Uncovering Active Precursors in Colloidal Quantum Dot Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Uncovering Active Precursors in Colloidal Quantum Dot Synthesis Corrected: Publisher correction ARTICLE DOI: 10.1038/s41467-017-01936-z OPEN Uncovering active precursors in colloidal quantum dot synthesis Leah C. Frenette 1 & Todd D. Krauss 1,2 Studies of the fundamental physics and chemistry of colloidal semiconductor nanocrystal quantum dots (QDs) have been central to the field for over 30 years. Although the photo- physics of QDs has been intensely studied, much less is understood about the underlying 1234567890 chemical reaction mechanism leading to monomer formation and subsequent QD growth. Here we investigate the reaction mechanism behind CdSe QD synthesis, the most widely studied QD system. Remarkably, we find that it is not necessary for chemical precursors used in the most common synthetic methods to directly react to form QD monomers, but rather they can generate in situ the same highly reactive Cd and Se precursors that were used in some of the original II-VI QD syntheses decades ago, i.e., hydrogen chalcogenide gas and alkyl cadmium. Appreciating this surprising finding may allow for directed manipulation of these reactive intermediates, leading to more controlled syntheses with improved reproducibility. 1 Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA. 2 Institute of Optics, University of Rochester, Rochester, NY 14627- 0216, USA. Correspondence and requests for materials should be addressed to T.D.K. (email: [email protected]) NATURE COMMUNICATIONS | 8: 2082 | DOI: 10.1038/s41467-017-01936-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01936-z he thermolytic decomposition of organometallic pre- In the following study, we take a somewhat unique approach to Tcursors to form monomers has been the synthetic method our mechanistic studies by investigating the thermal decom- of choice for the nucleation of semiconductor nanocrys- position of each organometallic precursor separately, but – talline quantum dots (QDs) for decades1 3. Early synthetic importantly, under the high temperature reaction conditions that methods produced high-quality QDs through the injection of the are common in CdSe QD syntheses. Specifically, we focus on the phosphine-chalcogenide precursor trioctylphosphine selenide chemical reaction mechanism of the most common precursors for (TOPSe) into thermally decomposing dimethylcadmium2. In the making CdSe QDs: the reaction of cadmium carboxylate and past 20 years, synthetic methods have advanced substantially tertiary phosphine selenide. We hypothesize that complex reac- making the colloidal QD synthesis reaction safer, and with greater tion intermediates, where both cadmium and selenium precursors control over nanoparticle size, shape, and stoichiometry. For remain intact14, 16, 19, 20, are not likely to form given the extreme example, the highly toxic dimethylcadmium was replaced with temperatures necessary for CdSe QD formation thus suggesting cadmium carboxylates4, secondary phosphine chalcogenides an alternate reaction pathway. We find that at under conditions – allowed for control over QD surface composition5 7, and the use common to CdSe QD syntheses, both the tertiary phosphine- of single-source precursors drove improvements in reaction chalcogenide precursor and metal-carboxylate precursor ther- – yields8 10; all have allowed for improved size selectivity and mally decompose to extremely reactive species: hydrogen selenide monodispersity. Recent synthetic breakthroughs have focused and dialkylcadmium, respectively. On the basis of this observa- on designing precursors to better program size and reaction tion, we propose a mechanism for QD synthesis in which these – yield11 13. decomposition products react to form CdSe monomer, which Contrary to the advances made in developing improved QD then further react to nucleate nanoparticles3, 21. Importantly, this synthesis, elucidating the specific chemical reaction pathways mechanism includes the formation of the anhydride and the taking initial molecular precursors to QDs has been difficult and phosphine oxide products observed in previous mechanism stu- limited in scope. In an early example, it was shown that the dies14, 17, and can explain the relatively low chemical yields reactive chalcogenide precursor in lead chalcogenide QD synth- observed in the CdSe QD synthesis reactions of this type16. eses was not the tertiary phosphine-chalcogenide precursor, but 5 actually a secondary phosphine-chalcogenide impurity . With Results respect to CdSe QDs, it was proposed that QD molecular pre- Thermal decomposition of tri-n-butylphosphine selenide.We cursors (i.e., cadmium oleate and TOPSe) form a transition state – studied the decomposition of tri-n-butylphosphine selenide given by a Lewis acid-base complex14 16; which forms the CdSe 14, 16, 17 (TnBPSe) in the absence of a cadmium source to model the bond after an attack by an alkyl carboxylate . Noteworthy decomposition of tertiary phosphine selenides under the con- products from this reaction are trioctylphosphine oxide (TOPO) 14 ditions of typical CdSe QD syntheses. High-quality cadmium and oleic anhydride . Further mechanistic studies are motivated chalcogenide QDs are typically synthesized at temperatures by the need to control the kinetics of the reactive precursors in between 270 and 350 °C. Thus, tri-n-butylphosphine selenide solution and eliminate extraneous reactants, enhance reproduci- (TnBPSe), octanoic acid (a shorter chain analog for oleic bility, and obtain better overall control over nanoparticle 17, 18 acid), and tetradecane were combined and heated at 250 °C. growth . In addition, new precursors and synthetic methods We expected significant reactivity in the phosphine selenide, can be designed with controlled decomposition to yield more as phosphine chalcogenides are likely to decompose at highly engineered QDs of desired shapes, sizes, and 11 these temperatures given their reactivity under similar condi- compositions . tions22, 23. In addition, alkyl tertiary phosphine selenide bond ab31P NMR 100% TnBPSe TnBPO 80% 60% 20 min 15 min 40% Composition (%) 8 min 20% 5 min TnBPO TnBPSe 0% 0 5 10 15 20 25 60 40 (ppm) Time (min) Fig. 1 A NMR analysis following decomposition of TnBPSe after hot injection. a The 31P NMR spectrum of the reaction mixture over time, showing that the relative amount of TnBPSe decreases as the amount of TnBPO increases. b The percent composition of TnBPSe (navy blue circles) and TnBPO (royal blue squares) in the TnBPSe decomposition reaction over time. 31P and 77Se NMR of TnBPSe before reaction can be found in Supplementary Fig. 1. Trend lines are provided as guides to the eye 2 NATURE COMMUNICATIONS | 8: 2082 | DOI: 10.1038/s41467-017-01936-z | www.nature.com/naturecommunications NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01936-z ARTICLE abc77Se NMR H2Se TPPSe –220 –240 –260 –280 (ppm) Fig. 2 Identifying the selenium decomposition product. a The experimental setup used to identify H2Se as the gaseous selenium source. This panel was 77 generated using templates in ChemDraw Professional 16.0. b The Se NMR spectrum of H2Se with TPPSe external standard. NMR characterization of TPPSe can be found in Supplementary Fig. 6. c Fluorescent CdSe nanocrystals under UV irradiation synthesized from the H2Se generated in situ, the absorbance spectrum is in Supplementary Fig. 7 fl dissociation energies are low, making breaking the phosphine- in the rightmost ask provides conclusive evidence that H2Se is chalcogenide bond accessible, as demonstrated by Ruberu et al. the selenium containing decomposition product of TnBPSe. through phosphine crossover experiments at temperatures Furthermore, we confirmed that the H Se produced from the – 2 above 250 °C24 26. TnBPSe decomposition can react to form CdSe nanoparticles, by As shown in Fig. 1, analysis of the reaction mixture by31P using the cannula apparatus in Fig. 2a with cadmium oleate in fl NMR (nuclear magnetic resonance spectroscopy) showed the tetradecane at 250 °C in the second ask replacing CS2.H2Se formation of tri-n-butylphosphine oxide (TnBPO), a product from the TnBPSe decomposition reaction in the first flask was universally seen in other studies of CdSe QD mechanism with bubbled through the cadmium oleate resulting in the synthesis of – cadmium present14, 27 29, and a clear indication that the TnBPSe CdSe nanoparticles shown in Fig. 2c. had decomposed. The TnBPSe decomposition reaction for the To quantify the amount of H2Se produced, a coaxial insert conversion of TnBPSe to TnBPO was further studied at various NMR tube was employed to allow the use of an external77Se time points after hot injection by 31P NMR (Fig. 1). The NMR standard. Triphenylphosphine selenide (TPPSe) was percentage composition of TnBPO after 15 min was calculated to chosen as the external standard because its chemical shift appears 77 be 30% on average, which is consistent with the reaction yields of near to, but distinct from, that of H2Se. The Se NMR showing 16 CdSe QDs using TnBPSe . Surprisingly, we were unable to the H2Se singlet and TPPSe standard doublet can be seen in observe any other molecular form of selenium in solution by 77Se Fig. 2b. From77Se NMR integrated peaks, we calculated an 31 or P NMR (Supplementary Figs. 2 and 3). Previous mechanistic average of 36% conversion of TnBPSe to H2Se after 15 min of studies attribute the lack of a Se signal in NMR to formation of reaction. The discrepancy between the conversion yields from CdSe QDs, which would be NMR silent5, 14, 17, 19, 27. However, in 77Se NMR (36%)
Recommended publications
  • Thin Film Deposition Methods for Cuinse2 Solar Cells
    Critical Reviews in Solid State and Materials Sciences, 30:1–31, 2005 Copyright c Taylor and Francis Inc. ISSN: 1040-8436 print DOI: 10.1080/10408430590918341 Thin Film Deposition Methods for CuInSe2 Solar Cells Marianna Kemell,∗ Mikko Ritala, and Markku Leskel¨a Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland CuInSe2 and its alloys with Ga and/or S are among the most promising absorber materials for thin film solar cells. CuInSe2-based solar cells have shown long-term stability and the highest conversion efficiencies of all thin film solar cells, above 19%. Solar cells based on these materials are also very stable, thus allowing long operational lifetimes. The preparation of a thin film solar cell is a multistage process where every step affects the resulting cell performance and the production cost. CuInSe2 and other Cu chalcopyrites can be prepared by a variety of methods, ranging from physical vapor deposition methods such as evaporation and sputtering to low- temperature liquid phase methods such as electrodeposition. The present review discusses first the concept and operation principle of thin film solar cells, as well as the most important thin film solar cell materials. Next, the properties of CuInSe2 and related compounds, as well as features of solar cells made thereof are reviewed. The last part of the text deals with deposition methods used for the preparation of CuInSe2 and Cu(In,Ga)Se2 thin film absorbers and solar cells. Although the emphasis here is on absorber preparation methods, buffer and conducting oxide preparation are discussed as well. Keywords photovoltaics, copper chalcopyrites, absorber layer, buffer layer, transparent conducting oxide Table of Contents LIST OF SYMBOLS AND ABBREVIATIONS .............................................................................................................
    [Show full text]
  • Colloidal and Deposited Products of the Interaction of Tetrachloroauric Acid with Hydrogen Selenide and Hydrogen Sulfide in Aqueous Solutions
    minerals Article Colloidal and Deposited Products of the Interaction of Tetrachloroauric Acid with Hydrogen Selenide and Hydrogen Sulfide in Aqueous Solutions Sergey Vorobyev 1, Maxim Likhatski 1, Alexander Romanchenko 1, Nikolai Maksimov 1, Sergey Zharkov 2,3, Alexander Krylov 2 and Yuri Mikhlin 1,* 1 Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; [email protected] (S.V.); [email protected] (M.L.); [email protected] (A.R.); [email protected] (N.M.) 2 Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; [email protected] (S.Z.); [email protected] (A.K.) 3 Electron Microscopy Laboratory, Siberian Federal University, Krasnoyarsk 660041, Russia * Correspondence: [email protected]; Tel.: +7-391-205-1928 Received: 11 October 2018; Accepted: 29 October 2018; Published: 31 October 2018 Abstract: The reactions of aqueous gold complexes with H2Se and H2S are important for transportation and deposition of gold in nature and for synthesis of AuSe-based nanomaterials but are scantily understood. Here, we explored species formed at different proportions of HAuCl4, H2Se and H2S at room temperature using in situ UV-vis spectroscopy, dynamic light scattering (DLS), zeta-potential measurement and ex situ Transmission electron microscopy (TEM), electron diffraction, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Metal gold colloids arose at the molar ratios H2Se(H2S)/HAuCl4 less than 2. At higher ratios, pre-nucleation “dense liquid” species having the hydrodynamic diameter of 20–40 nm, zeta potential −40 mV to −50 mV, and the indirect band gap less than 1 eV derived from the UV-vis spectra grow into submicrometer droplets over several hours, followed by fractional nucleation in the interior and + coagulation of disordered gold chalcogenide.
    [Show full text]
  • Journal of Solid State Chemistry 273 (2019) 243–286
    Journal of Solid State Chemistry 273 (2019) 243–286 Contents lists available at ScienceDirect Journal of Solid State Chemistry journal homepage: www.elsevier.com/locate/jssc The development of strategies for nanoparticle synthesis: Considerations MARK for deepening understanding of inherently complex systems☆ ⁎ Jennifer M. Lee1, Rebecca C. Miller1, Lily J. Moloney, Amy L. Prieto Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States ABSTRACT The last fifty years of solid-state chemistry have produced a wealth of compounds with complex structures, exciting properties, and from those discoveries, an explosion of new technologies. We continue to strive to understand structure-property relationships as well as develop expedient methods to discover and control new materials. Nanoparticle synthesis is one area of synthetic solid-state chemistry that is currently experiencing a significant growth of deepening understanding and increasing sophistication. Herein, we review examples from the literature where insight about a synthesis can be built from to catalyze new discoveries. The focus is on synthetic reports of nanoparticles of increasing complexity. Contents 1. Introduction. ..................................................... 244 2. Connecting parameters of nanoparticle syntheses to reaction mechanism and pathway. 246 2.1. Investigating the formation of anionic, chalcogenide species . 246 2.1.1. Tertiary phosphine chalcogenides: mechanism of chalcogen delivery and reactivity trends. 246 2.1.2. Diorganyl dichalcogenides: reactivity trends and extrapolation from binary to ternary systems . 247 2.1.3. Alkylamine-chalcogenides: chalcogen dissolution and reduction . 248 2.1.4. Multiple roles of 1-dodecanethiol (DDT): sulfur precursor, stabilizing ligand, and solvent . 249 2.1.5. Thiourea and selenourea: chemical decomposition . 249 2.1.6.
    [Show full text]
  • Some Reactions of Phosphorusfluorine Compounds with Platinum Metal Hydride Complexes Philip G. Page Ii Thesis Presented For
    ii Some Reactions of Phosphorusfluorine Compounds with Platinum Metal Hydride Complexes Philip G. Page Thesis presented for the degree of Doctor of Philosophy University of Edinburgh Seotember 1983 To my parents Declaration This thesis has not been submitted, in whole, or in part, previously for any degree at any university. All the work is original, under the supervision of Professor E.A.V. Ebsworth; where this is not the case, credit has been duly given. () Table of Contents Acknowledgements Abstract Chapter 1 Introduction References Chapter 2 Experimental Techniques and Instruments N.m.r. Experiments Chemical Reagents Volatile Reagents Metal Complexes Used C. Solvents Used References Chapter 3 Some Reactions of H 2Pt(PCy 3 ) 2 and HPtC1(PCy3) 2 Introduction Some reactions of H 2Pt(?Cy 3 ) 2 2.1 with EX (X = Cl, Br, I) 2.1.1 Earlier work 2.1.2 New work 2.1.3 The spectra and discussion 2.2 with H 2 E (E = 5, Se) 2.2.1 Earlier work 2.2.2 New work and spectra - 2.2.3 Discussion 2.3 with HPF 2E CE = 0, 5, Se) 2.3.1 Preliminary and earlier work 2.3.2 New work 2.3.3 Discussion. (i ) 2.4 with SiH 4 2.4.1 Earlier work 2.4.2 New work 2.4.3 Discussion 2.5 with PF 2 X (X = Cl, Br, I) 2.5.1 Earlier work 2.5.2 New work 2.5.3 Discussion 2.6 with HPF 2 Some of the reactions of HPt(PCy 3 ) 2 X (X = SiH 3 , S1H, SeH, PF 2O, PF 2 S, PF 2 Se) 3.1 Preliminary 3.2 The reactions of HPt(PCy 3 ) 2SiH 3 3.2.1 with HPF 2E (E = 0, S, Se) 3.2.2 with HC1, HBr, HI 3.2.3 with H 2 S and H 2 Se 3.3 The reactionsof HPt(PCy 3 ).
    [Show full text]
  • Catalyst-Free Construction of Versatile
    Article Cite This: Macromolecules 2019, 52, 8596−8603 pubs.acs.org/Macromolecules ‑ Catalyst-Free Construction of Versatile and Functional CS2 Based Polythioureas: Characteristics from Self-Healing to Heavy Metal Absorption † † ‡ † Shuang Wu, Ming Luo,*, Donald J. Darensbourg,*, and Xiaobing Zuo † School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China ‡ Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States *S Supporting Information ABSTRACT: As typical of sulfur-containing polymers, polythiourea is a promising polymeric material because of its outstanding properties such as self-healing, high refractive index, high dielectric constant, and good coordinating ability to heavy metal ions. However, examples of versatile polythioureas are relatively scarce as a result of the limited methods for their synthesis. Herein, we report a mild and easily accessible strategy for the preparation of polythioureas by a catalyst-free copolymerization of CS2 and diamines in the absence of an inert/anhydrous atmosphere. The copolymerization of 1,8-diamino-3,6-dioxaoctane (DA1) and carbon disulfide was selected as the model reaction for optimizing conditions for the ff fi polymerization process. DA1 and CS2 a orded well-de ned polythiourea P1 with high molecular weight (25.5 kg/mol) in good yield (96%) at 45 °C, which was shown to be mechanically robust and readily self-healable. This method displayed a wide scope, providing 23 polythioureas with structural diversity and high molecular weights in excellent yields from CS2 and commercially available diamines. The aliphatic polythiourea P4 was examined for its ability as a heavy metal absorbent, effectively sequestering Hg2+ ions with greater than 99.9% efficiency.
    [Show full text]
  • Solution Processing for Copper Indium Sulfide Solar Cells
    SOLUTION PROCESSING FOR COPPER INDIUM SULFIDE SOLAR CELLS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CHEMISTRY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Stephen Thacker Connor August 2011 © 2011 by Stephen Thacker Connor. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/wr798sx5189 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Yi Cui, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Christopher Chidsey I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. T Stack Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract In recent years, the field of photovoltaics has become increasingly important due to rising energy demand and climate change.
    [Show full text]
  • Download This Article PDF Format
    Materials Advances View Article Online PAPER View Journal | View Issue The effect of small addition of copper on the growth process, structure, surface charge and Cite this: Mater. Adv., 2021, 2, 3637 adsorption properties of ZnO films in the pyrolysis of dithiocarbamates† B. A. Snopok, *a L. V. Zavyalova, a N. P. Tatyanenko, a A. I. Gudymenko,a G. S. Svechnikov,b V. P. Kladkoa and A. E. Belyaeva The development of composite materials based on copper and zinc oxides is one of the main trends in low-temperature catalysis, sensor technology, and optoelectronics. Of particular interest are thin-film coatings where outer faces of the ZnO crystals decorated with clusters of copper oxides of different valence, the sharing of electronic processes within such structures, leads to the unique properties of these materials. Herein, we synthesized textured ZnO/ZnS, ZnO/ZnS:Cu and ZnO:Cu films using the Creative Commons Attribution-NonCommercial 3.0 Unported Licence. atmosphere pressure spray pyrolysis technique with identical organic precursor for copper and zinc ions, dithiocarbamate (DTC). The most perfect films were obtained in the presence of 0.2% copper at 220 1C (surface reaction rate limited regime) on Si(111)/SiO2 substrates. Textured ZnO:Cu films are characterized by an increased growth rate, a more pronounced structure, superior photoelectric properties, and ‘‘unusual’’ chemical functionality. The growth of a composite material is considered on the basis of the tip-growth model, where catalytically active copper clusters are located on the outer polar surface of growing ZnO nanorod arrays. Segregation of the copper on the external polar face explained by the Jahn–Teller effect leads to the ‘‘jittering’’ in the coordination sphere of an ion in a highly symmetric environment of the ZnO crystal lattice.
    [Show full text]
  • Structures from Gas Electron Diffraction and Chemical Shielding in Solution
    This is a repository copy of Icosahedral Carbaboranes with Peripheral Hydrogen– Chalcogenide Groups : Structures from Gas Electron Diffraction and Chemical Shielding in Solution. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/139672/ Version: Accepted Version Article: Baše, Tomáš, Holub, Josef, Fanfrlík, Jindřich et al. (7 more authors) (2019) Icosahedral Carbaboranes with Peripheral Hydrogen–Chalcogenide Groups : Structures from Gas Electron Diffraction and Chemical Shielding in Solution. Chemistry : A European Journal. pp. 2313-2321. ISSN 1521-3765 https://doi.org/10.1002/chem.201805145 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Journal of Accepted Article Title: Icosahedral carbaboranes with peripheral hydrogen-chalcogenide functions: their structures from gas electron diffraction and chemical shielding in solution Authors: Norbert Werner Mitzel, Josef Holub, Jindřich Fanfrlík, Drahomír Hnyk, Paul Lane, Derek Wann, Yury Vishnevskiy, Denis Tikhonov, and Christian Reuter This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR).
    [Show full text]
  • GLOSSARY of CLASS NAMES of ORGANIC COMPOUNDS and REACTIVE INTERMEDIATES BASED on STRUCTURE (IUPAC Recommendations 1995)
    Pure &App/. Chem., Vol. 67, Nos 819, pp. 1307-1375, 1995. Printed in Great Britain. (B 1995 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DMSION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (III. 1) COMMISSION ON PHYSICAL ORGANIC CHEMISTRY (III.2) GLOSSARY OF CLASS NAMES OF ORGANIC COMPOUNDS AND REACTIVE INTERMEDIATES BASED ON STRUCTURE (IUPAC Recommendations 1995) Prepared for publication by G.P. MOSS, P.A.S. SMITH and D. TAVERNIER Cornpodtion of the ZZZ.1 & 111.2 Working Party (1980-1994): H.J.T. Bos, A.J. Boulton, E.W. Godly, P. Griinanger, A.D. McNaught, G.P. Moss, R. PanicO, J. Rigaudy, P.A.S. Smith (Conwnorfiom ZZZ, I), J.H. Stocker, D. Tavernier, R.A.Y. Jones, J. March, J.M. McBnde, P. Miiller (Conwnorfim 111.2). Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document (1980-1994) was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; H. J. T. Bos (Netherlands) 1987- , Vice-Chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; H. A. Favre (Canada) 1989- , Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989- ; E. W. Godly (UK) 1987-1993. Secretary, 1989-1993 ; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice- Chairman, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. KisakUrck (Switizrland) 1994- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977- 1987, Chairinan, 1981- 1987, Vice-Chainnun, 1979-1981; R. Panico (Francc) 1981-1991, Vice- Chairman, 1989-1991; W. H. Powell (USA) Secretary, 1979-1989; J.
    [Show full text]
  • Room Temperature Polymerization and Spectroscopic Analysis of Germanium Phthalocyanine Polymers
    Room temperature polymerization and spectroscopic analysis of germanium phthalocyanine polymers Mark D. Hohol and Marek W. Urban* Department of Polymers and Coatings, North Dakota State University, Fargo, ND 58105, USA (Received 25 September 1992) This paper describes a one-step, room temperature synthesis utilizing ultrasonic energy of a coaxially stacked poly(phthalocyanato) germanium oxide ([Ge(Pc)O].) from Ge(Pc)C12. The synthesis is conducted in the presence of a sodium chalcogenide. Based on photoacoustic FTi.r. and u.v.-vis. spectroscopic analysis, the mechanism of the [Ge(Pc)O], formation is proposed. The use of isotopic H20/D20 exchange is also utilized in an effort to reveal the role of traces of water present during the polymerization reaction. (Keyworfls: synthesis; spectroscopic analysis; germanium phthalocyanine polymers) Introduction (0.263mol, Johnson/Matthey) of germanium tetra- Synthesis ofmetallomacrocycles in a cofacial assembly chloride, 50 g (0.344 mol, Aldrich) of 1,3-diimino- was pioneered 1,2 on phthalocyanogermanium and isoindoline and 300 ml of freshly distilled, dry quinoline phthalocyanomanganese oxide complexes. Soon after, it (Aldrich) was charged into a 1000ml three-necked was shown 3 that a related stacked siloxane, [ Si (Pc)O ] ,, round-bottomed flask equipped with a nitrogen inlet and could be formed by the dehydration of the dihydroxy- thermal temperature probe fitted upon a Claisen adaptor, siloxane, SiPc(OH)2. It was demonstrated4'5 that a mechanical stirrer, and a dry-ice condenser fitted upon cofacially arranged phthalocyanines can be prepared in a West-type condenser. The resulting solution was a traditional two-step synthesis of the oxygen-bridged refluxed for 1 h and slowly cooled to room temperature.
    [Show full text]
  • Egyptian Journal of Chemistry
    470 Egypt. J. Chem. Vol. 64, No. 9, pp. 5009 - 5015 (2021) Egyptian Journal of Chemistry http://ejchem.journals.ekb.eg/ Synthesis, Characterization and Thermal Study of some new Organochalcogenide compounds containing arylamide group A. F. Hassana, A. T. Abdulwahida, M. Y. Al-Luaibi*a, and S. N. Al-Jadaanb aDepartment of Chemistry, College of Sciences, University of Basrah, Basrah, Iraq bDepartment of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Basrah, Iraq Abstract Two Series of organochalcogen compounds were prepared. The first series was prepared by the reaction of 2- chloro-N-arylacetamide (where aryl is benzyl, phenyl, o-toluene, or p-toluene) with sodium hydrogen selenide (prepared in situ) to give diorganyl selenide compounds (R2Se). The second series was prepared by reaction of N- benzyl-2-chloro-N-(2-chloroacetyl) acetamide with sodium chalcogenate , Na2E (where E= S, Se, and Te) to give the corresponding cyclic chalcogenide compounds. Diiodo derivatives of cyclic selenide and telluride were also o prepared. The thermal stability of the new selenium compounds (R2Se) were decomposed at 300 C. Thermogram showed a phase transfer point between 120-150oC indicating that these compounds may act as liquid crystal compounds. All new compounds were characterized by CHN elemental analysis, UV-Visible, FT-IR and 1H NMR spectroscopic data. Keywords: 2-chloro-N-arylacetamide, selenium, tellurium, organochalcogen compounds, heterocycles. 1. Introduction antibacterial agents. Furthermore, their thermal Selenium and tellurium are rare elements, and they properties will be discussed. are regarded as toxic metalloids although they have a role in some biological applications [1,2]. Both 2. Materials elements are reported to be essential elements[3].
    [Show full text]
  • Solution-Based Chalcogenide Thin Film Deposition
    AN ABSTRACT OF THE DISSERTATION OF Changqing Pan for the degree of Doctor of Philosophy in Chemical Engineering presented on April 3, 2017. Title: Solution-based Chalcogenide Thin Film Deposition Abstract approved: ______________________________________________________ Chih-Hung Chang As a group of promising semiconductor materials, metal chalcogenides in thin film form have been widely used in electronics and optoelectronics applications, such as solar cell devices and photon sensors. Unfortunately, the film size and product throughput are limited by the current vacuum-based thin film deposition techniques. Solution-based thin film deposition could archive a continuous large area thin film deposition of chalcogenides. Also by eliminating the vacuum requirement, the total process cost can be significantly reduced. Here three different routes to deposit the chalcogenide thin film have been studied: from solution-based deposited metal oxide film, from electroplated metal thin film, and from bulk chalcogenide powder. By a hydrogen-assisted selenization process, an oxide thin film of copper, indium, and gallium has been successfully transited to CuIn1-xGaxSe2 chalcopyrite thin film, and the solar devices have been fabricated based on this p-type chalcogenide material. In a similar way, a metal stack of copper, zinc, and tin has been converted to Cu2ZnSnS4 kesterite thin film solar cell material. The last one, powder molybdenum disulfide is transformed into thin film through a dimensional reduction process with the help of microreactor design and simulation. This research also includes the fabrication of photovoltaic devices, thin film transistors, and their characterizations in both structural and electronic properties. There are advantages and disadvantages from each of these solution-based deposition techniques, and by selecting one of these methods, it could archive a generic process route for a large range of metal chalcogenide thin film deposition.
    [Show full text]