Ana R. Pérez,1 Beatriz Aja,1 J. Vicente Terán,1 Luisa de la Fuente,1 Eduardo Artal,1 Roger Hoyland,3 and Ángel Mediavilla1 1Departamento Ingeniería de Comunicaciones, Universidad de Cantabria, Plaza de la Ciencia s/n, Santander 39005, Spain 2Instituto de Física de Cantabria, Avda. Los Castros s/n, Santander 39005, Spain 3Instituto de Astrofísica de Canarias, Vía Láctea s/n, La Laguna 38205, Spain (Received 12 December 2014; accepted 19 January 2015; published online 4 February 2015) This paper presents the analysis, design, and characterization of the thirty gigahertz instrument receiver developed for the Q-U-I Joint Tenerife experiment. The receiver is aimed to obtain polarization data of the cosmic microwave background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. A comprehensive analysis of the theory behind the proposed receiver is presented for a linearly polarized input signal, and the functionality tests have demonstrated adequate results in terms of Stokes parameters, which validate the concept of the receiver based on electronic phase switching. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907015] I. INTRODUCTION the moment right after the Big Bang.6 Among ground-based projects, QUIET7 and FARADAY8 have developed sensitive The Cosmic Microwave Background (CMB) is the ther- radiometers based on the schemes of previous receivers per- mal radiation from the Big Bang explosion, which fills the forming high-quality sky maps.
    [Show full text]
  • The QUIJOTE Experiment and Other CMB Projects at the Teide Observatory José Alberto Rubiño-MarN (IAC), on Behalf of the QUIJOTE CollaboraOn
    The QUIJOTE experiment and other CMB projects at the Teide Observatory José Alberto Rubiño-Mar3n (IAC), on behalf of the QUIJOTE Collaboraon 4th ASI/COSMOS workshop 4-5 MarCh 2019 Teide Observatory • Altitude: 2.400 m (Tenerife) • Longitude: 16º 30’ W • Latitude: 28º 17’ N • Typical PWV: 3 mm, and below 2mm during 20% of time. • High stability of the atmosphere. • Good weather: 90% • Long history of CMB experiments since mid 80s. Tenerife experiment 10, 15, 33 GHz The Very Small Array 30GHz COSMOSOMAS 11, 13, 15, 17 GHz Teide Observatory (Tenerife) (* = in operations) The QUIJOTE experiment QT-1 and QT-2: Cross-Dragone telescopes, 2.25m primary, 1.9m secondary. QT-1. Instrument: MFI. QT-2. Instruments: TGI & FGI 11, 13, 17, 19 GHz. 30 and 40 GHz. FWHM=0.92º-0.6º FWHM=0.37º-0.26º In operations since 2012. In operations since 2016. MFI Instrument (10-20 GHz) v In operations since Nov. 2012. v 4 horns, 32 channels. Covering 4 frequency bands: 11, 13, 17 and 19 GHz. v Sensitivities: ~400-600 µK s1/2 per channel. v MFI upgrade (MFI2). Funds secured. Aim: to inCrease the integraon speed by a factor of 3. LNA Polar Modulators 16-20 GHz 26-34 GHz OMT 10-14 GHz TGI (30 GHz) and FGI (40GHz) instruments v TGI: 31 pixels at 30GHz. Measured sensitivity: 50 µK s1/2 for the full array. First light May 12th 2016. v FGI: 31 pixels at 40GHz. Expected sensitivity: 60 µK s1/2 for the full array. In commisioning phase. v Joint comissioning started in 2018.
    [Show full text]
  • A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection
    sensors Article A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection Francisco J. Casas 1,*, David Ortiz 1, Beatriz Aja 2 , Luisa de la Fuente 2, Eduardo Artal 2 , Rubén Ruiz 3 and Jesús M. Mirapeix 3,4,5 1 Instituto de Física de Cantabria (IFCA), Avda. Los Castros s/n, 39005 Santander, Spain; [email protected] 2 Departamento Ingeniería de Comunicaciones (DICOM), Universidad de Cantabria, Plaza de la Ciencia s/n, 39005 Santander, Spain; [email protected] (B.A.); [email protected] (L.d.l.F.); [email protected] (E.A.) 3 Grupo de Ingeniería Fotónica, Universidad de Cantabria, Plaza de la Ciencia s/n, 39005 Santander, Spain; [email protected] (R.R.); [email protected] (J.M.M.) 4 Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Plaza de la Ciencia s/n, 39005 Santander, Spain 5 Instituto de Investigacion Sanitaria Valdecilla (IDIVAL), Calle Cardenal Herrera Oria, 39011 Santander, Spain * Correspondence: [email protected]; Tel.: +34-942-200-892; Fax: +34-942-200-935 Received: 4 March 2019; Accepted: 16 April 2019; Published: 19 April 2019 Abstract: This paper presents a 10 to 20 GHz bandwidth microwave polarimeter demonstrator, based on the implementation of a near-infra-red frequency up-conversion stage that allows both the optical correlation, when operating as a synthesized-image interferometer, and signal detection, when operating as a direct-image instrument. The proposed idea is oriented towards the implementation of ultra-sensitive instruments presenting several dozens or even thousands of microwave receivers operating in the lowest bands of the cosmic microwave background.
    [Show full text]