Implicaciones Cosmológicas De Las

Total Page:16

File Type:pdf, Size:1020Kb

Implicaciones Cosmológicas De Las DEPARTAMENTO DE F´ISICAMODERNA INSTITUTODEF´ISICA DE CANTABRIA UNIVERSIDAD DE CANTABRIA IFCA (UC-CSIC) IMPLICACIONES COSMOLOGICAS´ DE LAS ANISOTROP´IAS DE TEMPERATURA Y POLARIZACION´ DE LA RFCM Y LA ESTRUCTURA A GRAN ESCALA DEL UNIVERSO Memoria presentada para optar al t´ıtulo de Doctor otorgado por la Universidad de Cantabria por Ra´ul Fern´andez Cobos Declaraci´on de Autor´ıa Patricio Vielva Mart´ınez, Doctor en Ciencias F´ısicas y Profesor Contratado Doctor de la Universidad de Cantabria y Enrique Mart´ınez Gonz´alez, Doctor en Ciencias F´ısicas y Profesor de Investigaci´on del Consejo Superior de Investigaciones Cient´ıficas, CERTIFICAN que la presente memoria Implicaciones cosmol´ogicas de las anisotrop´ıas de temperatura y polarizaci´on de la RFCM y la estructura a gran escala del universo ha sido realizada por Ra´ul Fern´andez Cobos bajo nuestra direcci´on en el Instituto de F´ısica de Cantabria, para optar al t´ıtulo de Doctor por la Universidad de Cantabria. Consideramos que esta memoria contiene aportaciones cient´ıficas suficientemente rele- vantes como para constituir la Tesis Doctoral del interesado. En Santander, a 19 de septiembre de 2014, Patricio Vielva Mart´ınez Enrique Mart´ınez Gonz´alez A mis padres. Creo que seremos inmortales, que sembraremos las estrellas y viviremos eternamente en la carne de nuestros hijos. Ray Bradbury. Agradecimientos La realizaci´on de esta tesis doctoral ha servido de excusa para llevar a cabo un proyecto mucho m´as amplio, que se ha saldado con unos a˜nos de impagable crecimiento personal y del que estas p´aginas constituyen solo la peque˜na parte tangible. Quisiera reservar unas l´ıneas a todas las personas y organismos que han hecho posible esta tarea. Empezando —como no podr´ıa ser de otro modo— por los in- condicionales, mis padres, que han estado apoy´andome desde el principio y en todo momento, y han sabido relativizar mis accesos catastrofistas. Sin olvidar que esto viene de mucho antes, a saber, de un D´ıa del Libro y una historia geol´ogica de la Tierra para ni˜nos. No alcanzan a imaginar el valor de la confianza que depositan en m´ı. Sin ´animo de frivolizar, y porque la ciencia —y las personas que la cultivan— no se mantiene del aire, creo necesario agradecer la financiaci´on recibida a cargo del Programa Junta de Ampliaci´on de Estudios (JAE) del Consejo Superior de Investiga- ciones Cient´ıficas, subvencionado por el Fondo Social Europeo, que ha posibilitado mi independencia durante el periodo de investigaci´on, as´ıcomo la realizaci´on de varias estancias en otros centros. Me gustar´ıa resaltar la inestimable labor de mis directores de tesis, que me han visto medrar desde aquella primera vez que los visit´econ veintid´os a˜nos, y su tenacidad por que aprenda el oficio: Patricio Vielva, accesible desde el primer d´ıa y con una paciencia infinita; y Enrique Mart´ınez, cuya cotidianidad transmite su pasi´on por hacer ciencia. Tambi´en merecen un espacio los investigadores que me acogieron durante mis es- tancias breves de doctorado en Tenerife y Roma: Jos´eAlberto Rubi˜no, por su tiempo y dedicaci´on; Ricardo G´enova, siempre tan dispuesto a echar una mano; y Amedeo Balbi, por su buena disposici´on. As´ıcomo las personas que volvieron m´as amena mi estad´ıa: Carlos L´opez, por su visi´on de la vida y su amistad; y Marina Migliaccio, que vel´opor mis ´animos en Tor Vergata. Y tambi´en el personal del Observatorio del Teide, por no dejarme ceder ante la locura durante mis liminales subidas de dieciocho d´ıas. Quisiera agradecer adem´as a Luigi Toffolatti y a Bel´en Barreiro, quienes fueron mis padrinos en Santander y me brindaron la oportunidad de empezar todo esto. Y, por supuesto, trasladar aqu´ıel apoyo recibido por el resto del grupo de Cosmolog´ıa VII Observacional e Instrumentaci´on del Instituto de F´ısica de Cantabria. Mi percepci´on de esta etapa ser´ıa completamente distinta de excluir el buen am- biente de convivencia que ha reinado en el despacho. Son responsables mis compa˜neros a lo largo de todo este periplo: Andr´es Curto, la ´unica persona capaz de lograr que la Salamanca rural sea Macondo, me ense˜n´oque si algo corre como un pato y grazna como un pato, probablemente sea un pato; Luis Lanz, camarada de viajes con el que habr´e de contar ma˜nana, porque ambos sabemos que solo hemos pasado lo m´as f´acil; Raquel Fraga, non-cosmological yankee style, a quien admiro por su obstinaci´on en perseguir sue˜nos; David Ortiz, que a menudo aporta una nota cabal a la sinfon´ıa ca´otica que habita entre las mesas; Airam Marcos, cuya curiosidad por lo que le rodea raya en lo patol´ogico y por eso nos entendemos tan bien; Biuse Casaponsa, confidente con un sexto sentido a quien no cambiar´ıa ni por mil gigapeutas; y Nuria Castell´o, cuya falta de per´ıfrasis solo se ve superada por su coraje. Que el mundo recuerde esta peque˜na burbuja de paliques y debates. Tambi´en me gustar´ıa hacer una menci´on especial al buen hacer de Mar´ıa Saro, autora del dibujo de portada. VIII DEPARTAMENTO DE F´ISICAMODERNA INSTITUTODEF´ISICA DE CANTABRIA UNIVERSIDAD DE CANTABRIA IFCA (UC-CSIC) COSMOLOGICAL IMPLICATIONS FROM THE CMB TEMPERATURE AND POLARISATION ANISOTROPIES AND THE LARGE-SCALE STRUCTURE OF THE UNIVERSE A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Ra´ul Fern´andez Cobos Abbreviations used in the text ACT Atacama Cosmology Telescope AGN Active galactic nuclei AME Anomalous microwave emission APOGEE Apache Point Observatory Galactic Evolution Experiment BAO Baryon acoustic oscillations BICEP Background Imaging of Cosmic Extragalactic Polarization BipoSH Bipolar Spherical Harmonic BOOMERanG Balloon Observations Of Millimetric Extragalactic Radiation ANd Geophysics BOSS Baryon Oscillation Spectroscopic Survey CAPMAP Cosmic Anisotropy Polarization MAPer CBI Cosmic Background Imager CENSORS Combined EIS-NVSS Survey Of Radio Sources CfA Center for Astrophysics CL Confidence level CMB Cosmic microwave background COBE COsmic Background Explorer COSMOSOMAS COSMOlogical Structures On Medium Angular Scales CPL Chevallier-Polarski-Linder CS Cold Spot C-BASS C-Band All Sky Survey DA Differencing Assembly DASI Degree Angular Scale Interferometer DES Dark Energy Survey DMR Differential Microwave Radiometer EBEX E and B EXperiment EIS ESOImagingSurvey ESA European Space Agency ESO European Southern Observatory FIRAS Far-InfraRed Absolute Spectrophotometer FLRW Friedmann-Lemaˆıtre-Robertson-Walker XI FWHM Full width at half maximum GUT Grand Unification Theories HEALPix Hierarchical Equal Area isoLatitude Pixelization HEAO High Energy Astronomy Observatory HFI High-Frequency Instrument HST Hubble Space Telescope HW HEALPix wavelet IAU International Astronomical Union ICA Independent component analysis ILC Internal linear combination ISW Integrated Sachs-Wolfe J-PAS Javalambre-Physics of the Accelerated Universe Astrophysi- cal Survey LAMBDA Legacy Archive for Microwave Background Data Analysis LCRS LasCampanasRedshiftSurvey LFI Low-Frequency Instrument LSS Large-scale structure MARVELS Multi-object Apache Point Observatory Radial Velocity Ex- oplanet Large-area Survey MCMC Markov chain Monte Carlo MEM Maximum Entropy Method MITC Multi-resolution Internal Template Cleaning NILC Needlet-based Internal Linear Combination NRAO National Radio Astronomy Observatory NVSS NRAO VLA Sky Survey N-pdf N-point probability density function QUaD QUEST at DASI QUEST Q and U Extragalactic Sub-mm Telescope QUIET Q/UImagingExperimenT QUIJOTE Q-U-I JOint TEnerife RFCM Radiaci´on de fondo c´osmico de microondas SDSS Sloan Digital Sky Survey SEGUE Sloan Extension for Galactic Understanding and Exploration SEVEM Spectral estimation via Expectation-Maximization SMHW Spherical Mexican Hat wavelet XII SMICA Spectral matching of independent component analysis SPT South Pole Telescope SZ Sunyaev-Zel’dovich VLA Very Large Array WISE Wide-field Infrared Survey Explorer WMAP Wilkinson Microwave Anisotropy Probe 2dFGS Two-degree-Field Galaxy Survey 2MASS Two Micron All Sky Survey 6dFGS Six-degree-Field Galaxy Survey ΛCDM Lambda Cold Dark Matter XIII Prologue Both the cosmic microwave background (CMB) observations and the galaxy sur- veys have confirmed the main outlines of the standard cosmological model with an un- precedented accuracy. In light of the recent results from the European Space Agency (ESA) Planck satellite (Planck Collaboration I, 2013), the observed universe seems to be well described by the main outlines of this scenario. The six-parameter ΛCDM model, with a spatially-flat geometry and a power-law spectrum of adiabatic scalar perturbations, has passed the test with the most precise cosmological data measured so far. However, there are still several open issues which should be explored in greater depth, because they could hide the key to new and exciting discoveries. On the one hand, the values of some of the cosmological parameters of the model estimated by using CMB data seem to be in tension with some measurements provided by other as- trophysical data sets. For instance, the low value of the Hubble constant found by the Planck Collaboration could be deviated from the estimations obtained with Hubble Space Telescope (HST) observations of Cepheid variables or galaxy clusters traced by the Sunyaev-Zel’dovich effect and X-ray measurements (see Planck Collaboration XVI, 2013, and references therein). The value of the root mean square of the matter fluc- −1 tuations in 8 h Mpc spheres at the present time in linear theory, σ8, obtained from observations of galaxy clusters is also shifted around 3σ with respect to the estimation supplied by the Planck Collaboration. On the other hand, along with a deficit of low-ℓ power, a series of large-scale anomalies in the distribution of the CMB temperature anisotropies, first detected by WMAP, have been confirmed with a high confidence level (Planck Collaboration XXIII, 2013).
Recommended publications
  • Analysis and Measurement of Horn Antennas for CMB Experiments
    Analysis and Measurement of Horn Antennas for CMB Experiments Ian Mc Auley (M.Sc. B.Sc.) A thesis submitted for the Degree of Doctor of Philosophy Maynooth University Department of Experimental Physics, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland. October 2015 Head of Department Professor J.A. Murphy Research Supervisor Professor J.A. Murphy Abstract In this thesis the author's work on the computational modelling and the experimental measurement of millimetre and sub-millimetre wave horn antennas for Cosmic Microwave Background (CMB) experiments is presented. This computational work particularly concerns the analysis of the multimode channels of the High Frequency Instrument (HFI) of the European Space Agency (ESA) Planck satellite using mode matching techniques to model their farfield beam patterns. To undertake this analysis the existing in-house software was upgraded to address issues associated with the stability of the simulations and to introduce additional functionality through the application of Single Value Decomposition in order to recover the true hybrid eigenfields for complex corrugated waveguide and horn structures. The farfield beam patterns of the two highest frequency channels of HFI (857 GHz and 545 GHz) were computed at a large number of spot frequencies across their operational bands in order to extract the broadband beams. The attributes of the multimode nature of these channels are discussed including the number of propagating modes as a function of frequency. A detailed analysis of the possible effects of manufacturing tolerances of the long corrugated triple horn structures on the farfield beam patterns of the 857 GHz horn antennas is described in the context of the higher than expected sidelobe levels detected in some of the 857 GHz channels during flight.
    [Show full text]
  • La Radiación Del Fondo Cósmico De Microondas Abstracts
    Simposio Internacional: La radiación del Fondo Cósmico de Microondas: mensajera de los orígenes del universo International Symposium: CMB Radiation: Messenger of the Origins of Our Universe Madrid, 6 de noviembre de 2014 Madrid, November 6, 2014 I The seeds of structure: A view of the Cosmic Microwave Background, Joseph Silk The shape of the universe as seen by Planck, Enrique Martínez-González Deciphering the beginnings of the universe with CMB polarization, Matías Zaldarriaga 30 years of Cosmic Microwave Background experiments in Tenerife: From temperature to polarization maps, Rafael Rebolo Cosmology from Planck: Do we need a new Physics?, Nazzareno Mandolesi FUNDACIÓN RAMÓN ARECES Simposio Internacional: La radiación del Fondo Cósmico de Microondas: mensajera de los orígenes del universo International Symposium: CMB Radiation: Messenger of the Origins of Our Universe Madrid, 6 de noviembre de 2014 Madrid, November 6, 2014 The seeds of structure: A view of the Cosmic Microwave Background, Joseph Silk One of our greatest challenges is understanding the origin of the structure of the universe.I will describe how the fossil radiation from the beginning of the universe, the cosmic microwave background, has provided a window for probing the initial conditions from which structure evolved. Infinitesimal variations in temperature on the sky, first discovered in 1992, provide the fossil fluctuations that seeded the formation of the galaxies. The cosmic microwave background radiation has now been mapped with ground-based, balloon-borne and satellite telescopes. These provide the basis for our current ``precision cosmology'' in which the universe not only contains Dark Matter but also ``DarkEnergy'', which has accelerated its expansion exponentially in the last 4 billion years.
    [Show full text]
  • Planck 2015 Results. XII. Full Focal Plane Simulations Planck Collaboration: P
    Astronomy & Astrophysics manuscript no. A14˙Simulations c ESO 2016 August 13, 2016 Planck 2015 results. XII. Full Focal Plane simulations Planck Collaboration: P. A. R. Ade87, N. Aghanim60, M. Arnaud75, M. Ashdown71;5, J. Aumont60, C. Baccigalupi86, A. J. Banday95;9, R. B. Barreiro66, J. G. Bartlett1;68, N. Bartolo31;67, E. Battaner97;98, K. Benabed61;94, A. Benoˆıt58, A. Benoit-Levy´ 25;61;94, J.-P. Bernard95;9, M. Bersanelli34;49, P. Bielewicz84;9;86, J. J. Bock68;11, A. Bonaldi69, L. Bonavera66, J. R. Bond8, J. Borrilly14;90, F. R. Bouchet61;89, F. Boulanger60, M. Bucher1, C. Burigana48;32;50, R. C. Butler48, E. Calabrese92, J.-F. Cardoso76;1;61, G. Castex1, A. Catalano77;74, A. Challinor63;71;12, A. Chamballu75;16;60, H. C. Chiang28;6, P. R. Christensen85;37, D. L. Clements56, S. Colombi61;94, L. P. L. Colombo24;68, C. Combet77, F. Couchot73, A. Coulais74, B. P. Crill68;11, A. Curto66;5;71, F. Cuttaia48, L. Danese86, R. D. Davies69, R. J. Davis69, P. de Bernardis33, A. de Rosa48, G. de Zotti45;86, J. Delabrouille1, J.-M. Delouis61;94, F.-X. Desert´ 54, C. Dickinson69, J. M. Diego66, K. Dolag96;81, H. Dole60;59, S. Donzelli49, O. Dore´68;11, M. Douspis60, A. Ducout61;56, X. Dupac39, G. Efstathiou63, F. Elsner25;61;94, T. A. Enßlin81, H. K. Eriksen64, J. Fergusson12, F. Finelli48;50, O. Forni95;9, M. Frailis47, A. A. Fraisse28, E. Franceschi48, A. Frejsel85, S. Galeotta47, S. Galli70, K. Ganga1, T. Ghosh60, M. Giard95;9, Y. Giraud-Heraud´ 1, E. Gjerløw64, J. Gonzalez-Nuevo´ 20;66, K.
    [Show full text]
  • ELIA STEFANO BATTISTELLI Curriculum Vitae
    ELIA STEFANO BATTISTELLI Curriculum Vitae Place: Rome, Italy Date: 03/09/2019 Part I – General Information Full Name ELIA STEFANO BATTISTELLI Date of Birth 29/03/1973 Place of Birth Milan, Italy Citizenship Italian Work Address Physics Dep., Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy Work Phone Number +39 06 49914462 Home Address Via Romolo Gigliozzi, 173, scala B, 00128, Rome, Italy Mobile Phone Number +39 349 6592825 E-mail [email protected] Spoken Languages Italian (native), English (fluent), Spanish (fluent), French (basic) Part II – Education Type Year Institution Notes (Degree, Experience,..) University graduation 1999 Sapienza University (RM, IT) Physics 1996 University of Leeds, UK Erasmus project Post-graduate studies 2000 SIGRAV (CO, IT) Graduate School in Relativity 2000 INAF (Asiago, VI, IT) Scuola Nazionale Astrofisica 2001 INAF/INFN (FC, IT) Scuola Nazionale Astroparticelle 2004 Società Italiana Fisica (CO, IT) International Fermi School 2006 Princeton University (NJ,USA) Summer School on Gal. Cluster PhD 2004 Sapienza University (RM, IT) PhD in Astronomy (XV cycle) Training Courses 2007 University of British Columbia 40-hours course in precision (BC, CA) machining 2009 Programma Nazionale Ricerche 2 weeks training course for the in Antartide (PNRA) Antarctic activity in remote camps Qualification 2013 Ministero della Pubblica National scientific qualification for Istruzione Associate Professor 2012, SSD 02/C1 (ASN-2012) Part III – Appointments IIIA – Academic Appointments Start End Institution Position 11/2018 present Sapienza University of Rome, Physics Associate Professor;Physics Department Department (Rome, Italy) SSD 02/C1-FIS/05 (Astrophysics) 11/2015 11/2018 Sapienza University of Rome, Physics Tenure track assistant professor Department (Rome, Italy) (Ricercatore a Tempo Determinato RTD- B-type).
    [Show full text]
  • Physics of the Cosmic Microwave Background Anisotropy∗
    Physics of the cosmic microwave background anisotropy∗ Martin Bucher Laboratoire APC, Universit´eParis 7/CNRS B^atiment Condorcet, Case 7020 75205 Paris Cedex 13, France [email protected] and Astrophysics and Cosmology Research Unit School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban 4041, South Africa January 20, 2015 Abstract Observations of the cosmic microwave background (CMB), especially of its frequency spectrum and its anisotropies, both in temperature and in polarization, have played a key role in the development of modern cosmology and our understanding of the very early universe. We review the underlying physics of the CMB and how the primordial temperature and polarization anisotropies were imprinted. Possibilities for distinguish- ing competing cosmological models are emphasized. The current status of CMB ex- periments and experimental techniques with an emphasis toward future observations, particularly in polarization, is reviewed. The physics of foreground emissions, especially of polarized dust, is discussed in detail, since this area is likely to become crucial for measurements of the B modes of the CMB polarization at ever greater sensitivity. arXiv:1501.04288v1 [astro-ph.CO] 18 Jan 2015 1This article is to be published also in the book \One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015) as well as in Int. J. Mod. Phys. D (in press).
    [Show full text]
  • A Bit of History Satellites Balloons Ground-Based
    Experimental Landscape ● A Bit of History ● Satellites ● Balloons ● Ground-Based Ground-Based Experiments There have been many: ABS, ACBAR, ACME, ACT, AMI, AMiBA, APEX, ATCA, BEAST, BICEP[2|3]/Keck, BIMA, CAPMAP, CAT, CBI, CLASS, COBRA, COSMOSOMAS, DASI, MAT, MUSTANG, OVRO, Penzias & Wilson, etc., PIQUE, Polatron, Polarbear, Python, QUaD, QUBIC, QUIET, QUIJOTE, Saskatoon, SP94, SPT, SuZIE, SZA, Tenerife, VSA, White Dish & more! QUAD 2017-11-17 Ganga/Experimental Landscape 2/33 Balloons There have been a number: 19 GHz Survey, Archeops, ARGO, ARCADE, BOOMERanG, EBEX, FIRS, MAX, MAXIMA, MSAM, PIPER, QMAP, Spider, TopHat, & more! BOOMERANG 2017-11-17 Ganga/Experimental Landscape 3/33 Satellites There have been 4 (or 5?): Relikt, COBE, WMAP, Planck (+IRTS!) Planck 2017-11-17 Ganga/Experimental Landscape 4/33 Rockets & Airplanes For example, COBRA, Berkeley-Nagoya Excess, U2 Anisotropy Measurements & others... It’s difficult to get integration time on these platforms, so while they are still used in the infrared, they are no longer often used for the http://aether.lbl.gov/www/projects/U2/ CMB. 2017-11-17 Ganga/Experimental Landscape 5/33 (from R. Stompor) Radek Stompor http://litebird.jp/eng/ 2017-11-17 Ganga/Experimental Landscape 6/33 Other Satellite Possibilities ● US “CMB Probe” ● CORE-like – Studying two possibilities – Discussions ongoing ● Imager with India/ISRO & others ● Spectrophotometer – Could include imager – Inputs being prepared for AND low-angular- the Decadal Process resolution spectrophotometer? https://zzz.physics.umn.edu/ipsig/
    [Show full text]
  • The Large Scale Polarization Explorer (LSPE) for CMB Measurements: Performance Forecast
    Prepared for submission to JCAP The large scale polarization explorer (LSPE) for CMB measurements: performance forecast The LSPE collaboration G. Addamo,a P. A. R. Ade,b C. Baccigalupi,c A. M. Baldini,d P. M. Battaglia,e E. S. Battistelli, f;g A. Baù,h P. de Bernardis, f;g M. Bersanelli,i; j M. Biasotti,k;l A. Boscaleri,m B. Caccianiga, j S. Caprioli,i; j F. Cavaliere,i; j F. Cei, f;n K. A. Cleary,o F. Columbro, f;g G. Coppi,p A. Coppolecchia, f;g F. Cuttaia,q G. D’Alessandro, f;g G. De Gasperis,r;s M. De Petris, f;g V. Fafone,r;s F. Farsian,c L. Ferrari Barusso,k;l F. Fontanelli,k;l C. Franceschet,i; j T.C. Gaier,u L. Galli,d F. Gatti,k;l R. Genova-Santos,t;v M. Gerbino,D;C M. Gervasi,h;w T. Ghigna,x D. Grosso,k;l A. Gruppuso,q;H R. Gualtieri,G F. Incardona,i; j M. E. Jones,x P. Kangaslahti,o N. Krachmalnicoff,c L. Lamagna, f;g M. Lattanzi,D;C M. Lumia,a R. Mainini,h D. Maino,i; j S. Mandelli,i; j M. Maris,y S. Masi, f;g S. Matarrese,z A. May,A L. Mele, f;g P. Mena,B A. Mennella,i; j R. Molina,B D. Molinari,q;E;C;D G. Morgante,q U. Natale,C;D F. Nati,h P. Natoli,C;D L. Pagano,C;D A. Paiella, f;g F.
    [Show full text]
  • Asymfast, a Method for Convolving Maps with Asymmetric Main Beams
    Asymfast, a method for convolving maps with asymmetric main beams M. Tristram,∗ J. F. Mac´ıas-P´erez, and C. Renault Laboratoire de Physique Subatomique et de Cosmologie, 53 Avenue des Martyrs, 38026 Grenoble Cedex, France J-Ch. Hamilton Laboratoire de Physique Nucl´eaire et de Hautes Energies, 4 place Jussieu, 75252 Paris Cedex 05, France (Dated: October 24, 2018) We describe a fast and accurate method to perform the convolution of a sky map with a general asymmetric main beam along any given scanning strategy. The method is based on the decomposi- tion of the beam as a sum of circular functions, here Gaussians. It can be easily implemented and is much faster than pixel-by-pixel convolution. In addition, Asymfast can be used to estimate the effective circularized beam transfer functions of CMB instruments with non-symmetric main beam. This is shown using realistic simulations and by comparison to analytical approximations which are available for Gaussian elliptical beams. Finally, the application of this technique to Archeops data is also described. Although developped within the framework of Cosmic Microwave Background observations, our method can be applied to other areas of astrophysics. PACS numbers: 95.75.-z, 98.80.-k I. INTRODUCTION asymmetric beam, the convolved map at a given pointing direction on the sky would depend both on the relative With the increasing in accuracy and angular scale orientation of the beam on the sky and on the shape of coverage of the recent Cosmic Microwave Background the beam pattern. This makes brute-force convolution (CMB) experiments, a major objective is to include beam particularly painful and slow (e.g.
    [Show full text]
  • The QUIJOTE Experiment and Other CMB Projects at the Teide Observatory José Alberto Rubiño-MarN (IAC), on Behalf of the QUIJOTE CollaboraOn
    The QUIJOTE experiment and other CMB projects at the Teide Observatory José Alberto Rubiño-Mar3n (IAC), on behalf of the QUIJOTE Collaboraon 4th ASI/COSMOS workshop 4-5 MarCh 2019 Teide Observatory • Altitude: 2.400 m (Tenerife) • Longitude: 16º 30’ W • Latitude: 28º 17’ N • Typical PWV: 3 mm, and below 2mm during 20% of time. • High stability of the atmosphere. • Good weather: 90% • Long history of CMB experiments since mid 80s. Tenerife experiment 10, 15, 33 GHz The Very Small Array 30GHz COSMOSOMAS 11, 13, 15, 17 GHz Teide Observatory (Tenerife) (* = in operations) The QUIJOTE experiment QT-1 and QT-2: Cross-Dragone telescopes, 2.25m primary, 1.9m secondary. QT-1. Instrument: MFI. QT-2. Instruments: TGI & FGI 11, 13, 17, 19 GHz. 30 and 40 GHz. FWHM=0.92º-0.6º FWHM=0.37º-0.26º In operations since 2012. In operations since 2016. MFI Instrument (10-20 GHz) v In operations since Nov. 2012. v 4 horns, 32 channels. Covering 4 frequency bands: 11, 13, 17 and 19 GHz. v Sensitivities: ~400-600 µK s1/2 per channel. v MFI upgrade (MFI2). Funds secured. Aim: to inCrease the integraon speed by a factor of 3. LNA Polar Modulators 16-20 GHz 26-34 GHz OMT 10-14 GHz TGI (30 GHz) and FGI (40GHz) instruments v TGI: 31 pixels at 30GHz. Measured sensitivity: 50 µK s1/2 for the full array. First light May 12th 2016. v FGI: 31 pixels at 40GHz. Expected sensitivity: 60 µK s1/2 for the full array. In commisioning phase. v Joint comissioning started in 2018.
    [Show full text]
  • Quantum Universe V. Mukhanov
    Quantum Universe V. Mukhanov ASC, LMU, München The efforts to understand the universe is one of the very few things that lifts human life a little above the level of farce... S. Weinberg, 1977 Before 1990 The Universe expands Hubble law v r 1 r v = Hr t ∼ = ∼ 13,7bil. years v H There is baryonic matter: about 25% of 4He, D....heavy elements Dark Matter???? baryonic origin??? Large Scale Structure: clusters of galaxies! Filaments, Voids?????????????????????? There exists background radiation with the temperature T ≈ 3K Penzias, Wilson 1965 a 1 a T ∝ λ ∝ a When the Universe was 1000 times smaller its temperature was about 2725°K Nucleosynthesis Recombination Very homogeneous Inhomogeneous Very homogeneous Inhomogeneous ??? ΔΔpx ≥ h There always exist unavoidable Quantum Fluctuations Quantum fluctuations in the density distribution are large (10-5 ) only in extremely small scales ( ∼ 10-33 cm), but very small ( 10-58 ) on galactic scales ( 1025 cm) ∼ ∼ Can we transfer the large fluctuations from extremely small scales to large scales??? a! decelerated Friedmann Expansion a! exp(Ht) 0 ≈ a!i ti t0 t PREDICTIONS 1) flat Universe Perturbations are : 2) adiabatic (MC, 81) 2 3) gaussian: Φ=Φg + fNLΦg , where fNL = O(1) (MC, 81) 1−nS 4) spectrum: Φ ∝ ln (λ/λγ ) ∝ λ with nS = 0.96 (MC, 81) 5) Gravitational waves (Starobinsky, 79) 5) Gravitational waves (Starobinsky, 79) L.P. 9/6/2003: We are writing a proposal to get money to do our small angular scale CMB experiment. If I say that simple models of inflation require n_s=0.95+/-0.03 (95\% cl) is it correct? I'm especially interested in the error.
    [Show full text]
  • INFLATION in 1090 Causally Disconnected Regions  /   105 !!!
    Quantum Origin of the Universe Structure V. Mukhanov ASC, LMU, München Blaise Pascal Chair, ENS, Paris Before 1990 The Universe expands Hubble law v r 1 r Hr t : : 13,7bil. years v H There exists background radiation with the temperature T 3K Penzias, Wilson 1965 There is baryonic matter: about 25% of 4He, D....heavy elements Dark Matter???? baryonic origin??? Large Scale Structure: clusters of galaxies! Filaments, Voids?????????????????????? After 90 - present COBE 1992 2.725K Blackbody Spectrum of the CMB Space-Bases experiments: Relikt-1, COBE, WMAP, Planck Balloon: Boomerang, Maxima, Archeops, EBEX, ARCADE, QMAP, Spider, TopHat Ground-based: ABS, ACBAR, ACT, AMI, APEX, APEX-SZ, ATCA BICEP, BICEP2, BIMA, CAPMAP, CAT, CBI, Clover, COSMOSOMAS, DASI, FOCUS, GUBBINS, Keck Array, MAT, OCRA, OVRO, POLARBEAR, QUaD, QUBIC, QUIET, RGWBT, Sakaatoon, SPT, TOCO, SZA, Tenerife, VSA Expanding Universe: Facts Today: The Universe is homogeneous and isotropic on scales from 300 millions up to 13 billions light-years There exist structure on small scales: Planets, Stars, Galaxies, Clusters of galaxies Superclusters .... There is 75%H , 25% He a nd heavy elements in very small amounts In past the Universe was VERY hot There exist Dark Matter and Dark Energy When the Universe was about 1000 times smaller, it was extremely homogeneous and isotropic in all scales 105 a 1 T a a When the Universe was 1000 times smaller its temperature was about 2725K Nucleosynthesis Recombination ??? Quark-gluon Neutrinos decoupling, phase transition Electron-Positron pairs annihilation ( 1 sek) 10-4 sec t 1010 Electro-weak phase transition Very homogeneous Inhomogeneous ??? INFLATION In 1090 causally disconnected regions / 105 !!! .
    [Show full text]
  • Tests and Problems of the Standard Model in Cosmology
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 February 2017 doi:10.20944/preprints201702.0002.v1 Peer-reviewed version available at Foundations of Physics 2017, 47, , 711-768; doi:10.1007/s10701-017-0073-8 Tests and Problems of the Standard Model in Cosmology Mart´ınL´opez-Corredoira Abstract The main foundations of the standard ΛCDM model of cosmology are that: 1) The redshifts of the galaxies are due to the expansion of the Uni- verse plus peculiar motions; 2) The cosmic microwave background radiation and its anisotropies derive from the high energy primordial Universe when matter and radiation became decoupled; 3) The abundance pattern of the light elements is explained in terms of primordial nucleosynthesis; and 4) The formation and evolution of galaxies can be explained only in terms of gravi- tation within a inflation+dark matter+dark energy scenario. Numerous tests have been carried out on these ideas and, although the standard model works pretty well in fitting many observations, there are also many data that present apparent caveats to be understood with it. In this paper, I offer a review of these tests and problems, as well as some examples of alternative models. Keywords Cosmology · Observational cosmology · Origin, formation, and abundances of the elements · dark matter · dark energy · superclusters and large-scale structure of the Universe PACS 98.80.-k · 98.80.E · 98.80.Ft · 95.35.+d · 95.36.+x · 98.65.Dx Mathematics Subject Classification (2000) 85A40 · 85-03 1 Introduction There is a dearth of discussion about possible wrong statements in the foun- dations of standard cosmology (the \Big Bang" hypothesis in the present-day version of ΛCDM, i.e.
    [Show full text]