Published Version (PDF 990Kb)

Total Page:16

File Type:pdf, Size:1020Kb

Published Version (PDF 990Kb) This may be the author’s version of a work that was submitted/accepted for publication in the following source: Nielsen, Per Halkjær, McIlroy, Simon J, Albertsen, Mads, & Nierychlo, Marta (2019) Re-evaluating the microbiology of the enhanced biological phosphorus re- moval process. Current Opinion in Biotechnology, 57, pp. 111-118. This file was downloaded from: https://eprints.qut.edu.au/204127/ c 2019 The Author(s) This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.copbio.2019.03.008 Available online at www.sciencedirect.com ScienceDirect Re-evaluating the microbiology of the enhanced biological phosphorus removal process Per Halkjær Nielsen, Simon J McIlroy, Mads Albertsen and Marta Nierychlo We have critically assessed some of the dogmas in the agriculture or the P can be released as orthophosphate, often microbiology of enhanced biological phosphorus removal in an anaerobic digester, and precipitated, for example, as (EBPR) and argue that the genus Tetrasphaera can be as struvite, and applied as fertilizer [4]. important as Ca. Accumulibacter for phosphorus removal; and that proliferation of their competitors, the glycogen Ever since the EBPR process was first described by James accumulating organisms, does not appear to be a practical Barnard in South Africa in the 70s [6], the PAOs and their problem for EBPR efficiency even under tropical conditions. An proposed competitors, the glycogen accumulating organisms increasing number of EBPR-related genomes are changing our (GAOs),havebeenintensivelystudiedandtheir microbiology understanding of their physiology, for example, their potential considered reasonably well described. Studies on organisms to participate in denitrification. Rather than trying to identify thought tobe importantforEBPR have historicallyfocusedon organisms that adhere to strict phenotype metabolic models, populations that appear to adhere to the canonical PAO and we advocate for broader analyses of the whole microbial GAO phenotypes that are enriched in volatile fatty acids communities in EBPR plants by iterative studies with isolates, (VFA) fed lab-scale systems where the community composi- lab enrichments, and full-scale systems. tion is often not determined. However, full-scale systems Address provide substantially more complex substrate compositions Center for Microbial Communities, Department of Chemistry and and growth environments, providing diverse niches for organ- Bioscience, Aalborg University, Aalborg, Denmark isms. Many of the proposed PAO and GAO are found to be absent or present only in low abundance in full-scale systems Corresponding author: Nielsen, Per Halkjær ([email protected]) [7 ]. Moreover, several variations of the classical phenotypes have been observed that question our common understanding Current Opinion in Biotechnology 2019, 57:111–118 of the microbiology and ecology of the EBPR process. The This review comes from a themed issue on Environmental aim of this review is to outline the new studies and critically biotechnology assess some common dogmas in EBPR microbiology related Edited by Lutgarde Raskin and Per Halkjær Nielsen to the role of PAOs and GAOs in full-scale EBPR plants. For a complete overview see the Issue and the Editorial Available online 5th April 2019 Which PAOs are important to full-scale EBPR? https://doi.org/10.1016/j.copbio.2019.03.008 Most studies in the field of EBPR microbiology have con- 0958-1669/ã 2019 The Authors. Published by Elsevier Ltd. This is an centrated on the canonical model PAO Candidatus Accumu- open access article under the CC BY-NC-ND license (http://creative- libacter. This genus is commonly found in full-scale plants commons.org/licenses/by-nc-nd/4.0/). and is relatively easy to enrich in VFA fed lab-scale reactors. Assuch,Ca.Accumulibacterhaslongbeenassumedtobethe most important of the known PAOs, yet very few studies have concurrently assessed the abundance of the several populations proposed to possess the phenotype in full-scale plants [8 ,9,10]. Our comprehensive surveys of more than Introduction 20 full-scale Danish wastewater treatment plants (WWTP) Wastewater treatment using the enhanced biological phos- over several years with both Fluorescence in situ Hybridiza- phorus removal (EBPR) process is becoming increasingly tion (FISH) and 16S rRNA gene amplicon sequencing popular because the demand for achieving low effluent [7 ,11] clearly show that although Ca. Accumulibacter is phosphorus (P) concentrations without addition of chemical common (mean abundance 0.5%), members of the actino- precipitants is increasing across the world. The EBPR bacterial Tetrasphaera PAO are often observed in higher process relies on polyphosphate accumulating organisms abundances. Our subsequent survey of 32 full-scale EBPR (PAOs) which take up and store excessive amounts of P, plants in 12 countries (covering 5 continents) (Figure 1) and compared to chemical precipitation, EBPR is a sustain- supports a higher abundance of Tetrasphaera in most plants able, effective, and economical process [1–4]. Furthermore, globally. There are examples of plants where Tetrasphaera it is a suitable process for recovery of P, which is a limited are absent or present in low abundance, primarily pilot-scale non-renewable resource, particularly important as fertilizer experiments [8 ], but this could partly be due to extraction [5]. The P-rich biomass can be used directly as a fertilizer in bias as this genus is underestimated by standard DNA www.sciencedirect.com Current Opinion in Biotechnology 2019, 57:111–118 112 Environmental biotechnology Figure 1 Actinobacteria; Tetrasphaera Proteobacteria; Dechloromonas Proteobacteria; Candidatus Accumulibacter %Read Actinobacteria; Tessaracoccus Abundance 10.0 Actinobacteria; Microlunatus Cyanobacteria; Candidatus Obscuribacter 1.0 Gemmatimonadetes; Gemmatimonas 0.1 Proteobacteria; Pseudomonas Proteobacteria; Candidatus Accumulimonas Actinobacteria; Friedmanniella m Asia ChinaAsia Japan EuropeEurope Poland Austria nited Kingdo Europe Portugal Denmark MiDAS Asia South Korea Australia Australia Africa SouthNorth AmericaAfrica USA urope U EuropeE The Netherlands Current Opinion in Biotechnology Relative read abundance of all putative PAOs [7 ] in full-scale activated sludge WWTPs across 12 countries from 5 continents. Average values for each country (except Denmark) are based on 3 to 9 samples from 2 to 4 EBPR plants collected in years 2011-2014. PAO abundance in Denmark is an average of 18 full-scale WWTPs; data sourced from MiDAS survey [64]. extraction procedures [12]. Interestingly, the dominant quantification of the intracellular content of poly-P, OTUs (97% identity) from both Tetrasphaera and Ca. Accu- polyhydroxyalkanoates (PHA), and glycogen [16 ]. mulibacter were the same in most plants across the world. Interestingly, the cellular content of poly-P in Ca. Accu- However, there may be significant microdiversity within the mulibacter was approx. 3 times higher than in Tetra- dominant OTUs as use of the ppk1 gene as phylogenetic sphaera, when considered per cell, but very similar per À13 À3 marker for Ca. Accumulibacter generally reveals large diver- biovolume (0.7 Â 10 gP mm ), as the cell volume of sity in studies around the globe [10,13–15]. Other putative Tetrasphaera is 3–5 times smaller. A P-mass balance on PAOs consistently found in a relatively high abundance in biomass from the aeration tank, which contained the some plants included the genera Dechloromonas and Tessar- highest amount of intracellular P, showed that both acoccus, although their abundance appears to be overesti- Tetrasphaera and Ca. Accumulibacter made a significant mated by sequencing based methods (possibly due to known contribution to P-removal. Also, an enriched lab-scale biases with extraction efficiency, primer choice, and copy culture of Tetrasphaera was able to carry out at least 80% number [12]), and they likely play a minimal role in P of the P-removal [19], supporting the suggestion that removal [7 ]. To date, the genera Tetrasphaera and Ca. both Ca. Accumulibacter and Tetrasphaera are important Accumulibacter appear to be the only known PAOs to be for P-removal in full-scale EBPR plants. consistently found in abundances where they could be considered critical to P removal performance. However, Are GAOs really problematic in full-scale several unknown bacteria are observed to contain excess EBPR plants? polyphosphate (poly-P) reserves and future work should GAOs are thought to be a cause of EBPR failure in focus
Recommended publications
  • Bacterial Community Structure in Waste Water Treatment
    International Journal of Research Studies in Microbiology and Biotechnology (IJRSMB) Volume 3, Issue 1, 2017, PP 1-9 ISSN 2454-9428 (Online) http://dx.doi.org/10.20431/2454-9428.0301001 www.arcjournals.org Bacterial Community Structure in Waste Water Treatment Hiral Borasiya & Shah MP Division of Applied & Environmental Microbiology, Enviro Technology Limited, Industrial Waste Water Research Laboratory, Gujarat, India [email protected] Abstract: All data suggest that microbial community structures or samples of sludge with a content of phosphate between 8 and 12% were very similar but distinct from those containing phosphate at 1.8%. In all samples analyzed, ubiquinones, menaquinone and fatty acids were the main components. Dominance and E5 suggested that a large number of organisms belonging to the b and subclasses Proteobacteria and Actinobacteria from higher GMC Gram-positive bacteria, respectively, were present. Denaturing gradient gel electrophoresis analysis revealed at least 6-10 predominant DNA bands and numerous other fragments in each sample. Five major denaturing gradient gel electrophoresis fragments from each of 1.8% and 11.8% phosphate containing sludge samples, respectively, were successfully isolated and sequenced. Phylogenetic analysis of the sequences revealed that both 3% and 15% phosphate -containing sludge samples shared three common phylotypes which are separately associated with new bacterial groups of subclass C Proteobacteria, two E5 containing Actinobacteria, and Caulobacter spp. The subclass Proteobacteria. Phylogenetic analysis revealed useful phylotypes unique for both samples sludge. Therefore, changes in the phosphate content did not affect the composition and quantity prevailing microbial population, although specific phylotypes could not be unambiguously associated with EBPR.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Midas 4: a Global Catalogue of Full-Length 16S Rrna Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. MiDAS ‌ 4: ‌ A ‌ global ‌ catalogue‌ of ‌ full-length ‌ 16S ‌ rRNA‌ gene ‌ sequences ‌ and‌ ‌ taxonomy for‌ studies ‌ of‌ bacterial‌ communities‌ in‌ wastewater‌ treatment‌ plants‌ Authors: Morten Simonsen Dueholm, Marta Nierychlo, Kasper Skytte Andersen, Vibeke ‌ Rudkjøbing, Simon Knutsson, the MiDAS Global Consortium, Mads Albertsen, and Per ‌ Halkjær Nielsen* Affiliation: Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. *Correspondence to: Per Halkjær Nielsen, Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, ‌ 9220 Aalborg, Denmark; Phone: +45 9940 8503; Fax: Not available; E-mail: [email protected] Running title: Global microbiota of wastewater treatment plants ‌ 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Biological wastewater treatment and an increased focus on resource recovery is ‌ fundamental for environmental protection, human health, and sustainable development. Microbial communities are responsible for these processes, but our knowledge of their diversity and function is still poor, partly due to the ‌lack of ‌good reference databases and comprehensive global studies.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • Research Article Analysis of Bacterial Community Structure of Activated Sludge from Wastewater Treatment Plants in Winter
    Hindawi BioMed Research International Volume 2018, Article ID 8278970, 8 pages https://doi.org/10.1155/2018/8278970 Research Article Analysis of Bacterial Community Structure of Activated Sludge from Wastewater Treatment Plants in Winter Shuang Xu, Junqin Yao , Meihaguli Ainiwaer, Ying Hong, and Yanjiang Zhang College of Resources and Environmental Science, Xinjiang University, Urumqi, China Correspondence should be addressed to Junqin Yao; [email protected] Received 21 December 2017; Accepted 5 February 2018; Published 7 March 2018 Academic Editor: Bin Ma Copyright © 2018 Shuang Xu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Activated sludge bulking is easily caused in winter, resulting in adverse efects on efuent treatment and management of wastewater treatment plants. In this study, activated sludge samples were collected from diferent wastewater treatment plants in the northern Xinjiang Uygur Autonomous Region of China in winter. Te bacterial community compositions and diversities of activated sludge were analyzed to identify the bacteria that cause bulking of activated sludge. Te sequencing generated 30087–55170 efective reads representing 36 phyla, 293 families, and 579 genera in all samples. Te dominant phyla present in all activated sludge were Proteobacteria (26.7–48.9%), Bacteroidetes (19.3–37.3%), Chlorofexi (2.9–17.1%), and Acidobacteria (1.5–13.8%). Fify-fve genera including unclassifed f Comamonadaceae, norank f Saprospiraceae, Flavobacterium, norank f Hydrogenophilaceae, Dokdonella, Terrimonas, norank f Anaerolineaceae, Tetrasphaera, Simplicispira, norank c Ardenticatenia,andNitrospira existed in all samples, accounting for 60.6–82.7% of total efective sequences in each sample.
    [Show full text]
  • Name: Tetrasphaera Japonica Authors: Maszenan Et Al. 2000 Status: New
    Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Name: Tetrasphaera japonica Authors: Maszenan et al. 2000 Status: New Species Literature: Int. J. Syst. Bacteriol. 50:601 Risk group: 1 (German classification) Type strain: ACM 5116, DSM 13192, T1-X7 Author(s) Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Schumann, P., Burghardt, J., Tokiwa, Y., Stratton, H. M. Title Three isolates of novel polyphosphate-accumulating Gram- positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Journal Int. J. Syst. Evol. Microbiol. Volume 50 Page(s) 593-603 Year 2000 Glucose Sulfide Medium Glucose 0.15 g Yeast extract 1.00 g (NH 4)2SO 4 0.50 g CaCO 3 0.10 g Ca(NO 3)2 0.10 g KCl 0.05 g K2PO 4 0.05 g MgSO 4 x 7 H 2O 0.05 g Na 2S x 9 H 2O 0.20 g Vitamin solution (see Leke Strains Medium) 10.00 ml Distilled water 990.00 ml Adjust pH to 7.3 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Genus: Tetrasphaera FH 6189 Species: japonica Numbers in other collections: DSM 13192 Reclassification: Morphology: G R ISP 2 good beige A SP none none G R ISP 3 good beige A SP none none G R ISP 4 good beige A SP none none G R ISP 5 good beige A SP none none G R ISP 6 good beige A SP none none ISP 7 G R good beige A SP none none Melanoid pigment: - - - - NaCl resistance: % Lysozyme resistance: pH: Value- Optimum- Temperature : Value- Optimum- 28°C Enzymes: Api Zym 2+ 3- 4+ 5- 6+ 7- 8- 9(+) 10- 11+ 12+ 13- 14+ 15- 16+ 17+ 18- 19- 20- Api Coryne Nit Pyz Pyr Pal βGur βGal αGlu βNag Esc Ure Gel + - - + - (+) (+) - + - - Glu Rib Xyl Man Mal Lac Sac Glyg - - - - - - - - Comments: Strain growth on Glucose Sulfide Medium Copyright: PD Dr.
    [Show full text]
  • Propionicicella Superfundia Gen. Nov., Sp. Nov., a Chlorosolvent-Tolerant Propionate-Forming, Facultative Anaerobic Bacterium Is
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Estudo Geral ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 404–413 www.elsevier.de/syapm Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater Hee-Sung Baea, William M. Moeb,Ã, Jun Yanb, Igor Tiagoc, Milton S. da Costad, Fred A. Raineya aDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA bDepartment of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA cDepartamento de Zoologia and Centro de Neurocieˆncias, Universidade de Coimbra, 3004-517 Coimbra, Portugal dDepartamento de Bioquı´mica and Centro de Neurocieˆncias, Universidade de Coimbra, 3001-401 Coimbra, Portugal Received 5 October 2005 Abstract A novel strain, designated as BL-10T, was characterized using a polyphasic approach after isolation from groundwater contaminated by a mixture of chlorosolvents that included 1,1,2-trichloroethane, 1,2-dichloroethane, and vinyl chloride. Stain BL-10T is a facultatively anaerobic bacterium able to ferment glucose to form propionate, acetate, formate, lactate, and succinate. Fermentation occurred in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations to at least 9.8 and 5.9 mM, respectively. Cells are Gram-positive, rod-shaped, non-motile, and do not form spores. Oxidase and catalase are not produced and nitrate reduction did not occur in PYG medium. Menaquinone MK-9 is the predominant respiratory quinone and meso-diaminopimelic acid is present in the cell wall peptidoglycan layer. Major cellular fatty acids are C15:0, iso C16:0, and anteiso C15:0.
    [Show full text]
  • Re-Evaluating the Microbiology of the Enhanced Biological Phosphorus Removal Process
    Aalborg Universitet Re-evaluating the microbiology of the enhanced biological phosphorus removal process Nielsen, Per Halkjær; McIlroy, Simon J.; Albertsen, Mads; Nierychlo, Marta Published in: Current Opinion in Biotechnology DOI (link to publication from Publisher): 10.1016/j.copbio.2019.03.008 Creative Commons License CC BY-NC-ND 4.0 Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Nielsen, P. H., McIlroy, S. J., Albertsen, M., & Nierychlo, M. (2019). Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Current Opinion in Biotechnology, 57, 111-118. https://doi.org/10.1016/j.copbio.2019.03.008 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate
    [Show full text]
  • Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
    Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.
    [Show full text]
  • Isolation of Novel Actinomycetes from Spider Materials
    Actinomycetologica (2009) 23:8–15 Copyright Ó 2009 The Society for Actinomycetes Japan VOL. 23, NO. 1 Isolation of Novel Actinomycetes from Spider Materials Kimika IwaiÃ, Susumu Iwamoto, Kazuo Aisaka and Makoto Suzukiy Innovative Drug Research Laboratories, Kyowa Hakko Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan (Received Oct. 20, 2008 / Accepted Mar. 12, 2009 / Published May 29, 2009) To collect new kinds of microorganisms for screening of biologically active substances, we focused on spider materials (webs, cuticle, egg sac), previously uninvestigated sources of such organisms. Using a new method of pre-treatment with 70% ethanol, 1,159 strains of actinomycetes were isolated from 196 spider materials, based on their morphological features. Of these, 293 strains were identified as non-filamentous actino- mycetes from their 16S rRNA gene sequences. More detailed examination indicated that 139 strains belonged to the suborders Micrococcineae, Frankineae and Propionibacterineae, and they included some novel strains of non-filamentous actinomycetes. Thus, spider materials provide a more useful source of non- filamentous actinomycetes than do soil samples. INTRODUCTION paper, we report a new method of isolation of micro- organisms from spider materials pre-treated with 70% The unique structural diversity inherent in natural ethanol, and we describe relationships between the kinds of products continues to be recognized for its value in the spider materials used and the taxonomic diversity of the drug discovery process (Fenical & Jensen, 2006). However, isolates obtained. there has been a recent decline in the rate of discovery of novel bioactive substances obtained from common terres- MATERIALS AND METHODS trial microorganisms, despite an increase in the rate of re- isolation of known compounds (Magarvey et al., 2004).
    [Show full text]
  • Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada
    RESEARCH ARTICLE Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada Etienne Yergeau1*, Luke Masson2, Miria Elias1, Shurong Xiang3, Ewa Madey4, a11111 Hongsheng Huang5, Brian Brooks5, Lee A. Beaudette3 1 National Research Council Canada, Energy Mining and Environment, Montreal, Qc, Canada, 2 National Research Council Canada, Human Health Therapeutics, Montreal, Qc, Canada, 3 Environment Canada, Biological Assessment and Standardization Section, Ottawa, On, Canada, 4 Canadian Food Inspection Agency, Fertilizer Safety Office, Plant Health & Biosecurity Directorate, Ottawa, On, Canada, 5 Canadian Food Inspection Agency, Ottawa Laboratory – Fallowfield, Ottawa, On, Canada OPEN ACCESS * [email protected] Citation: Yergeau E, Masson L, Elias M, Xiang S, Madey E, Huang H, et al. (2016) Comparison of Methods to Identify Pathogens and Associated Abstract Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada. The use of treated municipal wastewater residues (biosolids) as fertilizers is an attractive, PLoS ONE 11(4): e0153554. doi:10.1371/journal. inexpensive option for growers and farmers. Various regulatory bodies typically employ pone.0153554 indicator organisms (fecal coliforms, E. coli and Salmonella) to assess the adequacy and Editor: Leonard Simon van Overbeek, Wageningen efficiency of the wastewater treatment process in reducing pathogen loads in the final University and Research Centre, NETHERLANDS product. Molecular detection approaches can offer some advantages over culture-based Received: October 28, 2015 methods as they can simultaneously detect a wider microbial species range, including Accepted: March 31, 2016 non-cultivable microorganisms. However, they cannot directly assess the viability of the Published: April 18, 2016 pathogens.
    [Show full text]