Single-Particle and Collective Properties Around Closed Shells

Total Page:16

File Type:pdf, Size:1020Kb

Single-Particle and Collective Properties Around Closed Shells Instituut voor Kern- en Stralingsfysica Single-Particle and Collective Properties around Closed Shells probed by In-Source Laser Spectroscopy CERN-THESIS-2010-185 04/03/2010 Promotoren: Proefschrift ingediend tot het be- halen van de graad van Doctor in Prof. Dr. M. Huyse de Wetenschappen door Prof. Dr. P. Van Duppen Thomas Elias COCOLIOS Leuven 2010 c 2010 Katholieke Universiteit Leuven, Groep Wetenschap & Technologie, Arenberg Doc- toraatsschool, W. de Croylaan 6, 3001 Heverlee, Belgi¨e Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaandelijke schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm, electronic or any other means without written permission from the publisher. ISBN number 978-90-8649-316-6 D/2010/10.705/9 `aMme. Gauthier, pour avoir cru en moi d`es mon plus jeune ˆage. iv Acknowledgments Who’s to say when you get older You don’t need a toy collection? Who’s to say when you get older That you have to follow convention? Katie Melua - Toy Collection. A thesis represents the achievement of 4 years of hard work towards a single goal. While the cover bears only my name, it is actually the result of a group effort at many levels and I would like to acknowledge here the many contributions that made it possible. First of all, I would like to thank my promotors Mark Huyse and Piet Van Dup- pen who gave me the opportunity to perform this research in IKS. Their continued support, encouragement and guidance have made these last 4 years a trully enlight- ening experience on all the aspects of academia. Never would I have thought, when meeting Mark for the first time in Vancouver, that I would benefit from such a rich experience. I would also like to thank the members of the doctoral examination committee, Prof. Dr. Hans-J¨urgen Kluge, Prof. Dr. Paul-Henri Heenen, Prof. Dr. Pieter Lievens, Prof. Dr. Gerda Neyens, and Prof. Dr. Nathal Severijns, for their attentive review of the thesis manuscript and the exciting discussions during the first thesis defense. As evidenced by the long author lists for the different articles that constitute this thesis, none of the experimental work was performed by a single person. I would like to acknowledge in particular the work of Dr. Yuri Kudryavtsev, Dr. Tetsu Sonoda, and Dr. Maxim D. Seliverstov, present or past colleagues from our group on Nuclear Spectroscopy, for their hard work at lisol or isolde. Their contribution on the gas cell work, the list, or the polonium isotopes, respectively, made this whole research possible. I would like to also extend my thanks to the many people who contributed to the nice research atmosphere within our research group: Prof. Dr. ANA, Beyhan, Deyan, Dieter, Hilde, Iain, Jan, Jarno, Jeroen, Johnny, Marijke, Martin, Nele, Nick, Nikolas, Paul, Prof. Dr.R2, Thomas R., and Wim. A special note goes to the craziest group members who contributed to my (un)sanity, Maria and Irina. May your laughter propagate for long. The fun extended well beyond the group itself. I had much fun with many others in IKS. There are so many people who deserve mentioning, it would take another v vi Acknowledgments thesis just to honour them! Nonetheless, I would like to give a particular word for Vˆache-Koe who taught me the intricate twists of the Belgian culture, for Π and his unmatched business skills, Simon for not dying on me half-way to Louvain-La- Neuve, and Marieke who grew a few pieces of white hair reading my Dutch. Talking of white hair, a big thanks must go the administration team, past and present: Sally, Katia, Jos´ee, Isabelle, Martine. After so many years with physicists, I understand why Sally’s hair is all white! Actually, the whole supporting team from IKS, Nancy, Willy, Dries, Luc, Bert, Pascal, deserve a warm acknowledgement, for their work behind the scenes is essential to our survival. De taalcursus Nederlands was ook een groot deel van mijn doctoraatsopleiding. Ik wil al de docenten bedanken voor de toffe tijden: Ines, Kitty, Mit, Els, Evelien, Helga, en Ellen. Ik wil ook de Franse Erasmus Candice en Audrey en de Amerikaanse Chelly en Jennifer bedanken. Zonder jullie zou ik vergeten dat er buiten fysica nog een wereld bestaat! Ik bedank ook Ellen en de mensen van de Japanse lessen voor de steun en de kans om mijn Nederlands verder bij te schaven. Enfin, parce qu’il y a quand meme une vie en dehors de l’universit´e, je voudrais rendre grˆace `atoutes celles et ceux qui ont toujours ´et´e l`a, Aur´elien, depuis des temps imm´emoriaux, B´en´edicte, par-del`ales oc´eans, et enfin Andr´ee, pour toutes ces ann´ees et parce que J’Ai Encore Rˆev´eD’Elle. Ma famille fut aussi toujours tr`es importante pour moi. Malgr´ela distance, vous ˆetes tous toujours avec moi, mes deux supers sis’ Marnia Kaenzig Balibrera Cocolios Avalon et Iphig´enie Marie Cocolios, P´ep`ere Maurice et M´em`ere Missette, Papa Panos et Monique, Maman Brigitte et Wizz et Charly, . Votre soutient continu et inconditionnel m’a permis d’atteindre mes objectifs les plus fous. Je partage aujourd’hui avec vous tous mes succ`es. Ten slotte, miaou miaou miaou, meeeeooooww miaou miaouw rrr Alice. PRrrrhhh. et Arne. Samenvatting Resonante laserionisatie is een veel gebruikte techniek in de kernfysica om zuivere radioactieve ionenbundels te produceren en om de eigenschappen van grond- en iso- mere toestanden te bestuderen. In dit doctoraatswerk worden twee verschillende aspecten van resonante laserionisatie onderzocht: de toepassing van de methode bij het bepalen van magnetische dipoolmomenten en ladingsstralen, en de optimisatie van laser ionenbronnen aan isol faciliteiten. De experimenten werden uitgevoerd aan de lisol opstelling, waar een nieuwe gascelconfiguratie ontwikkeld werd en waar magnetische momenten van neutronarme koperkernen onderzocht werden, en aan de isolde opstelling waar de ladingsstraal van poloniumkernen opgemeten werden. De lisol gascel ionenbron gebruikt resonante laserionisatie om een grotere ef- fici¨entie en selectiviteit te bereiken. Met behulp van een 252Cf spontane fissiebron werd de effici¨entie zonder laserionisatie opgemeten wat resulteerde in een brede sprei- ding gaande van 0.03% voor krypton isotopen tot 74% voor cesium isotopen. Er werd een verband vastgesteld tussen de eerste ionisatiepotentiaal en de opgemeten effici¨entie. Tevens volgden de rubidium en cerium isotopen deze trend niet. Om de selectiviteit van de gascel te verhogen werden twee onderzoeksstrategie¨en uitgewerkt: een eerste maakte gebruik van de scheiding van het volume waarin de reactieproducten gestopt worden van het volume waarin de reactieproducten ge¨ıoniseerd worden. Het eerste volume wordt gebruikt om de reactieproducten te stoppen en te neutraliseren en het tweede om de atomen met behulp van laserlicht resonant te ioniseren . De scheiding tussen de twee ruimtes werd zodanig opgebouwd dat de laatste afgeschermd is van de fotonen en elektronen die door de doorgang van de primaire bundel door de eerste kamer gecre¨eerd worden. Hierdoor wordt de ladingsdichtheid in de ionisatiekamer veel kleiner en kunnen de foto-ionen enerzi- jds langer overleven en kunnen anderzijds elektrische velden aangelegd worden om de ongewenste ionen, de resterende elektronen en foto-elektronen te collecteren. De gascel werd offline getest met isotopen van nikkel en online met rhodium. De collectie van ongewenste ionen en elektronen werkte zoals verwacht. Voor het tweede ontwerp werd de laserionisatie uitgevoerd in de rf-structuur achter de gascel (spig). Ongewenste ionen, die uit de gascel komen, worden door een elektrische potentiaal tussen de gascel en de spig afgestoten. De atomen die samen met het draaggas uit de gascel stromen worden met behulp van het laserlicht ge¨ıoniseerd, vervolgens gevangen in de rf-structuur en getransporteerd naar het versnellersgedeelte van de massaseparator. Deze techniek werd zowel off-line als on- line met succes getest. Omwille van geometrische en technische beperkingen werd de vii viii Samenvatting list mode niet gebruikt om nieuwe bundels van radioactieve kernen aan te maken. Het gebruik van de list mode bracht bovendien aan het licht dat een grote fractie van de radioactieve kernen, die op de spig zijn gevangen, na verval eveneens in de rf-structuur worden gevangen. Dit veroorzaakt een substantieel lagere selectiviteit. Naast de effici¨entie en de selectiviteit werd de lijnbreedte van de atomaire overgan- gen in de gascel en in de supersonische jet onderzocht teneinde in-bron laserspectro- scopische metingen te optimaliseren. Een vergelijkende studie van de eigenschappen van de in-bron laserspectroscopie techniek tussen de gascel, list mode en hoge tem- peratuur ionenbron toonde aan dat, in optimale omstandigheden, de list mode de beste resultaten oplevert. Met behulp van de nieuwe twee-kamer gascel werd een laserspectroscopische studie van neutronarme koperisotopen uitgevoerd. Een nieuwe 57 waarde van µ = +2.582(7) µN voor het magnetische dipoolmoment van Cu werd bekomen. Deze verschilt sterk van de vroeger geraporteerde waarde. De meting werd 68 keer herhaald, telkens gevolgd door een meting op het stabiele isotoop 63Cu om systematische effecten uit te sluiten. 57Cu is ´e´en proton verwijderd van de dubbel- magische N = Z = 28 56Ni kern waardoor het magnetische moment een ideale test vormt voor schillenmodelberekeningen. Ons resultaat wordt goed gereproduceerd door theoretische en fenomenologische berekeningen. Het dipoolmoment van 58Cu werd ook bepaald, µ = +0.479(13) µN , in overeenstemming met wat wordt verwacht voor een πp3/2 νp3/2 configuratie. Als finale conclusie kunnen we stellen dat onze meting aantoont⊗ dat de huidige modellen een behoorlijke beschrijving geven van de kernstructuur in de buurt van de N = Z = 28 gesloten schillenconfiguratie.
Recommended publications
  • Po and Pb in the Terrestrial Environment
    Current Advances in Environmental Science (CAES) 210Po and 210Pb in the Terrestrial Environment Bertil R.R. Persson Medical Radiation Physics, Lund University S-22185 LUND, Sweden [email protected] Abstract- The natural sources of 210Po and 210Pb in the meat at high northern latitudes. This was, however, of terrestrial environment are from atmospheric deposition, soil natural origin and no evidence of significant contributions and ground water. The uptake of radionuclides from soil to of 210Po from the atomic bomb test was found. The most plant given as the soil transfer factor, varies widely between significant radionuclides in the fallout from the atmospheric various types of crops with an average about ± atomic bomb-test of importance for human exposure were The atmospheric deposition of 210Pb and 210Po also affect the 137Cs and 90Sr [4]. activity concentrations in leafy plants with a deposition th 210 210 transfer factor for Pb is in the order of 0.1-1 (m2.Bq-1) plants During the 1960 century the presence of Pb and and for root fruits it is < 0.003, Corresponding values for 210Po 210Po was extensively studied in human tissues and are about a factor 3 higher. particularly in Arctic food chains [4-20]. The activity concentration ratios between milk and various types of forage for 210Pb were estimated to ± and for In December of 2006, former Russian intelligence 210Po to ±By a daily food intake of 16 kg dry matter operative Alexander Litvinenko died from ingestion of a 210 210 per day the transfer coefficient Fm. for Pb was estimated to few g of Po.
    [Show full text]
  • Mev for Ne, 166 Mev for 0, and 2 -125 Mev for 12C
    Lawrence Berkeley National Laboratory Recent Work Title ON-LINE SPECTROSCOPY OF NEUTRON-DEFICIENT ACTINIUM ISOTOPES Permalink https://escholarship.org/uc/item/8nb5n8f3 Authors Treytl, William J. Hyde, Earl K. Valli, Kalevi. Publication Date 1967-05-01 eScholarship.org Powered by the California Digital Library University of California UCRL-17405 ~f*J- University of California Ernest O. Lawrence Radiation Laboratory ON -LINE a SPECTROSCOPY OF NEUTRON -DEFICIENT ACTINIUM ISOTOPES William J. Treytl, Earl K. Hyde, and Kalevi Valli May 1967 REC lVED U\WP..rNU c::. Ri~D!~'!'nN ll':BC:tA'f()RY ~ ~,- TWO-WEEK LOAN COpy ~ ,-I This is a library Circul atin9 Copy tI ~ which may be borrowed for two weeks. ,.c::. For a personal retention copy, call l-f' 0 Tech. 'nfo. Dioision, Ext. 5545 \Il DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
    [Show full text]
  • 10.ISCA-IRJEVS-2015-274.Pdf
    International Research Journal of Environment Sciences _____________________________ ___E-ISSN 2319–1414 Vol. 5(4), 67-69, April (2016) Int. Res. J. Environment Sci. Review Paper Identification and Assessment of Emerging Threats from Radio Nuclides in Drinking Water Brajesh K. Shrivastava Ministry of Drinking Water and Sanitation, Government of India, New Delhi, India [email protected] Available online at: www.isca.in, www.isca.me Received 26th December 2015, revised 7th February 2016, accepted 4th March 201 6 Abstract The Research paper undertakes theoretical review of the characteristics of few radio nuclides in aqeous system. These radio nuclides have been identified due to their potential health effects and widespread concern. The radio nuclides are: Uranium, Tritium, Cesium-137, Radon, Strontium-90, Radium, Iodine -131, Technetium and Polonium-210. Keywords : Radio nuclides, Radiation, Ionization, Reverse Osmosi s. Introduction (WHO) recommends a guideline value of maximum permissible limit of 15 µg/L for uranium in drinking water while USEPA Radioactive isotopes released from nuclear power plants/ has a maximum limit of 30 µg/L. At high exposure levels, nuclear testing /medical facilities may wind up in drinking water uranium is believed to cause bone cancer and other type of 1 sources and thereby can pose risk for human life . Radiation cancers in humans. Uranium is also toxic to the kidneys 2. exposure may results from ionizing (alpha and beta particles, En riched uranium exposure alters the spatial working memory gamma rays or X-rays) or non-ionizing materials. Radiation of capacities of rats when these rats are exposed for 9 months to radioactive materials is measured either in curie (US system) or drinking water contaminated with enriched Uranium at a dose of in Becquerel (SI unit) and the risk of radiation exposure to 40 mg/L 3.
    [Show full text]
  • Chapter 5 PROPERTIES of IRRADIATED LBE and Pb*
    Chapter 5 PROPERTIES OF IRRADIATED LBE AND Pb* 5.1 Introduction Lead and LBE possess favourable properties as both a spallation neutron target material and as a coolant for ADS and reactor systems. For ADS applications, these properties include: 1) a high yield of about 28 n for LBE and 24 n for Pb per 1 GeV proton; 2) both melts have an extremely small neutron absorption cross-section; (3) a small scattering cross-section [Gudowski, 2000]. As a coolant, lead and LBE possess: 1) high boiling points; 2) high heat capacities; (3) inert behaviour with respect to reaction with water. For safe operation and post-irradiation handling of LBE and Pb it is necessary to know the nuclides generated during irradiation. Some of these nuclides are volatile, hazardous and rather long-lived. Their behaviour within the system is strongly influenced by the environment including the oxygen content and temperature. If volatiles are produced, their release rates under specific conditions must be evaluated. The release of volatiles may be prevented by the application of a suitable absorber. Protons of 600 MeV energy induce spallation reactions in heavy materials such as Pb and Bi. These reactions generate direct spallation products, consisting of nuclei with masses close to that of the target nuclei. At the high energies involved multiple inelastic reactions are possible. Therefore, one must expect a large number of isotopes as products. For instance, reactions on Pb generate Hg isotopes roughly from 180Hg to 206Hg. Similarly, reactions of protons on Bi generate Po isotopes up to 209Po. 210Po is generated by neutron capture on 209Bi, and subsequent E decay of the compound nucleus 210Bi.
    [Show full text]
  • Discovery of the Thallium, Lead, Bismuth, and Polonium Isotopes
    Discovery of the thallium, lead, bismuth, and polonium isotopes C. Fry, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Currently, forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables October 6, 2011 Contents 1. Introduction . 2 2. 176−217Tl ............................................................................................. 3 3. 179−220Pb............................................................................................. 14 4. 184−224Bi ............................................................................................. 22 5. 186−227Po ............................................................................................. 31 6. Summary ............................................................................................. 39 References . 39 Explanation of Tables . 47 7. Table 1. Discovery of thallium, lead, bismuth, and polonium isotopes . 47 Table 1. Discovery of thallium, lead, bismuth, and polonium. See page 47 for Explanation of Tables . 48 1. Introduction The discovery of thallium, lead, bismuth, and polonium
    [Show full text]
  • DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics
    DOCUMENT RESUME ED 071 911 SE 015 548 TITLE Project Physics Teacher Guide 6, The Nucleus. INSTITUTION Harvard Univ., Cambridge, Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DHEW) Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 68 CONTRACT OEC-5-10-058 NOTE 235p.; Authorized Interim Version EDRS PRICE MF-$0.65 HC-S9.87 DESCRIPTORS Instructional Materials; *Multimedia Instruction; *Nuclear Physics; Physics; *Radiation; Science Activities; Secondary Grades; *Secondary School Science; *Teaching Glides; Teaching Procedures IDENTIFIERS Harvard Project Physics ABSTRACT Teaching procedures of Project Physics Unit 6are presented to help teachers make effectiveuse of learning materials. Unit contents are discussed in connection withteaching aid lists, multi-media schedules, schedule blocks, andresource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information about the backgroundand development of each unit chapter, procedures in demonstrations, apparatus operations, notes on the student handbook, andan explanation of film loops. Additional articlesare concerned with objects dated by radiocarbon, radiation safety, propertiesof radiations, radioactive sources, radioactivity determinationby electroscopes, and radiation detecting devices.Scalers, counters, Geiger tubes, and cadmium selenide photocellsare analyzed; and a bibliography of references is given, Solutionsto the study guide are provided in detail, and answers to test itemsare suggested. The sixth unit of the text, with marginal commentson each section, is also compiled in the manual. The work of Harvard ProjectPhysics has . been financially supported by: the Carnegie Corporation ofNew York, the Ford Foundation, the National Science Foundation,the Alfred P. Sloan Foundation, the United States office of Education,and Harvard University.
    [Show full text]
  • Summary of the Limited Reconnaissance Effort Regarding the Naturally Occurring Suspect Material at the Grand Canyon National Park
    Summary of the Limited Reconnaissance Effort Regarding the Naturally Occurring Suspect Material at the Grand Canyon National Park Revision 1 Completed: July 18, 2000 Prepared by: Reginald Stewart, Health Physicist Mark Manllds:., fJ:ojcct Manager Arcadia Consulting, Inc. 456 Rocky Cliff Road Suite 100 Elizabeth, Colorado 80107 Prepared for: National Park Service Grand Canyon National Park Summary of the Limited Reconnaissance Effort NPS-GCNORMOOl Regarding the Naturally Occurring Suspect Revision 1 Material at the Grand Canyon National Park EXECUTIVE SUMMARY Arcadia Consulting, Inc., {Arcadia) personnel proceeded to the Grand Canyon National Park in Grand Canyon, Arizona with the assumption and understanding that the National Park Service {NPS) had an unspecified quantity of soil corings that potentially contained 3% of U-nat {naturally occurring Uranium). These materials were supposedly stored at the visitor's center, located on the South Rim of the Grand Canyon, for as long as 40 years. It was also understood there was a mining facility located within approximately 5 miles of the visitor's center, containing additional uranium ores and tailings. What was actually discovered were various igneous, metamorphic and sedimentary rock samples, located at multiple locations (the museum. the visitor center, the interpretation garage, and the "old warehouse"). These samples included unprocessed ore, semi­ processed ore with some yellowish residue, coring samples, and samples of materials in simple geological forms. Due to time limitations, the mine was not visited; therefore, no available data was gathered to make any conclusions regarding mill tailings. The project duration was approximately four days. During that period, Arcadia personnel performed radiological measurements, obtained all applicable documentation (with the assistance of the NPS), and contacted NPS personnel in order to characterize the radiological potentials.
    [Show full text]
  • The Environmental Behaviour of Polonium
    technical reportS series no. 484 Technical Reports SeriEs No. 484 The Environmental Behaviour of Polonium F. Carvalho, S. Fernandes, S. Fesenko, E. Holm, B. Howard, The Environmental Behaviour of Polonium P. Martin, M. Phaneuf, D. Porcelli, G. Pröhl, J. Twining @ THE ENVIRONMENTAL BEHAVIOUR OF POLONIUM The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GUATEMALA PAPUA NEW GUINEA ARGENTINA GUYANA PARAGUAY ARMENIA HAITI PERU AUSTRALIA HOLY SEE PHILIPPINES AUSTRIA HONDURAS POLAND AZERBAIJAN HUNGARY PORTUGAL BAHAMAS ICELAND QATAR BAHRAIN INDIA REPUBLIC OF MOLDOVA BANGLADESH INDONESIA ROMANIA BARBADOS IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ RWANDA BELGIUM IRELAND SAN MARINO BELIZE ISRAEL SAUDI ARABIA BENIN ITALY SENEGAL BOLIVIA, PLURINATIONAL JAMAICA SERBIA STATE OF JAPAN SEYCHELLES BOSNIA AND HERZEGOVINA JORDAN SIERRA LEONE BOTSWANA KAZAKHSTAN SINGAPORE BRAZIL KENYA SLOVAKIA BRUNEI DARUSSALAM KOREA, REPUBLIC OF SLOVENIA BULGARIA KUWAIT SOUTH AFRICA BURKINA FASO KYRGYZSTAN SPAIN BURUNDI LAO PEOPLE’S DEMOCRATIC SRI LANKA CAMBODIA REPUBLIC SUDAN CAMEROON LATVIA SWAZILAND CANADA LEBANON SWEDEN CENTRAL AFRICAN LESOTHO SWITZERLAND REPUBLIC LIBERIA SYRIAN ARAB REPUBLIC CHAD LIBYA TAJIKISTAN CHILE LIECHTENSTEIN THAILAND CHINA LITHUANIA THE FORMER YUGOSLAV COLOMBIA LUXEMBOURG REPUBLIC OF MACEDONIA CONGO MADAGASCAR TOGO COSTA RICA MALAWI TRINIDAD AND TOBAGO CÔTE D’IVOIRE MALAYSIA TUNISIA CROATIA MALI
    [Show full text]
  • P4 Hazards and Uses of Emission and Background
    P4 HAZARDS AND USES OF Name: ________________________ EMISSION AND BACKGROUND RADIATION Class: ________________________ Practice Questions Date: ________________________ Time: 172 minutes Marks: 172 marks Comments: GCSE PHYSICS ONLY Page 1 of 69 Alpha particles, beta particles and gamma rays are types of nuclear radiation. 1 (a) Describe the structure of an alpha particle. ___________________________________________________________________ ___________________________________________________________________ (1) (b) Nuclear radiation can change atoms into ions by the process of ionisation. (i) Which type of nuclear radiation is the least ionising? Tick (✔) one box. alpha particles beta particles gamma rays (1) (ii) What happens to the structure of an atom when the atom is ionised? ______________________________________________________________ ______________________________________________________________ (1) (c) People working with sources of nuclear radiation risk damaging their health. State one precaution these people should take to reduce the risk to their health. ___________________________________________________________________ ___________________________________________________________________ (1) Page 2 of 69 (d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate. The type of radiation emitted from a radioactive source can be identified by comparing the properties of the radiation to the properties of alpha, beta and gamma radiation. Describe the
    [Show full text]
  • Polonium-210
    Health Physics Society Fact Sheet Adopted: May 2010 Revised: June 2020 Health Physics Society Specialists in Radiation Safety Polonium-210 General In 1898, Marie and Pierre Curie discovered their first radioactive* element. It was later named polonium in honor of Marie Sklodowska Curie’s native Poland. Polonium, a naturally occurring element that can be found throughout our environment, results from the radioactive decay of radon-222 gas—a part of the uranium-238 decay chain. There are over 30 known isotopes of polonium, and all are radioactive, but the one occurring most in nature—and the one most widely used—is polonium-210 (210Po). With a half-life of 138 days, it decays to stable lead-206 by the emission of an alpha particle (an alpha particle has two protons and two neutrons). Radioactive materials are quantified by activity, or the number of disintegrations that occur over a period of time. A terabecquerel (TBq), for instance, is equal to 1 x 1012 disintegrations per second. Polonium-210 has a very high specific activity—activity per unit mass—of about 166 TBq per gram (4,490 curies, Ci, per gram). In other words, it doesn’t take a large physical amount to be very radioactive. Because of the high specific activity and the large associated thermal cross section, according to a human health fact sheet for 210Po produced by Argonne National Laboratory, a capsule containing about 0.5 grams (83 TBq) of 210Po can reach temperatures exceeding 500o C (ANL 2005). When it is purified, polonium melts at a low temperature and can be quite volatile.
    [Show full text]
  • Collinear Resonance Ionization Spectroscopy of Neutron-Deficient
    week ending PRL 111, 212501 (2013) PHYSICAL REVIEW LETTERS 22 NOVEMBER 2013 Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes K. T. Flanagan,1,* K. M. Lynch,1,2 J. Billowes,1 M. L. Bissell,3 I. Budincˇevic´,3 T. E. Cocolios,1,2 R. P. de Groote,3 S. De Schepper,3 V.N. Fedosseev,4 S. Franchoo,5 R. F. Garcia Ruiz,3 H. Heylen,3 B. A. Marsh,4 G. Neyens,3 T. J. Procter,1 R. E. Rossel,4,6 S. Rothe,4 I. Strashnov,1 H. H. Stroke,7 and K. D. A. Wendt6 1School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom 2Physics Department, CERN, CH-1211 Geneva 23, Switzerland 3Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium 4Engineering Department, CERN, CH-1211 Geneva 23, Switzerland 5Institut de Physique Nucle´aire d’Orsay, F-91406 Orsay, France 6Institut fu¨r Physik, Johannes Gutenberg-Universita¨t Mainz, D-55128 Mainz, Germany 7Department of Physics, New York University, New York, New York 10003, USA (Received 13 August 2013; published 19 November 2013) The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to- detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N ¼ 116).
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]