Propionicicella Superfundia Gen. Nov., Sp. Nov., a Chlorosolvent-Tolerant Propionate-Forming, Facultative Anaerobic Bacterium Is

Total Page:16

File Type:pdf, Size:1020Kb

Propionicicella Superfundia Gen. Nov., Sp. Nov., a Chlorosolvent-Tolerant Propionate-Forming, Facultative Anaerobic Bacterium Is ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 404–413 www.elsevier.de/syapm Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater Hee-Sung Baea, William M. Moeb,Ã, Jun Yanb, Igor Tiagoc, Milton S. da Costad, Fred A. Raineya aDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA bDepartment of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA cDepartamento de Zoologia and Centro de Neurocieˆncias, Universidade de Coimbra, 3004-517 Coimbra, Portugal dDepartamento de Bioquı´mica and Centro de Neurocieˆncias, Universidade de Coimbra, 3001-401 Coimbra, Portugal Received 5 October 2005 Abstract A novel strain, designated as BL-10T, was characterized using a polyphasic approach after isolation from groundwater contaminated by a mixture of chlorosolvents that included 1,1,2-trichloroethane, 1,2-dichloroethane, and vinyl chloride. Stain BL-10T is a facultatively anaerobic bacterium able to ferment glucose to form propionate, acetate, formate, lactate, and succinate. Fermentation occurred in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations to at least 9.8 and 5.9 mM, respectively. Cells are Gram-positive, rod-shaped, non-motile, and do not form spores. Oxidase and catalase are not produced and nitrate reduction did not occur in PYG medium. Menaquinone MK-9 is the predominant respiratory quinone and meso-diaminopimelic acid is present in the cell wall peptidoglycan layer. Major cellular fatty acids are C15:0, iso C16:0, and anteiso C15:0. Genomic DNA G+C content is 69.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed strain BL-10T to fall within the radiation of genera Propionicimonas and Micropruina. On the basis of the results obtained in this study, it is proposed that strain BL-10T should be classified as a novel taxon, for which the name Propionicicella superfundia gen. nov., sp. nov. is proposed. The type strain of Propionicicella superfundia is BL-10T ( ¼ ATCC BAA-1218T, ¼ LMG 23096T).1 r 2005 Elsevier GmbH. All rights reserved. Keywords: Propionicicella superfundia; Facultative anaerobe; Propionate; Chlorosolvent tolerant; DNAPL; Dechlorination Introduction From 1969 to 1980, petrochemical wastes including à Corresponding author. Tel.: +1 225 578 9174 free-phase chlorinated solvents were disposed of by E-mail address: [email protected] (W.M. Moe). 1Nucleotide sequence accession number. Nucleotide sequence data direct discharge to earthen ponds at the Brooklawn site, reported are available in the DDBJ/EMBL/GenBank databases under one of two areas that comprise what is now known as the accession number DQ176646. the Petro-Processors of Louisiana, Inc. (PPI) EPA 0723-2020/$ - see front matter r 2005 Elsevier GmbH. All rights reserved. doi:10.1016/j.syapm.2005.11.004 ARTICLE IN PRESS H.-S. Bae et al. / Systematic and Applied Microbiology 29 (2006) 404–413 405 Superfund Site, located approximately 10 miles north of differential interference contrast (DIC) microscopy Baton Rouge, LA (USA). Portions of the Brooklawn (Nikon microphot-Fxa) or transmission electron micro- area were capped in the early 1990s, and an array of scopy (JEOL 1000CX TEM). For TEM, cells were wells was installed to recover organic contaminants negatively stained using uranyl acetate (2%, v/v). Spore present in the subsurface as dense non-aqueous-phase formation and motility were observed using phase liquid (DNAPL) [9]. Residual DNAPL remains in the contrast microscopy (Nikon Optiphot). subsurface, and groundwater within the DNAPL source Gram staining was performed using a Gram Stain Kit zone contains high concentrations of chlorinated orga- (Difco) according to the manufacturer’s recommended nics including 1,1,2,2-tetrachloroethane, 1,1,2-trichloro- protocol. Catalase activity was assessed as described by ethane, 1,2-dichloroethane, 1,2-dichloropropane, hexa- Smibert and Krieg [36] using 3% hydrogen peroxide chloro-1,3-butadiene, and vinyl chloride. added to cells grown anaerobically on PYG agar plates. During a study aimed at characterizing the microbial Oxidase tests were performed using the tetramethyl- population present within the DNAPL source zone at p-phenylenediamine dihydrochloride filter paper techni- the PPI site in order to assess the potential for in situ que [36]. Aerobic growth was examined on several bioremediation, we isolated a novel bacterium desig- complex media including nutrient agar (Difco), PYG nated as strain BL-10T. To determine its taxonomic agar [4], plate count agar (Difco) and R2A (Difco) to position, a polyphasic approach, including phylogenetic, which no reducing agent was added. Nitrate reducing chemotaxonomic, and phenotypic assessment was con- ability in PYG cultures containing 10 mM sodium ducted. Results indicate that strain BL-10T should be nitrate was determined according to Smibert and Krieg classified as a novel genus and novel species, for which [36]. Additional biochemical and physiological charac- the name Propionicicella superfundia, gen. nov, sp. nov. terization was conducted using Rapid ID 32A kits is proposed. (bioMe´rieux) with preparation and incubation per- formed in the anaerobic chamber. The cell suspension used to inoculate Rapid ID 32A kit was produced by Materials and methods flooding a CASB agar plate grown anaerobically at 30 1C for 14 days with API Suspension Medium provided in the kit. Isolation and bacterial strains Carbon utilization tests were performed in 16-mL Hungate tubes containing 10 mL of PY medium [4] and Groundwater samples were collected from well a headspace of N and CO (95:5, v/v). Each substrate W-1024-1 located in the DNAPL source zone at the 2 2 was added at a concentration of 5 or 10 g LÀ1 for mono-, Brooklawn portion of the PPI site. Sterile, 1.0 L glass di-, and polysaccharides and sugar alcohols. Organic sample collection bottles were filled with groundwater acids were added at a concentration of 15 or 30 mM. leaving little or no headspace, and placed on ice during Cultures were inoculated using a 1% (v/v) of an transport to the laboratory (approximately 1 h). After exponentially growing seed culture. Tubes showing an serial dilution with a potassium phosphate buffer increase in OD of more than 0.1 OD unit above the (100 mM, pH 7.0) in an anaerobic chamber (Coy 660 controls without added carbon were recorded as Laboratory Products Inc., MI), 0.1 mL aliquots were positive. The pH range for growth was evaluated over spread on Columbia Anaerobic Sheep Blood agar plates the range pH 3.0–10.0 using buffers comprised of (CASB, BBL). Plates were incubated in the anaerobic 100 mM acetate buffer for pH 3.0–6.0, 100 mM potas- chamber (headspace 90% N ,5%CO, and 5% H )at 2 2 2 sium phosphate buffer for pH 6.0–8.0, and Tris buffer 30 1C for up to 5 weeks. Isolated colonies were for pH 8.0–10.0. Growth in the NaCl concentration subcultured on CASB agar and purity verified by range of 0–5% (w/v) and the temperature range microscopy. Propionicimonas paludicola strains WdT 10–40 1C was determined in Hungate tubes containing and Wf were kindly provided by Professor Atsuko Ueki 10 mL of PYG. of the Yamagata University, Japan. These reference The ability to use chlorosolvents as electron acceptors strains were maintained on CASB agar or PYG agar [4] was examined in 25-mL serum bottle containing 10 mL in the anaerobic chamber. The isolates were stored at of anaerobic basal medium [39] or in 1/10 strength PY À80 1C in PYG with 15% (v/v) glycerol and 5% (v/v) broth. The anaerobic medium was amended with dimethylsulfoxide. acetate, lactate, and pyruvate (each 2 mM) and one of the following chlorosolvents: 1,1,2-trichloroethane, Growth, morphological, biochemical, and tolerance 1,2-dichloroethane, tetrachloroethene, trichloroethene, characteristics cis-1,2-dichloroethene, or 1,2-dichloropropane (each 2.0 mmol). Serum bottle headspace gas consisted of N2, Growth of the organisms was examined in CASB and CO2, and H2 (80:10:10, v/v/v). The ability to degrade PYG media. Cell morphology was observed using aromatic compounds was also tested in serum bottles. ARTICLE IN PRESS 406 H.-S. Bae et al. / Systematic and Applied Microbiology 29 (2006) 404–413 Each bottle was amended with 0.5 mmol of benzene, cellulose plates using the solvent system of Rhuland toluene, ethylbenzene, or p-xylene. Serum bottle head- et al. [31], at DSMZ. space gas consisted of N2,CO2, and H2 (80:10:10, v/v/v) for anaerobic basal medium and N2 and CO2 (95:5, v/v) Analytical methods for PY/10. Serum bottles were sealed with butyl rubber stoppers and aluminum seals. Uninoculated bottles were Fermentation products from PYG grown cultures 1 used as negative controls. Incubation was at 30 C. were analyzed by ion chromatography (IC) using a The ability of strain BL-10 to grow in the presence of Metrohm peak 761 Compact IC equipped with a 1,2-dichloroethane (1,2-DCA) or 1,1,2-trichloroethane Metrosep Organic Acid Column (25 cm  7.8 mm) and (1,1,2-TCA) was examined in 120-mL serum bottles a conductivity detector. Isocratic elution was performed containing 80 mL of PYG supplemented with various À1 with 0.5 mM H2SO4 at a flow rate of 0.5 mL min and concentrations (ranging to 9.8 mM in the aqueous constant temperature of 25 1C. Retention times and phase) of 1,2-DCA or 1,1,2-TCA. The headspace was peak areas of products were compared to those of filled with a mixture of N2 and CO2 (95:5%, v/v). authentic standards that included acetic, butyric, formic, Growth based on OD was measured using a Smart TM lactic, isovaleric, propionic, pyruvic, and succinic acids.
Recommended publications
  • Bacterial Community Structure in Waste Water Treatment
    International Journal of Research Studies in Microbiology and Biotechnology (IJRSMB) Volume 3, Issue 1, 2017, PP 1-9 ISSN 2454-9428 (Online) http://dx.doi.org/10.20431/2454-9428.0301001 www.arcjournals.org Bacterial Community Structure in Waste Water Treatment Hiral Borasiya & Shah MP Division of Applied & Environmental Microbiology, Enviro Technology Limited, Industrial Waste Water Research Laboratory, Gujarat, India [email protected] Abstract: All data suggest that microbial community structures or samples of sludge with a content of phosphate between 8 and 12% were very similar but distinct from those containing phosphate at 1.8%. In all samples analyzed, ubiquinones, menaquinone and fatty acids were the main components. Dominance and E5 suggested that a large number of organisms belonging to the b and subclasses Proteobacteria and Actinobacteria from higher GMC Gram-positive bacteria, respectively, were present. Denaturing gradient gel electrophoresis analysis revealed at least 6-10 predominant DNA bands and numerous other fragments in each sample. Five major denaturing gradient gel electrophoresis fragments from each of 1.8% and 11.8% phosphate containing sludge samples, respectively, were successfully isolated and sequenced. Phylogenetic analysis of the sequences revealed that both 3% and 15% phosphate -containing sludge samples shared three common phylotypes which are separately associated with new bacterial groups of subclass C Proteobacteria, two E5 containing Actinobacteria, and Caulobacter spp. The subclass Proteobacteria. Phylogenetic analysis revealed useful phylotypes unique for both samples sludge. Therefore, changes in the phosphate content did not affect the composition and quantity prevailing microbial population, although specific phylotypes could not be unambiguously associated with EBPR.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Midas 4: a Global Catalogue of Full-Length 16S Rrna Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. MiDAS ‌ 4: ‌ A ‌ global ‌ catalogue‌ of ‌ full-length ‌ 16S ‌ rRNA‌ gene ‌ sequences ‌ and‌ ‌ taxonomy for‌ studies ‌ of‌ bacterial‌ communities‌ in‌ wastewater‌ treatment‌ plants‌ Authors: Morten Simonsen Dueholm, Marta Nierychlo, Kasper Skytte Andersen, Vibeke ‌ Rudkjøbing, Simon Knutsson, the MiDAS Global Consortium, Mads Albertsen, and Per ‌ Halkjær Nielsen* Affiliation: Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. *Correspondence to: Per Halkjær Nielsen, Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, ‌ 9220 Aalborg, Denmark; Phone: +45 9940 8503; Fax: Not available; E-mail: [email protected] Running title: Global microbiota of wastewater treatment plants ‌ 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Biological wastewater treatment and an increased focus on resource recovery is ‌ fundamental for environmental protection, human health, and sustainable development. Microbial communities are responsible for these processes, but our knowledge of their diversity and function is still poor, partly due to the ‌lack of ‌good reference databases and comprehensive global studies.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Raineyella Antarctica Gen. Nov., Sp. Nov., a Psychrotolerant, D-Amino
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5529–5536 DOI 10.1099/ijsem.0.001552 Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, D-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere Elena Vladimirovna Pikuta,1 Rodolfo Javier Menes,2 Alisa Michelle Bruce,3† Zhe Lyu,4 Nisha B. Patel,5 Yuchen Liu,6 Richard Brice Hoover,1 Hans-Jürgen Busse,7 Paul Alexander Lawson5 and William Barney Whitman4 Correspondence 1Department of Mathematical, Computer and Natural Sciences, Athens State University, Athens, Elena Vladimirovna Pikuta AL 35611, USA [email protected] 2Catedra de Microbiología, Facultad de Química y Facultad de Ciencias, UDELAR, 11800 or Montevideo, Uruguay [email protected] 3Biology Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 4Microbiology Department, University of Georgia in Athens, Athens, GA 30602, USA 5Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 7Institut für Mikrobiologie - Veterinarmedizinische€ Universitat€ Wien, A-1210 Wien, Austria A Gram-stain-positive bacterium, strain LZ-22T, was isolated from a rhizosphere of moss Leptobryum sp. collected at the shore of Lake Zub in Antarctica. Cells were motile, straight or pleomorphic rods with sizes of 0.6–1.0Â3.5–10 µm. The novel isolate was a facultatively anaerobic, catalase-positive, psychrotolerant mesophile. Growth was observed at 3–41 C (optimum 24–28 C), with 0–7 % (w/v) NaCl (optimum 0.25 %) and at pH 4.0–9.0 (optimum pH 7.8). The quinone system of strain LZ-22T possessed predominately menaquinone MK-9(H4).
    [Show full text]
  • Propionicicella Superfundia Gen. Nov., Sp. Nov., a Chlorosolvent-Tolerant Propionate-Forming, Facultative Anaerobic Bacterium Is
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Estudo Geral ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 404–413 www.elsevier.de/syapm Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater Hee-Sung Baea, William M. Moeb,Ã, Jun Yanb, Igor Tiagoc, Milton S. da Costad, Fred A. Raineya aDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA bDepartment of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA cDepartamento de Zoologia and Centro de Neurocieˆncias, Universidade de Coimbra, 3004-517 Coimbra, Portugal dDepartamento de Bioquı´mica and Centro de Neurocieˆncias, Universidade de Coimbra, 3001-401 Coimbra, Portugal Received 5 October 2005 Abstract A novel strain, designated as BL-10T, was characterized using a polyphasic approach after isolation from groundwater contaminated by a mixture of chlorosolvents that included 1,1,2-trichloroethane, 1,2-dichloroethane, and vinyl chloride. Stain BL-10T is a facultatively anaerobic bacterium able to ferment glucose to form propionate, acetate, formate, lactate, and succinate. Fermentation occurred in the presence of 1,2-dichloroethane and 1,1,2-trichloroethane at concentrations to at least 9.8 and 5.9 mM, respectively. Cells are Gram-positive, rod-shaped, non-motile, and do not form spores. Oxidase and catalase are not produced and nitrate reduction did not occur in PYG medium. Menaquinone MK-9 is the predominant respiratory quinone and meso-diaminopimelic acid is present in the cell wall peptidoglycan layer. Major cellular fatty acids are C15:0, iso C16:0, and anteiso C15:0.
    [Show full text]
  • Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
    Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.
    [Show full text]
  • INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
    INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively.
    [Show full text]
  • Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada
    RESEARCH ARTICLE Comparison of Methods to Identify Pathogens and Associated Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada Etienne Yergeau1*, Luke Masson2, Miria Elias1, Shurong Xiang3, Ewa Madey4, a11111 Hongsheng Huang5, Brian Brooks5, Lee A. Beaudette3 1 National Research Council Canada, Energy Mining and Environment, Montreal, Qc, Canada, 2 National Research Council Canada, Human Health Therapeutics, Montreal, Qc, Canada, 3 Environment Canada, Biological Assessment and Standardization Section, Ottawa, On, Canada, 4 Canadian Food Inspection Agency, Fertilizer Safety Office, Plant Health & Biosecurity Directorate, Ottawa, On, Canada, 5 Canadian Food Inspection Agency, Ottawa Laboratory – Fallowfield, Ottawa, On, Canada OPEN ACCESS * [email protected] Citation: Yergeau E, Masson L, Elias M, Xiang S, Madey E, Huang H, et al. (2016) Comparison of Methods to Identify Pathogens and Associated Abstract Virulence Functional Genes in Biosolids from Two Different Wastewater Treatment Facilities in Canada. The use of treated municipal wastewater residues (biosolids) as fertilizers is an attractive, PLoS ONE 11(4): e0153554. doi:10.1371/journal. inexpensive option for growers and farmers. Various regulatory bodies typically employ pone.0153554 indicator organisms (fecal coliforms, E. coli and Salmonella) to assess the adequacy and Editor: Leonard Simon van Overbeek, Wageningen efficiency of the wastewater treatment process in reducing pathogen loads in the final University and Research Centre, NETHERLANDS product. Molecular detection approaches can offer some advantages over culture-based Received: October 28, 2015 methods as they can simultaneously detect a wider microbial species range, including Accepted: March 31, 2016 non-cultivable microorganisms. However, they cannot directly assess the viability of the Published: April 18, 2016 pathogens.
    [Show full text]
  • 非会員: 10,000 円 12,000 円 *要旨集(2,000 円)のみをご希望の方は, 大会事務局までご連絡下さい。
    A B C D 1990年12月18日 第4種郵便物認可 ISSN 0914-5818 2019 VOL. 33 NO. 1 C 2019 T VOL. 33 NO. 1 IN (公開用) O ACTINOMYCETOLOGICA M Y C E T O L O G 日 本 I 放 C 線 菌 学 http://www. actino.jp/ 会 日本放線菌学会誌 第28巻 1 号 誌 Published by ACTINOMYCETOLOGICA VOL.28 NO.1, 2014 The Society for Actinomycetes Japan SAJ NEWS Vol. 33, No. 1, 2019 Contents • Outline of SAJ: Activities and Membership S2 • List of New Scientific Names and Nomenclatural Changes in the Phylum Actinobacteria Validly Published in 2018 S3 • Award Lecture (Dr. Yasuhiro Igarashi) S50 • Publication of Award Lecture (Dr. Yasuhiro Igarashi) S55 • Award Lecture (Dr. Yuki Inahashi) S56 • Publication of Award Lecture (Dr. Yuki Inahashi) S64 • Award Lecture (Dr. Yohei Katsuyama) S65 • Publication of Award Lecture (Dr. Yohei Katsuyama) S72 • 64th Regular Colloquim S73 • 65th Regular Colloquim S74 • The 2019 Annual Meeting of the Society for Actinomycetes Japan S75 • Online access to The Journal of Antibiotics for SAJ members S76 S1 Outline of SAJ: Activities and Membership The Society for Actinomycetes Japan (SAJ) Annual membership fees are currently 5,000 yen was established in 1955 and authorized as a for active members, 3,000 yen for student mem- scientific organization by Science Council of Japan bers and 20,000 yen or more for supporting mem- in 1985. The Society for Applied Genetics of bers (mainly companies), provided that the fees Actinomycetes, which was established in 1972, may be changed without advance announce- merged in SAJ in 1990. SAJ aims at promoting ment.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School August 2020 Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site Madison Mikes Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons, and the Microbiology Commons Recommended Citation Mikes, Madison, "Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site" (2020). LSU Master's Theses. 5206. https://digitalcommons.lsu.edu/gradschool_theses/5206 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ISOLATION AND CHARACTERIZATION OF BACTERIA IN A TOLUENE- PRODUCING ENRICHMENT CULTURE DERIVED FROM CONTAMINATED GROUNDWATER AT A LOUISIANA SUPERFUND SITE A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Civil and Environmental Engineering by Madison Colleen Mikes B.S., Louisiana State University, 2018 December 2020 1 ACKNOWLEDGEMENTS I would like to take the time to thank all of those who have supported and assisted me during my graduate program. First and foremost, I would like to thank Dr. Bill Moe for all of the time he has spent teaching me and mentoring me through my thesis work.
    [Show full text]