J. Gen. Appl. Microbiol., 48, 125-133 (2002)

Total Page:16

File Type:pdf, Size:1020Kb

J. Gen. Appl. Microbiol., 48, 125-133 (2002) J. Gen. Appl. Microbiol., 48, 125–133 (2002) Full Paper Isolation and characterization of a Gram-positive polyphosphate-accumulating bacterium Shin Onda and Susumu Takii* Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan (Received October 31, 2001; Accepted March 9, 2002) A Gram-positive polyphosphate-accumulating bacterium was isolated from phosphate-removal activated sludge using pyruvate-supplemented agar plates. The isolate was oval or coccobacilli 0.7؋0.5–1.0 mm) that occurred singly, in pairs or irregular clumps. Polyphosphate granules–0.4) in the cells were observed by toluidine blue staining. The pure culture of the isolate rapidly took up phosphate (9.2 mg-P/g-dry weight) in the 3-h aerobic incubation without organic substrates, after anaerobic incubation with organic substrates containing casamino acids. When acetate was the sole carbon source in the anaerobic incubation, the isolate did not remove phosphate. These physiological features of the isolate were similar to those of Microlunatus phosphovorus. However, unlike M. phosphovorus the P-removal ability of the isolate was relatively low and was not accelerated by repeating the anaerobic/aerobic incubation cycles. Phylogenetic analysis and comparison of several characteristics showed that the isolate was identified as Tetrasphaera elongata which was recently proposed as a new polyphosphate-accumulating species isolated from activated sludge. As the isolate contained menaquinone (MK)-8(H4) as the predominant iso- prenoid ubiquinone, it may be significantly responsible for phosphate removal, because MK- 8(H4) has reportedly been found in fairly high proportions in many phosphate-removing activated sludges. Key Words——activated sludge; menaquinone-8(H4); phosphate-removal; polyphosphate; Tetra- sphaera elongata Introduction ganic pollutants from wastewater. Since phosphate in wastewater causes eutrophication, phosphate-removal Activated sludge systems are widely used for treat- (P-removal) is important to prevent water pollution. In ment of municipal sewage and industrial wastewater. the EBPR system, microbes called polyphosphate-ac- An enhanced biological phosphorus removal (EBPR) cumulating organisms (PAOs) are considered to be re- system is one of the activated sludge systems modi- sponsible for phosphate removal. Under anaerobic fied by attaching an anaerobic tank in front of the aera- conditions, PAOs take up carbon substrates (e.g., ac- tion tank to efficiently remove phosphate along with or- etate, propionate) and store them as a form of polyhy- droxyalkanoate (PHA) while releasing phosphate, uti- lizing polyphosphate (poly-P) in their cells as an en- * Address reprint requests to: Dr. Susumu Takii, Department of Biological Sciences, Graduate School of Science, Tokyo Met- ergy source. Under subsequent aerobic conditions, uti- ropolitan University, 1–1 Minami-ohsawa, Hachioji, Tokyo 192– lizing the carbon storage in their cells, PAOs take up 0397, Japan. more phosphate than they released under anaerobic E-mail: [email protected] conditions and accumulate it in the form of poly-P 126 ONDA and TAKII Vol. 48 (Comeau et al., 1986; van Groenestijn et al., 1987; Ko- and Morikawa, 1999). rtstee et al., 2000; Mino et al., 1998). Acinetobacter spp. were first investigated as PAOs Materials and Methods possibly responsible for P-removal (Kortstee et al., 2000; Mino et al., 1998). Microlunatus phosphovorus Reactor and activated sludge sample. An acti- (Nakamura et al., 1995; Ubukata and Takii, 1997) and vated sludge sample was collected from the outlet of Lampropedia sp. (Stante et al., 1997) were also iso- the aeration tank of a laboratory-scale anaerobic/aero- lated as PAOs which showed a similar ability to metab- bic continuous flow reactor. The reactor consisted of olize phosphate to P-removal activated sludges. How- an anaerobic tank (5 L working volume) and an aero- ever, some of their characteristics are different from bic tank (2 L working volume). The artificial sewage the P-removal activated sludges, and culture-indepen- fed was composed of (mg/L): CH3COOH (100), dent methods showed that they did not dominate in P- C2H5COOH (75), peptone (140), yeast extract (60), removal activated sludges (Bond et al, 1999; Crocetti H3PO4 (15.5 as P), KHCO3 (65), NaHCO3 (100), et al., 2000; Hesselmann et al., 1999; Hiraishi et al., MgSO4 ·7H2O (100), CaCl2 ·5H2O (25) and NaCl (100). 1998; Kortstee et al., 2000; Mino et al., 1998). The influent was loaded at 30 L/day, and the return Culture-independent methods such as molecular sludge was 120 L/day (Maejima and Matsuo, 1997). At methods and quinone profiling have been used to in- sampling time, mixed liquor suspended solid (MLSS) vestigate bacterial communities in P-removal activated and mixed liquor volatile suspended solid (MLVSS) sludges. Recently, Hesselmann et al. (1999) and Cro- were 5,160 mg/L and 3,790 mg/L, respectively. The pH cetti et al. (2000) reported that a bacterium closely re- was 6.8 in the anaerobic tank, 7.6–8.2 in the aerobic lated to Rhodocyclus, named Candidatus Accu- tank. The concentration of PO4-P in the effluent was mulibacter phosphatis (Hesselmann et al., 1999), was 0.2 mg/L and the total phosphorus content of the responsible for P-removal by cloning of 16S rDNA and sludge was 8.4% (Onda et al., 2002). fluorescent in situ hybridization (FISH). In our previous Pure isolation and media. The 10-ml activated report (Onda et al., 2002) this bacterium was also sludge sample was diluted with 40 ml of pyrophos- shown to be the dominant PAO in a laboratory-scale phate solution (sodium tripolyphosphate 5 mg/L, NaCl anaerobic/aerobic continuous flow reactor by using de- 8.5 g/L) and homogenized (11,500 rpm) with a waring naturing gradient gel electrophoresis of PCR-amplified blender (Ace Homogenizer: Nihon Seiki Co., Ltd., 16S rDNA, quinone profiling, and FISH. However, it Tokyo, Japan) for 5 min. One milliliter of sludge sus- has never been successfully isolated, so far as we pension was diluted with 19 ml pyrophosphate solution know. Culture-independent methods also suggested and homogenized again for 10 min. The sludge sus- that actinobacteria having menaquinone (MK)-8(H4) pension was serially diluted with the pyrophosphate was another important member of the EBPR microbial solution and spread on agar plates. For isolation and community (Hiraishi et al., 1998). Recently, poly-P ac- growth, R2A (Reasoner and Geldreich, 1985), 1/2PYG cumulating Tetrasphaera spp. were isolated and de- supplemented with pyruvate (Sugitate and Morikawa, scribed from P-removal activated sludges (Hanada et 1999), and artificial sewage supplemented with pyru- al., 2002; Maszenan et al., 2000). However, these vate (ASP) media were used. The compositions of the strains have not been reported to show characteristics media were as follows: R2A medium (g/L); yeast ex- similar to the phosphate metabolism in relation to P-re- tract (0.5), peptone (0.5), casamino acids (Difco, De- moval activated sludges. troit, MI, USA) (0.5), glucose (0.5), soluble starch (0.5), To better understand EBPR systems, isolation of sodium pyruvate (0.3), K2HPO4 (0.3) and MgSO4 · dominant PAOs is important. In this experiment we 7H2O (0.05); 1/2PYG with pyruvate medium (g/L); pep- tried to isolate and characterize new PAOs from the tone (1), yeast extract (0.5), glucose (0.25) and laboratory-scale reactor described above (Onda et al., sodium pyruvate (0.15); ASP medium (mg/300 ml); 2002). For isolation, pyruvate-supplemented agar sodium acetate (50), sodium propionate (50), yeast ex- plates were used in this study, because it was reported tract (50), casamino acids (Difco) (100), sodium pyru- that the addition of sodium pyruvate to agar media vate (45), activated sludge extract (60 ml), MgSO4 · greatly increased the numbers of colonies on agar 7H2O (15), CaCl2 ·2H2O (5), KH2PO4 (50) and NaCl plates from some environmental samples (Sugitate (100). The media for the agar plates were supple- 2002 A polyphosphate-accumulating bacterium 127 mented with 1.5% agar. All media were adjusted to the Gram-staining and the toluidine blue staining. PHA pH 7.5. After the inoculation, the agar plates were in- granules were stained with Nile blue according to the cubated at 28°C for about three weeks. Colonies ap- protocol of Ostle and Holt (1982) and were examined pearing on the agar plates were picked up and purified under an epifluorescent microscope (BH-2) with filter by repeated streaking. set BH2-DMU. Cultivation of isolates and P-uptake experiments. Physiological and biochemical characteristics. Ni- Isolates were aerobically grown at 20°C or 30°C in trate reduction, gelatin hydrolysis, indole production, shaking flasks (500 ml) plugged with cotton plugs. The catalase and oxidase were examined according to culture media were the same in composition as the Smihert and Krieg (1981) using R medium of Martin et isolation media. To obtain sufficient cells for P-uptake al. (1997) as the basal medium. The GϩC content of experiments, organic substrates (casamino acids 1.2 DNA was determined by the HPLC method (Suzuki et g/L, acetate 1.2 g/L and yeast extract 0.4 g/L) were al., 1987). Menaquinones were analyzed by reverse added to the APS medium. phase HPLC (Yamada and Kuraishi, 1982). The ability of the isolates to remove phosphate was Total cell counting. Total cell numbers of the acti- tested under similar conditions to those in EBPR sys- vated sludge sample and liquid cultures were deter- tems as follows. Organic substrates (mixture of mined by acridine orange staining. The sample was di- casamino acids 1.2 g/L, acetate 1.2 g/L and yeast ex- luted with the pyrophosphate solution and dispersed tract 0.4 g/L) were first added to their cultures at the by sonication (60 s, 5 W/ml, Sonicator 5202; Ohtake stationary phase, and the gas phase was replaced Works, Tokyo, Japan).
Recommended publications
  • A Novel Type of N-Acetylglutamate Synthase Is Involved in the First Step
    Petri et al. BMC Genomics 2013, 14:713 http://www.biomedcentral.com/1471-2164/14/713 RESEARCH ARTICLE Open Access A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum Kathrin Petri, Frederik Walter, Marcus Persicke, Christian Rückert and Jörn Kalinowski* Abstract Background: Arginine biosynthesis in Corynebacterium glutamicum consists of eight enzymatic steps, starting with acetylation of glutamate, catalysed by N-acetylglutamate synthase (NAGS). There are different kinds of known NAGSs, for example, “classical” ArgA, bifunctional ArgJ, ArgO, and S-NAGS. However, since C. glutamicum possesses a monofunctional ArgJ, which catalyses only the fifth step of the arginine biosynthesis pathway, glutamate must be acetylated by an as of yet unknown NAGS gene. Results: Arginine biosynthesis was investigated by metabolome profiling using defined gene deletion mutants that were expected to accumulate corresponding intracellular metabolites. HPLC-ESI-qTOF analyses gave detailed insights into arginine metabolism by detecting six out of seven intermediates of arginine biosynthesis. Accumulation of N-acetylglutamate in all mutants was a further confirmation of the unknown NAGS activity. To elucidate the identity of this gene, a genomic library of C. glutamicum was created and used to complement an Escherichia coli ΔargA mutant. The plasmid identified, which allowed functional complementation, contained part of gene cg3035, which contains an acetyltransferase domain in its amino acid sequence. Deletion of cg3035 in the C. glutamicum genome led to a partial auxotrophy for arginine. Heterologous overexpression of the entire cg3035 gene verified its ability to complement the E. coli ΔargA mutant in vivo and homologous overexpression led to a significantly higher intracellular N-acetylglutamate pool.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • FISH Handbook for Biological Wastewater Treatment
    ©2019 The Author(s) This is an Open Access book distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying and redistribution for non- commercial purposes, provided the original work is properly cited and that any new works are made available on the same conditions (http://creativecommons.org/licenses/by/4.0/). This does not affect the rights licensed or assigned from any third party in this book. This title was made available Open Access through a partnership with Knowledge Unlatched. IWA Publishing would like to thank all of the libraries for pledging to support the transition of this title to Open Access through the KU Select 2018 program. Downloaded from http://iwaponline.com/ebooks/book-pdf/521273/wio9781780401775.pdf by guest on 25 September 2021 Identification and quantification of microorganisms in activated sludge and biofilms by FISH and biofilms by sludge in activated Identification and quantification of microorganisms Treatment Wastewater Biological for Handbook FISH The FISH Handbook for Biological Wastewater Treatment provides all the required information for the user to be able to identify and quantify important microorganisms in activated sludge and biofilms by using fluorescence in situ hybridization (FISH) and epifluorescence microscopy. It has for some years been clear that most microorganisms in biological wastewater systems cannot be reliably identified and quantified by conventional microscopy or by traditional culture-dependent methods such as plate counts. Therefore, molecular FISH Handbook biological methods are vital and must be introduced instead of, or in addition to, conventional methods. At present, FISH is the most widely used and best tested of these methods.
    [Show full text]
  • Research Article Analysis of Bacterial Community Structure of Activated Sludge from Wastewater Treatment Plants in Winter
    Hindawi BioMed Research International Volume 2018, Article ID 8278970, 8 pages https://doi.org/10.1155/2018/8278970 Research Article Analysis of Bacterial Community Structure of Activated Sludge from Wastewater Treatment Plants in Winter Shuang Xu, Junqin Yao , Meihaguli Ainiwaer, Ying Hong, and Yanjiang Zhang College of Resources and Environmental Science, Xinjiang University, Urumqi, China Correspondence should be addressed to Junqin Yao; [email protected] Received 21 December 2017; Accepted 5 February 2018; Published 7 March 2018 Academic Editor: Bin Ma Copyright © 2018 Shuang Xu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Activated sludge bulking is easily caused in winter, resulting in adverse efects on efuent treatment and management of wastewater treatment plants. In this study, activated sludge samples were collected from diferent wastewater treatment plants in the northern Xinjiang Uygur Autonomous Region of China in winter. Te bacterial community compositions and diversities of activated sludge were analyzed to identify the bacteria that cause bulking of activated sludge. Te sequencing generated 30087–55170 efective reads representing 36 phyla, 293 families, and 579 genera in all samples. Te dominant phyla present in all activated sludge were Proteobacteria (26.7–48.9%), Bacteroidetes (19.3–37.3%), Chlorofexi (2.9–17.1%), and Acidobacteria (1.5–13.8%). Fify-fve genera including unclassifed f Comamonadaceae, norank f Saprospiraceae, Flavobacterium, norank f Hydrogenophilaceae, Dokdonella, Terrimonas, norank f Anaerolineaceae, Tetrasphaera, Simplicispira, norank c Ardenticatenia,andNitrospira existed in all samples, accounting for 60.6–82.7% of total efective sequences in each sample.
    [Show full text]
  • DGGE) and PGR Cloning of 16S Rrna Genes
    THE UNIVERSITY OF NEW SOUTH thesis/Dissertation Sheet Surname or Family name:LE Rrst ^ I Other narne/s: Abbreviation for degree as given in the University calendar: MSc | ScliooliBiotechnolo^^^^^^ and Biomolecular ScienoBS Faculty: Science Title:Community analysis and physiological characterisation of bacterial isolates from a nitrifying membrane bioreactor Abstract This thesis focuses on the identification of early colonisers on membrane surfaces used in wastewater treatment, as well as the physiological characterisation of bacterial cultures isolated from different micro- environments of a membrane bioreactor (MBR). The bacterial community composition of early biofilms on membrane surfaces under different hydrodynamic conditions (pressurised and non-pressurised) and of the activated sludge in an MBR were examined by culture-independent, molecular-based methods of PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and PGR cloning of 16S rRNA genes. A bench-scale, nitrifying MBR treating artificial waste was employed. The hollow fibre ultrafiltration membrane was made of polypropylene with an average pore diameter of 0.04 \im. Analysis of DGGE profiles of the sessile communities on membrane surfaces revealed that Tetrasphaera elongata species were important colonisers due to their ability to bind to membrane surfaces irrespective of the hydrodynamic context and exposure time. Interactions between isolates from the bioreactor and membrane surfaces were further investigated by characterising the physiological traits important in biofilm initiation and proliferation on membrane surfaces such as motility, auto-aggregation, co-aggregation, hydrophobicity and quorum sensing. Bacterial strains were isolated from floes and supernatant phases of the activated sludge as well as from pressurised membrane surfaces. Microbacterium sp. were prevalent in all culture collections.
    [Show full text]
  • Name: Tetrasphaera Japonica Authors: Maszenan Et Al. 2000 Status: New
    Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Name: Tetrasphaera japonica Authors: Maszenan et al. 2000 Status: New Species Literature: Int. J. Syst. Bacteriol. 50:601 Risk group: 1 (German classification) Type strain: ACM 5116, DSM 13192, T1-X7 Author(s) Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Schumann, P., Burghardt, J., Tokiwa, Y., Stratton, H. M. Title Three isolates of novel polyphosphate-accumulating Gram- positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Journal Int. J. Syst. Evol. Microbiol. Volume 50 Page(s) 593-603 Year 2000 Glucose Sulfide Medium Glucose 0.15 g Yeast extract 1.00 g (NH 4)2SO 4 0.50 g CaCO 3 0.10 g Ca(NO 3)2 0.10 g KCl 0.05 g K2PO 4 0.05 g MgSO 4 x 7 H 2O 0.05 g Na 2S x 9 H 2O 0.20 g Vitamin solution (see Leke Strains Medium) 10.00 ml Distilled water 990.00 ml Adjust pH to 7.3 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Genus: Tetrasphaera FH 6189 Species: japonica Numbers in other collections: DSM 13192 Reclassification: Morphology: G R ISP 2 good beige A SP none none G R ISP 3 good beige A SP none none G R ISP 4 good beige A SP none none G R ISP 5 good beige A SP none none G R ISP 6 good beige A SP none none ISP 7 G R good beige A SP none none Melanoid pigment: - - - - NaCl resistance: % Lysozyme resistance: pH: Value- Optimum- Temperature : Value- Optimum- 28°C Enzymes: Api Zym 2+ 3- 4+ 5- 6+ 7- 8- 9(+) 10- 11+ 12+ 13- 14+ 15- 16+ 17+ 18- 19- 20- Api Coryne Nit Pyz Pyr Pal βGur βGal αGlu βNag Esc Ure Gel + - - + - (+) (+) - + - - Glu Rib Xyl Man Mal Lac Sac Glyg - - - - - - - - Comments: Strain growth on Glucose Sulfide Medium Copyright: PD Dr.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Re-Evaluating the Microbiology of the Enhanced Biological Phosphorus Removal Process
    Aalborg Universitet Re-evaluating the microbiology of the enhanced biological phosphorus removal process Nielsen, Per Halkjær; McIlroy, Simon J.; Albertsen, Mads; Nierychlo, Marta Published in: Current Opinion in Biotechnology DOI (link to publication from Publisher): 10.1016/j.copbio.2019.03.008 Creative Commons License CC BY-NC-ND 4.0 Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Nielsen, P. H., McIlroy, S. J., Albertsen, M., & Nierychlo, M. (2019). Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Current Opinion in Biotechnology, 57, 111-118. https://doi.org/10.1016/j.copbio.2019.03.008 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate
    [Show full text]
  • Isolation of Novel Actinomycetes from Spider Materials
    Actinomycetologica (2009) 23:8–15 Copyright Ó 2009 The Society for Actinomycetes Japan VOL. 23, NO. 1 Isolation of Novel Actinomycetes from Spider Materials Kimika IwaiÃ, Susumu Iwamoto, Kazuo Aisaka and Makoto Suzukiy Innovative Drug Research Laboratories, Kyowa Hakko Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo, 194-8533, Japan (Received Oct. 20, 2008 / Accepted Mar. 12, 2009 / Published May 29, 2009) To collect new kinds of microorganisms for screening of biologically active substances, we focused on spider materials (webs, cuticle, egg sac), previously uninvestigated sources of such organisms. Using a new method of pre-treatment with 70% ethanol, 1,159 strains of actinomycetes were isolated from 196 spider materials, based on their morphological features. Of these, 293 strains were identified as non-filamentous actino- mycetes from their 16S rRNA gene sequences. More detailed examination indicated that 139 strains belonged to the suborders Micrococcineae, Frankineae and Propionibacterineae, and they included some novel strains of non-filamentous actinomycetes. Thus, spider materials provide a more useful source of non- filamentous actinomycetes than do soil samples. INTRODUCTION paper, we report a new method of isolation of micro- organisms from spider materials pre-treated with 70% The unique structural diversity inherent in natural ethanol, and we describe relationships between the kinds of products continues to be recognized for its value in the spider materials used and the taxonomic diversity of the drug discovery process (Fenical & Jensen, 2006). However, isolates obtained. there has been a recent decline in the rate of discovery of novel bioactive substances obtained from common terres- MATERIALS AND METHODS trial microorganisms, despite an increase in the rate of re- isolation of known compounds (Magarvey et al., 2004).
    [Show full text]
  • 非会員: 10,000 円 12,000 円 *要旨集(2,000 円)のみをご希望の方は, 大会事務局までご連絡下さい。
    A B C D 1990年12月18日 第4種郵便物認可 ISSN 0914-5818 2019 VOL. 33 NO. 1 C 2019 T VOL. 33 NO. 1 IN (公開用) O ACTINOMYCETOLOGICA M Y C E T O L O G 日 本 I 放 C 線 菌 学 http://www. actino.jp/ 会 日本放線菌学会誌 第28巻 1 号 誌 Published by ACTINOMYCETOLOGICA VOL.28 NO.1, 2014 The Society for Actinomycetes Japan SAJ NEWS Vol. 33, No. 1, 2019 Contents • Outline of SAJ: Activities and Membership S2 • List of New Scientific Names and Nomenclatural Changes in the Phylum Actinobacteria Validly Published in 2018 S3 • Award Lecture (Dr. Yasuhiro Igarashi) S50 • Publication of Award Lecture (Dr. Yasuhiro Igarashi) S55 • Award Lecture (Dr. Yuki Inahashi) S56 • Publication of Award Lecture (Dr. Yuki Inahashi) S64 • Award Lecture (Dr. Yohei Katsuyama) S65 • Publication of Award Lecture (Dr. Yohei Katsuyama) S72 • 64th Regular Colloquim S73 • 65th Regular Colloquim S74 • The 2019 Annual Meeting of the Society for Actinomycetes Japan S75 • Online access to The Journal of Antibiotics for SAJ members S76 S1 Outline of SAJ: Activities and Membership The Society for Actinomycetes Japan (SAJ) Annual membership fees are currently 5,000 yen was established in 1955 and authorized as a for active members, 3,000 yen for student mem- scientific organization by Science Council of Japan bers and 20,000 yen or more for supporting mem- in 1985. The Society for Applied Genetics of bers (mainly companies), provided that the fees Actinomycetes, which was established in 1972, may be changed without advance announce- merged in SAJ in 1990. SAJ aims at promoting ment.
    [Show full text]
  • Supplemental Tables for Plant-Derived Benzoxazinoids Act As Antibiotics and Shape Bacterial Communities
    Supplemental Tables for Plant-derived benzoxazinoids act as antibiotics and shape bacterial communities Niklas Schandry, Katharina Jandrasits, Ruben Garrido-Oter, Claude Becker Contents Table S1. Syncom strains 2 Table S2. PERMANOVA 5 Table S3. ANOVA: observed taxa 6 Table S4. Observed diversity means and pairwise comparisons 7 Table S5. ANOVA: Shannon Diversity 9 Table S6. Shannon diversity means and pairwise comparisons 10 1 Table S1. Syncom strains Strain Genus Family Order Class Phylum Mixed Root70 Acidovorax Comamonadaceae Burkholderiales Betaproteobacteria Proteobacteria Root236 Aeromicrobium Nocardioidaceae Propionibacteriales Actinomycetia Actinobacteria Root100 Aminobacter Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria Root239 Bacillus Bacillaceae Bacillales Bacilli Firmicutes Root483D1 Bosea Bradyrhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria Root342 Caulobacter Caulobacteraceae Caulobacterales Alphaproteobacteria Proteobacteria Root137 Cellulomonas Cellulomonadaceae Actinomycetales Actinomycetia Actinobacteria Root1480D1 Duganella Oxalobacteraceae Burkholderiales Gammaproteobacteria Proteobacteria Root231 Ensifer Rhizobiaceae Rhizobiales Alphaproteobacteria Proteobacteria Root420 Flavobacterium Flavobacteriaceae Flavobacteriales Bacteroidia Bacteroidetes Root268 Hoeflea Phyllobacteriaceae Rhizobiales Alphaproteobacteria Proteobacteria Root209 Hydrogenophaga Comamonadaceae Burkholderiales Gammaproteobacteria Proteobacteria Root107 Kitasatospora Streptomycetaceae Streptomycetales Actinomycetia Actinobacteria
    [Show full text]