The QUIJOTE CMB Experiment

Total Page:16

File Type:pdf, Size:1020Kb

The QUIJOTE CMB Experiment (The millimeter and submillimeter sky in the Planck mission era, Paris, 10-14 January 2011) The QUIJOTE CMB Experiment José Alberto Rubiño-Martín Outline • Introduction • The QUIJOTE CMB Experiment (10-40GHz). • QUIJOTE Phase I. – Multi-Frequency Instrument (10-30GHz) – Second Instrument (30GHz) • QUIJOTE Phase II. – Third Instrument (42GHz) • EPI Consolider Project: Exploring the physics of inflation • Schedule for 2011-2012 Primordial gravitational waves and B-modes TT (from http://cosmology.berkeley.edu/~yuki/CMBpol/CMBpol.htm) Gravitational waves are the “smoking gun” of inflation. A detection of primordial B-modes gives inmediately information about the energy scale of inflation r=0.1 corresponds to an energy scale of inflation around 2x1016 GeV. CMB polarization: foregrounds E B (Tucci et al. 2004) Left) Without any Galactic removal, only the CMB E-mode can dominate at 100GHz and for l 2000. Right) With a Galactic subtraction of a factor 10 the CMB B-mode (r=0.1) can dominate at 100GHz and for l 100. The major limitation comes in this case from extragalactic sources (S<1Jy) and lensing. CMB polarization: observational status • Several E-mode detections: DASI, CBI, CAPMAP, Boomerang, WMAP, QUAD, BICEP, QUIET, etc. • WMAP7 gives r<0.93 at 95% using TE/EE/BB, and r<2.1 at 95% with BB alone. •WMAP7+BAO+SN gives r<0.2 (Komatsu et al. 2010). • BICEP: r<0.72 at 95% with BB only (Chiang et al. 2010). +1.06 • QUIET: r=0.35 -0.87 with BB only (Bischoff et Chiang et al. 2010 al. 2010) QUIJOTE CMB experiment (Q-U-I JOint TEnerife Cosmic Microwave Background Experiment) The QUIJOTE CMB consortium ( http://www.iac.es/project/cmb/quijote ) Instituto de Astrofísica de Canarias R. Rebolo (PI), J.A. Rubiño-Martín (PS), R. Génova-Santos, R. Hoyland (InstS), J.M. Herreros (PM), F. Gómez-Reñasco, M. Aguiar, C. López-Caraballo. Instituto de Física de Cantabria E. Martínez-González, P. Vielva, D. Herranz, F.J. Casas, B. Barreiro, R. Fernández-Cobos, M. López-Caniego Departamento Ingeniería de Comunicaciones E. Artal, B. Aja, J.L. Cano, L. de la Fuente, A. Mediavilla, J.P. Pascual, E. Villa Jodrell Bank Observatory L. Piccirillo, B. Maffei, G. Pisano, R.A. Watson, R. Davis, R. Davies, C. Dickinson University of Cambridge M. Hobson, M. Brown, A. Challinor, K. Grainge, A. Lasenby, R. Saunders, P. Scott IDOM G. Murga, C. Gómez, A.Gómez, J. Ariño, R. Sanquirce, J.Pan, A. Vizcargüenaga The QUIJOTE-CMB Experiment: Goals • Main science driver: to constrain (or to detect) gravitational B-modes if they have an amplitude of r=0.05. • Complement Planck at low frequencies. In combination with Planck data, push the upper limits below that value. • Measure polarized foregrounds (synchrotron) with high sensitivity to correct them in future space missions aiming to reach r=0.001. QUIJOTE: Project baseline Site: Teide Observatory Frequencies: 11, 13, 17, 19, 30 and 42 GHz. Angular resolution: ~1 degree Telescopes and instruments: two phases (funded!) Phase I. First telescope, a Multi-Frequency Instrument providing 11-30 GHz, and Second Instrument with 15 polarimeters @ 30 GHz and a polarised source subtractor facility at 30GHz. Phase II. Second telescope and third instrument at 42 GHz (~50 polarimeters). Technology: Coherent detectors. Polarization detection: modulation. Observing strategy: Deep observations in selected areas using raster scans, plus large scale map using “nominal mode” (=each antenna mounted on a fast spinning system (0.25-0.1 Hz), and earth rotation provides daily sky coverage of several thousand sq degrees). Time baseline: Main science goal (r=0.1) by 2013, and r=0.05 by 2015- 2016. Possible extension of the observations for additional 4 years. QUIJOTE CMB Experiment PHASE II. • Second QUIJOTE telescope PHASE I. • Third instrument (42GHz). • Enclosure and First QUIJOTE telescope • Multi-Frequency:10-30GHz • 30GHz instrument • Source subtractor facility @30GHz QUIJOTE CMB Experiment PHASE II. • Second QUIJOTE telescope PHASE I. • Third instrument (42GHz). • Enclosure and First QUIJOTE telescope • Multi-Frequency:10-30GHz • 30GHz instrument • Source subtractor facility @30GHz QUIJOTE. Platform and enclosure QUIJOTE First Telescope • Alto-azimutal mount • Maximum rotation speed around AZ axis: 0.25 Hz • Maximum zenith angle: 60º • Cross-Dragonian design: • Aperture: 3 m (primary) and 2.6 m (secondary) • Maximum frequency: 90 GHz (rms≤20μm and max deviation =100 μm) A Source-Subtractor facility at 30GHz A dedicated instrument at 30 GHz to measure radiosources (an upgraded version of the VSA subtractor converted to a polarimeter). We estimate around 300 sources with I>300 mJy (at 30GHz). VSA source subtractor Tenerife. 3.7 m dishes QUIJOTE CMB Experiment - Phase I. Basic facts 30GHz Multi-Frequency Instrument Instr. • Temperature sensitivity per beam, given by QU2 Tsys tintNchan • Our definition of Q is given by Q = Tx – Ty. QUIJOTE-Phase I. First instrument 11-13GHz 16-18GHz 30GHz QUIJOTE-Phase I. First instrument QUIJOTE first instrument: Multi-Frequency Instrument Spinning polar modulators • 2 horns providing 8 channels at 11 and 13 GHz • 2 horns providing 8 channels at 17 and 19 GHz • 1 horn providing 2 channels at 30 GHz • Commissioning phase: June 2011. Polar Modulators 16-20 GHz LNA 26-34 GHz OMT 10-14 GHz OMT and motor Horns QUIJOTE MFI: FEMs and BEMs * FEMs: in AIV phase. Band / polarimeter Avg, Noise temp, K 10-14GHz / 1 7K 10-14GHz / 1 10K 10-14GHz / 2 9K 10-14GHz / 2 10K 16-20GHz / 1 10K 16-20GHz / 1 12K 16-20GHz / 2 17K 16-20GHz / 2 21K 25-35GHz 18K * BEMs: in AIV phase. QUIJOTE 1st Instrument & CMB polarized foregrounds After one year of operation, QUIJOTE will produce five frequency maps (11, 13, 17, 19 and 30 GHz) in Stokes Q, U and I, each one with a sensitivity around 2-3μK per one degree beam, and covering a sky area between 5000 to 10000 square degrees. These maps will provide valuable information about the polarization properties of: Synchrotron emission: it should dominate the emission at our frequencies Anomalous microwave emission (spinning dust? little known about its polarization). Radio-sources: low contribution at degree scales, but relevant for B- modes science Maps used to clean the 30 GHz maps of the 2nd QUIJOTE instrument. Excellent complement to Planck at low frequencies. Expected polarized emission at QUIJOTE frequencies Synchrotron model: based on WMAP K-band map and observed polarization degree and angles. Intensity is extrapolated using the model described in de Oliveira-Costa et al. (2008). Radio-sources model: Extrapolation based on NVSS and GB6 catalogues, plus source counts at 15GHz from 9C survey using the method described in Tucci et al. (2004) to assign the polarization degree. Sky area: 10,000 square degrees. EE EE B, r=0.1 P16. Anomalous microwave emission: polarization of the Perseus molecular complex COSMOSOMAS at 11GHz (Battistelli et al. 2006); WMAP7 at 23-41GHz (López-Caraballo et al. 2010). 11GHz 23GHz QUIJOTE Second Instrument: the 30GHz Instrument • 15 horns providing 30 channels at 30GHz. • First conceptual design based on a re-scaled version of the first instrument. Several improvements have been applied to the opto-mechanical design and thermal interfaces. • Prototype for one complete horn is under construction and will be tested in few months. • Instrument ready for AIV in March 2012. Connectors for 26- 36GHz Receivers Displacer Pressure Sensor Hermetic Feedthroughs for encoders signals 26-36 GHz Motor Connector for Vacuum Valve Feedhorn mount Telescope Mounting Temperature sensors and Interface Flange heaters QUIJOTE second instrument: B-mode science Second instrument: • Instantaneous sensitivity: 0.057 mK s1/2 • Effective integration time per • Effective observation time: 3 years 1-degree beam: 5.96 h • Sky coverage: 5000 deg2 • Final map sensitivity: 0.38 μK/beam Predicted performance Simple estimate gives r=0.1 (95% CL) with 5,000 deg2 sky coverage and 3 years effective observing time Realistic simulations and a full pixel-based ML approach shows that r=0.1 is detected at 3σ after 1year, and at 7σ after 3 years. QUIJOTE CMB Experiment PHASE II. • Second QUIJOTE telescope PHASE I. • Third instrument (42GHz). • Enclosure and First QUIJOTE telescope • Multi-Frequency:10-30GHz • 30GHz instrument • Source subtractor facility @30GHz QUIJOTE Second Telescope • A copy of the fist telescope. Optical specifications to work up to 100GHz. • Manufacturing time: 6 months. • Ready for operation by March 2012. • To be installed at the Teide Observatory together with the second QUIJOTE instrument (30GHz). QUIJOTE Third Instrument: the 42GHz Instrument • 2 instruments, 25 horns each. Every horn provides 2 channels at 42 GHz. • Time schedule: first instrument for AIV in 2013. Consolider-Ingenio Program 2010: “Exploring the physics of inflation (EPI)” Five-year grant (2011-2016). PI: Enrique Martínez-González. Nodes: IFCA, IAC, DICOM, UGR, UPV, Univ. of Manchester, Univ. of Cambridge, Chalmers. Technical contributions: Second QUIJOTE telescope. QUIJOTE 42GHz experiment. Development of technology to build 42GHz FEMs. Pathfinder for a large-format interferometer. Digital correlator (FPGAs) vs Analog correlator (Rotman lenses). QUIJOTE: schedule for 2011-2013 First QUIJOTE instrument @11,13,17,19,30GHz (2011-2013). o Assembly, integration and verification phase of the first QUIJOTE instrument. March 2011. o Installation of the telescope and first instrument at the Teide Observatory. April-May 2011. o Commissioning phase. June-July 2011. Second QUIJOTE instrument @30GHz (2012-2014). o AIV phase in March 2012. Second QUIJOTE telescope. o Installation at the Observatory together with 2nd instrument in March- April 2012. Third QUIJOTE instrument @42GHz (2013-) o AIV phase within 2013. We are close to begin to ride... Thank you! Dalí 1945.
Recommended publications
  • Analysis and Measurement of Horn Antennas for CMB Experiments
    Analysis and Measurement of Horn Antennas for CMB Experiments Ian Mc Auley (M.Sc. B.Sc.) A thesis submitted for the Degree of Doctor of Philosophy Maynooth University Department of Experimental Physics, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland. October 2015 Head of Department Professor J.A. Murphy Research Supervisor Professor J.A. Murphy Abstract In this thesis the author's work on the computational modelling and the experimental measurement of millimetre and sub-millimetre wave horn antennas for Cosmic Microwave Background (CMB) experiments is presented. This computational work particularly concerns the analysis of the multimode channels of the High Frequency Instrument (HFI) of the European Space Agency (ESA) Planck satellite using mode matching techniques to model their farfield beam patterns. To undertake this analysis the existing in-house software was upgraded to address issues associated with the stability of the simulations and to introduce additional functionality through the application of Single Value Decomposition in order to recover the true hybrid eigenfields for complex corrugated waveguide and horn structures. The farfield beam patterns of the two highest frequency channels of HFI (857 GHz and 545 GHz) were computed at a large number of spot frequencies across their operational bands in order to extract the broadband beams. The attributes of the multimode nature of these channels are discussed including the number of propagating modes as a function of frequency. A detailed analysis of the possible effects of manufacturing tolerances of the long corrugated triple horn structures on the farfield beam patterns of the 857 GHz horn antennas is described in the context of the higher than expected sidelobe levels detected in some of the 857 GHz channels during flight.
    [Show full text]
  • La Radiación Del Fondo Cósmico De Microondas Abstracts
    Simposio Internacional: La radiación del Fondo Cósmico de Microondas: mensajera de los orígenes del universo International Symposium: CMB Radiation: Messenger of the Origins of Our Universe Madrid, 6 de noviembre de 2014 Madrid, November 6, 2014 I The seeds of structure: A view of the Cosmic Microwave Background, Joseph Silk The shape of the universe as seen by Planck, Enrique Martínez-González Deciphering the beginnings of the universe with CMB polarization, Matías Zaldarriaga 30 years of Cosmic Microwave Background experiments in Tenerife: From temperature to polarization maps, Rafael Rebolo Cosmology from Planck: Do we need a new Physics?, Nazzareno Mandolesi FUNDACIÓN RAMÓN ARECES Simposio Internacional: La radiación del Fondo Cósmico de Microondas: mensajera de los orígenes del universo International Symposium: CMB Radiation: Messenger of the Origins of Our Universe Madrid, 6 de noviembre de 2014 Madrid, November 6, 2014 The seeds of structure: A view of the Cosmic Microwave Background, Joseph Silk One of our greatest challenges is understanding the origin of the structure of the universe.I will describe how the fossil radiation from the beginning of the universe, the cosmic microwave background, has provided a window for probing the initial conditions from which structure evolved. Infinitesimal variations in temperature on the sky, first discovered in 1992, provide the fossil fluctuations that seeded the formation of the galaxies. The cosmic microwave background radiation has now been mapped with ground-based, balloon-borne and satellite telescopes. These provide the basis for our current ``precision cosmology'' in which the universe not only contains Dark Matter but also ``DarkEnergy'', which has accelerated its expansion exponentially in the last 4 billion years.
    [Show full text]
  • Planck 2015 Results. XII. Full Focal Plane Simulations Planck Collaboration: P
    Astronomy & Astrophysics manuscript no. A14˙Simulations c ESO 2016 August 13, 2016 Planck 2015 results. XII. Full Focal Plane simulations Planck Collaboration: P. A. R. Ade87, N. Aghanim60, M. Arnaud75, M. Ashdown71;5, J. Aumont60, C. Baccigalupi86, A. J. Banday95;9, R. B. Barreiro66, J. G. Bartlett1;68, N. Bartolo31;67, E. Battaner97;98, K. Benabed61;94, A. Benoˆıt58, A. Benoit-Levy´ 25;61;94, J.-P. Bernard95;9, M. Bersanelli34;49, P. Bielewicz84;9;86, J. J. Bock68;11, A. Bonaldi69, L. Bonavera66, J. R. Bond8, J. Borrilly14;90, F. R. Bouchet61;89, F. Boulanger60, M. Bucher1, C. Burigana48;32;50, R. C. Butler48, E. Calabrese92, J.-F. Cardoso76;1;61, G. Castex1, A. Catalano77;74, A. Challinor63;71;12, A. Chamballu75;16;60, H. C. Chiang28;6, P. R. Christensen85;37, D. L. Clements56, S. Colombi61;94, L. P. L. Colombo24;68, C. Combet77, F. Couchot73, A. Coulais74, B. P. Crill68;11, A. Curto66;5;71, F. Cuttaia48, L. Danese86, R. D. Davies69, R. J. Davis69, P. de Bernardis33, A. de Rosa48, G. de Zotti45;86, J. Delabrouille1, J.-M. Delouis61;94, F.-X. Desert´ 54, C. Dickinson69, J. M. Diego66, K. Dolag96;81, H. Dole60;59, S. Donzelli49, O. Dore´68;11, M. Douspis60, A. Ducout61;56, X. Dupac39, G. Efstathiou63, F. Elsner25;61;94, T. A. Enßlin81, H. K. Eriksen64, J. Fergusson12, F. Finelli48;50, O. Forni95;9, M. Frailis47, A. A. Fraisse28, E. Franceschi48, A. Frejsel85, S. Galeotta47, S. Galli70, K. Ganga1, T. Ghosh60, M. Giard95;9, Y. Giraud-Heraud´ 1, E. Gjerløw64, J. Gonzalez-Nuevo´ 20;66, K.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • ELIA STEFANO BATTISTELLI Curriculum Vitae
    ELIA STEFANO BATTISTELLI Curriculum Vitae Place: Rome, Italy Date: 03/09/2019 Part I – General Information Full Name ELIA STEFANO BATTISTELLI Date of Birth 29/03/1973 Place of Birth Milan, Italy Citizenship Italian Work Address Physics Dep., Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy Work Phone Number +39 06 49914462 Home Address Via Romolo Gigliozzi, 173, scala B, 00128, Rome, Italy Mobile Phone Number +39 349 6592825 E-mail [email protected] Spoken Languages Italian (native), English (fluent), Spanish (fluent), French (basic) Part II – Education Type Year Institution Notes (Degree, Experience,..) University graduation 1999 Sapienza University (RM, IT) Physics 1996 University of Leeds, UK Erasmus project Post-graduate studies 2000 SIGRAV (CO, IT) Graduate School in Relativity 2000 INAF (Asiago, VI, IT) Scuola Nazionale Astrofisica 2001 INAF/INFN (FC, IT) Scuola Nazionale Astroparticelle 2004 Società Italiana Fisica (CO, IT) International Fermi School 2006 Princeton University (NJ,USA) Summer School on Gal. Cluster PhD 2004 Sapienza University (RM, IT) PhD in Astronomy (XV cycle) Training Courses 2007 University of British Columbia 40-hours course in precision (BC, CA) machining 2009 Programma Nazionale Ricerche 2 weeks training course for the in Antartide (PNRA) Antarctic activity in remote camps Qualification 2013 Ministero della Pubblica National scientific qualification for Istruzione Associate Professor 2012, SSD 02/C1 (ASN-2012) Part III – Appointments IIIA – Academic Appointments Start End Institution Position 11/2018 present Sapienza University of Rome, Physics Associate Professor;Physics Department Department (Rome, Italy) SSD 02/C1-FIS/05 (Astrophysics) 11/2015 11/2018 Sapienza University of Rome, Physics Tenure track assistant professor Department (Rome, Italy) (Ricercatore a Tempo Determinato RTD- B-type).
    [Show full text]
  • The QUIJOTE CMB Experiment: Status and First Results with the Multi-Frequency Instrument
    The QUIJOTE CMB Experiment: status and first results with the multi-frequency instrument M. L´opez-Caniegoa, R. Rebolob;c;h, M. Aguiarb, R. G´enova-Santosb;c, F. G´omez-Re~nascob, C. Gutierrezb, J.M. Herrerosb, R.J. Hoylandb, C. L´opez-Caraballob;c, A.E. Pelaez Santosb;c, F. Poidevinb, J.A. Rubi~no-Mart´ınb;c, V. Sanchez de la Rosab, D. Tramonteb, A. Vega-Morenob, T. Viera-Curbelob, R. Vignagab, E. Mart´ınez-Gonzaleza, R.B. Barreiroa, B. Casaponsa a, F.J. Casasa, J.M. Diegoa, R. Fern´andez-Cobosa, D. Herranza, D. Ortiza, P. Vielvaa, E. Artald, B. Ajad, J. Cagigasd, J.L. Canod, L. de la Fuented, A. Mediavillad, J.V. Ter´and, E. Villad, L. Piccirilloe, R. Battyee, E. Blackhurste, M. Browne, R.D. Daviese, R.J. Davise, C. Dickinsone, K. Graingef , S. Harpere, B. Maffeie, M. McCulloche, S. Melhuishe, G. Pisanoe, R.A. Watsone, M. Hobsonf , A. Lasenbyf;g, R. Saundersf , and P. Scottf aInstituto de F´ısica de Cantabria, CSIC-UC, Avda. los Castros, s/n, E-39005 Santander, Spain bInstituto de Astrof´ısica de Canarias, C/Via Lactea s/n, E-38200 La Laguna, Tenerife, Spain cDepartamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain dDepartamento de Ingenier´ıade COMunicaciones (DICOM), Laboratorios de I+D de Telecomunicaciones, Plaza de la Ciencia s/n, E-39005 Santander, Spain eJodrell Bank Centre for Astrophysics, University of Manchester, Oxford Rd, Manchester M13 9PL, UK f Astrophysics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK gKavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA hConsejo Superior de Investigaciones Cient´ıficas, Spain arXiv:1401.4690v2 [astro-ph.IM] 5 Feb 2014 The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is designed to observe the polar- ization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10{40 GHz.
    [Show full text]
  • Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler
    remote sensing Article Calibration of a Polarimetric Microwave Radiometer Using a Double Directional Coupler Luisa de la Fuente 1,* , Beatriz Aja 1 , Enrique Villa 2 and Eduardo Artal 1 1 Departamento de Ingeniería de Comunicaciones, Universidad de Cantabria, 39005 Santander, Spain; [email protected] (B.A.); [email protected] (E.A.) 2 IACTEC, Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain; [email protected] * Correspondence: [email protected] Abstract: This paper presents a built-in calibration procedure of a 10-to-20 GHz polarimeter aimed at measuring the I, Q, U Stokes parameters of cosmic microwave background (CMB) radiation. A full-band square waveguide double directional coupler, mounted in the antenna-feed system, is used to inject differently polarized reference waves. A brief description of the polarimetric microwave radiometer and the system calibration injector is also reported. A fully polarimetric calibration is also possible using the designed double directional coupler, although the presented calibration method in this paper is proposed to obtain three of the four Stokes parameters with the introduced microwave receiver, since V parameter is expected to be zero for the CMB radiation. Experimental results are presented for linearly polarized input waves in order to validate the built-in calibration system. Keywords: radiometer; polarimeter calibration; microwave polarimeter; radiometer calibration; radio astronomy receiver; cosmic microwave background receiver; Stokes parameters Citation: de la Fuente, L.; Aja, B.; Villa, E.; Artal, E. Calibration of a 1. Introduction Polarimetric Microwave Radiometer Remote sensing applications employ sensitive instruments to fulfill the scientific goals Using a Double Directional Coupler. of dedicated missions or projects, either space or terrestrial.
    [Show full text]
  • Wide-Survey of the QUIJOTE CMB Experiment Presented By: Federica Guidi (IAC, ULL), on Behalf of the QUIJOTE Collaboration
    Wide-survey of the QUIJOTE CMB experiment Presented by: Federica Guidi (IAC, ULL), on behalf of the QUIJOTE collaboration. I present the status and the recent results of the QUIJOTE (Q-U-I JOint TEnerife) experiment. QUIJOTE is a project that operates from the Teide Observatory, with the aim to characterize the emission of the galactic foregrounds at microwave wavelengths, and to study the polarization of the Cosmic Microwave Background, targeting the detection of the primordial gravitational waves, the so called ”B-modes”, down to a value of the tensor to scalar ratio of r = 0.05. Recently, one of the two instruments of QUIJOTE, the Multi Frequency Instrument (MFI), concluded a wide-survey campaign, during which we observed the full northern sky, at 11, 13, 17 and 19 GHz. The wide survey maps of QUIJOTE will be delivered soon to the community. Here I present the current status of the maps, and I summarize few scientific results related to them, with special emphasis on the low frequency Galactic foregrounds, such as the Synchrotron and the Anomalous Microwave Emission. XIV.0 Reunión Científica 13-15 julio 2020 Context of the research: QUIJOTE: a polarimetric CMB experiment for the characterization of the low frequency galactic foregrounds ● CMB polarization experiments are searching for the polarization pattern imprinted by primordial gravitational waves: the “B-modes”. ● QUIJOTE is a polarimetric CMB experiment installed at the Teide observatory since 2012. ● QUIJOTE extends the Planck and WMAP coverage to low frequency, with two instruments: ○ Multi Frequency Instrument (MFI): 11, 13, 17, 19 GHz; ○ Thirty and Forty GHz Instrument (TFGI): Q Q Q Q J J 30-40 GHz.
    [Show full text]
  • Physics of the Cosmic Microwave Background Anisotropy∗
    Physics of the cosmic microwave background anisotropy∗ Martin Bucher Laboratoire APC, Universit´eParis 7/CNRS B^atiment Condorcet, Case 7020 75205 Paris Cedex 13, France [email protected] and Astrophysics and Cosmology Research Unit School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban 4041, South Africa January 20, 2015 Abstract Observations of the cosmic microwave background (CMB), especially of its frequency spectrum and its anisotropies, both in temperature and in polarization, have played a key role in the development of modern cosmology and our understanding of the very early universe. We review the underlying physics of the CMB and how the primordial temperature and polarization anisotropies were imprinted. Possibilities for distinguish- ing competing cosmological models are emphasized. The current status of CMB ex- periments and experimental techniques with an emphasis toward future observations, particularly in polarization, is reviewed. The physics of foreground emissions, especially of polarized dust, is discussed in detail, since this area is likely to become crucial for measurements of the B modes of the CMB polarization at ever greater sensitivity. arXiv:1501.04288v1 [astro-ph.CO] 18 Jan 2015 1This article is to be published also in the book \One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015) as well as in Int. J. Mod. Phys. D (in press).
    [Show full text]
  • Implicaciones Cosmológicas De Las
    DEPARTAMENTO DE F´ISICAMODERNA INSTITUTODEF´ISICA DE CANTABRIA UNIVERSIDAD DE CANTABRIA IFCA (UC-CSIC) IMPLICACIONES COSMOLOGICAS´ DE LAS ANISOTROP´IAS DE TEMPERATURA Y POLARIZACION´ DE LA RFCM Y LA ESTRUCTURA A GRAN ESCALA DEL UNIVERSO Memoria presentada para optar al t´ıtulo de Doctor otorgado por la Universidad de Cantabria por Ra´ul Fern´andez Cobos Declaraci´on de Autor´ıa Patricio Vielva Mart´ınez, Doctor en Ciencias F´ısicas y Profesor Contratado Doctor de la Universidad de Cantabria y Enrique Mart´ınez Gonz´alez, Doctor en Ciencias F´ısicas y Profesor de Investigaci´on del Consejo Superior de Investigaciones Cient´ıficas, CERTIFICAN que la presente memoria Implicaciones cosmol´ogicas de las anisotrop´ıas de temperatura y polarizaci´on de la RFCM y la estructura a gran escala del universo ha sido realizada por Ra´ul Fern´andez Cobos bajo nuestra direcci´on en el Instituto de F´ısica de Cantabria, para optar al t´ıtulo de Doctor por la Universidad de Cantabria. Consideramos que esta memoria contiene aportaciones cient´ıficas suficientemente rele- vantes como para constituir la Tesis Doctoral del interesado. En Santander, a 19 de septiembre de 2014, Patricio Vielva Mart´ınez Enrique Mart´ınez Gonz´alez A mis padres. Creo que seremos inmortales, que sembraremos las estrellas y viviremos eternamente en la carne de nuestros hijos. Ray Bradbury. Agradecimientos La realizaci´on de esta tesis doctoral ha servido de excusa para llevar a cabo un proyecto mucho m´as amplio, que se ha saldado con unos a˜nos de impagable crecimiento personal y del que estas p´aginas constituyen solo la peque˜na parte tangible.
    [Show full text]
  • Planck 2011 Conference the Millimeter And
    PLANCK 2011 CONFERENCE THE MILLIMETER AND SUBMILLIMETER SKY IN THE PLANCK MISSION ERA 10-14 January 2011 Paris, Cité des Sciences (Abstracts version Jan 14th) Planck mission status, Performances, Cross-calibration Herschel - update with a Planck perspective Pilbratt Goran, European Space Agency The Herschel Space Observatory was launched together with Planck on 14 May 2009. Herschel carries a 3.5 m diameter Cassegrain telescope and three instruments: PACS, SPIRE, and HIFI. It covers the wavelength range ~55-671 um for photometry and spectroscopy, with an angular resolution of approximately 7"/100 um. Early Herschel science performance and science results will be presented, with an attempt of a Planck perspective. The observing opportunities for follow-up of Planck results, in particular the ERCSC, will be outlined. Radio sources A Bayesian technique to detect point sources in CMB maps Argueso Francisco, Departamento de Matematicas. Universidad de Oviedo and E. Salerno, D. Herranz, J. L. Sanz, E. Kuruoglu, K. Kayabol; IFCA, CSIC, Santander, Spain. ISTI, CNR, Pisa, Italy The detection and flux estimation of point sources in cosmic microwave background (CMB) maps is a very important task in order to clean the maps and also to obtain relevant astrophysical information. We propose a new strategy based on Bayesian methodology which can be applied to the blind detection of point sources in CMB maps. The method incorporates three prior distributions: a uniform distribution on the source locations, an extended power law on the source fluxes, following the De Zotti counts model, and a Poisson distribution on the number of point sources per patch. Together with a Gaussian likelihood, these priors produce a posterior distribution.
    [Show full text]
  • A Bit of History Satellites Balloons Ground-Based
    Experimental Landscape ● A Bit of History ● Satellites ● Balloons ● Ground-Based Ground-Based Experiments There have been many: ABS, ACBAR, ACME, ACT, AMI, AMiBA, APEX, ATCA, BEAST, BICEP[2|3]/Keck, BIMA, CAPMAP, CAT, CBI, CLASS, COBRA, COSMOSOMAS, DASI, MAT, MUSTANG, OVRO, Penzias & Wilson, etc., PIQUE, Polatron, Polarbear, Python, QUaD, QUBIC, QUIET, QUIJOTE, Saskatoon, SP94, SPT, SuZIE, SZA, Tenerife, VSA, White Dish & more! QUAD 2017-11-17 Ganga/Experimental Landscape 2/33 Balloons There have been a number: 19 GHz Survey, Archeops, ARGO, ARCADE, BOOMERanG, EBEX, FIRS, MAX, MAXIMA, MSAM, PIPER, QMAP, Spider, TopHat, & more! BOOMERANG 2017-11-17 Ganga/Experimental Landscape 3/33 Satellites There have been 4 (or 5?): Relikt, COBE, WMAP, Planck (+IRTS!) Planck 2017-11-17 Ganga/Experimental Landscape 4/33 Rockets & Airplanes For example, COBRA, Berkeley-Nagoya Excess, U2 Anisotropy Measurements & others... It’s difficult to get integration time on these platforms, so while they are still used in the infrared, they are no longer often used for the http://aether.lbl.gov/www/projects/U2/ CMB. 2017-11-17 Ganga/Experimental Landscape 5/33 (from R. Stompor) Radek Stompor http://litebird.jp/eng/ 2017-11-17 Ganga/Experimental Landscape 6/33 Other Satellite Possibilities ● US “CMB Probe” ● CORE-like – Studying two possibilities – Discussions ongoing ● Imager with India/ISRO & others ● Spectrophotometer – Could include imager – Inputs being prepared for AND low-angular- the Decadal Process resolution spectrophotometer? https://zzz.physics.umn.edu/ipsig/
    [Show full text]