Heat Index Climatology for the North-Central United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of the Dew Water on the Ground Surface in HONO Distribution: a Case Measurement in Melpitz
Atmos. Chem. Phys., 20, 13069–13089, 2020 https://doi.org/10.5194/acp-20-13069-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Role of the dew water on the ground surface in HONO distribution: a case measurement in Melpitz Yangang Ren1, Bastian Stieger2, Gerald Spindler2, Benoit Grosselin1, Abdelwahid Mellouki1, Thomas Tuch2, Alfred Wiedensohler2, and Hartmut Herrmann2 1Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021), Observatoire des Sciences de l’Univers en région Centre (OSUC), 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France 2Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany Correspondence: Abdelwahid Mellouki ([email protected]) and Hartmut Herrmann ([email protected]) Received: 25 November 2019 – Discussion started: 30 January 2020 Revised: 27 August 2020 – Accepted: 13 September 2020 – Published: 9 November 2020 Abstract. To characterize the role of dew water for the eas that provide a large amount of ground surface based on ground surface HONO distribution, nitrous acid (HONO) the OH production rate calculation. measurements with a Monitor for AeRosols and Gases in am- bient Air (MARGA) and a LOng Path Absorption Photome- ter (LOPAP) instrument were performed at the Leibniz In- 1 Introduction stitute for Tropospheric Research (TROPOS) research site in Melpitz, Germany, from 19 to 29 April 2018. The dew water Nitrous acid (HONO) is important in atmospheric chemistry was also collected and analyzed from 8 to 14 May 2019 using as its photolysis (Reaction R1) is an important source of OH a glass sampler. The high time resolution of HONO measure- radicals. -
Idaho Profile Idaho Facts
Idaho Profile Idaho Facts Name: Originally suggested for Colorado, the name “Idaho” was used for a steamship which traveled the Columbia River. With the discovery of gold on the Clearwater River in 1860, the diggings began to be called the Idaho mines. “Idaho” is a coined or invented word, and is not a derivation of an Indian phrase “E Dah Hoe (How)” supposedly meaning “gem of the mountains.” Nickname: The “Gem State” Motto: “Esto Perpetua” (Let it be perpetual) Discovered By Europeans: 1805, the last of the 50 states to be sighted Organized as Territory: March 4, 1863, act signed by President Lincoln Entered Union: July 3, 1890, 43rd state to join the Union Official State Language: English Geography Total Area: 83,569 square miles – 14th in area size (read more) Water Area: 926 square miles Highest Elevation: 12,662 feet above sea level at the summit of Mt. Borah, Custer County in the Lost River Range Lowest Elevation: 770 feet above sea level at the Snake River at Lewiston Length: 164/479 miles at shortest/longest point Width: Geographic 45/305 miles at narrowest/widest point Center: Number of settlement of Custer on the Yankee Fork River, Custer County Lakes: Navigable more than 2,000 Rivers: Largest Snake, Coeur d’Alene, St. Joe, St. Maries and Kootenai Lake: Lake Pend Oreille, 180 square miles Temperature Extremes: highest, 118° at Orofino July 28, 1934; lowest, -60° at Island Park Dam, January 18, 1943 2010 Population: 1,567,582 (US Census Bureau) Official State Holidays New Year’s Day January 1 Martin Luther King, Jr.-Human Rights Day Third Monday in January Presidents Day Third Monday in February Memorial Day Last Monday in May Independence Day July 4 Labor Day First Monday in September Columbus Day Second Monday in October Veterans Day November 11 Thanksgiving Day Fourth Thursday in November Christmas December 25 Every day appointed by the President of the United States, or by the governor of this state, for a public fast, thanksgiving, or holiday. -
Electricity Demand Reduction in Sydney and Darwin with Local Climate Mitigation
P. Rajagopalan and M.M Andamon (eds.), Engaging Architectural Science: Meeting the Challenges of Higher Density: 52nd 285 International Conference of the Architectural Science Association 2018, pp.285–293. ©2018, The Architectural Science Association and RMIT University, Australia. Electricity demand reduction in Sydney and Darwin with local climate mitigation Riccardo Paolini UNSW Built Environment, UNSW Sydney, Australia [email protected] Shamila Haddad UNSW Built Environment, UNSW Sydney, Australia [email protected] Afroditi Synnefa UNSW Built Environment, UNSW Sydney, Australia [email protected] Samira Garshasbi UNSW Built Environment, UNSW Sydney, Australia [email protected] Mattheos Santamouris UNSW Built Environment, UNSW Sydney, Australia [email protected] Abstract: Urban overheating in synergy with global climate change will be enhanced by the increasing population density and increased land use in Australian Capital Cities, boosting the total and peak electricity demand. Here we assess the relation between ambient conditions and electricity demand in Sydney and Darwin and the impact of local climate mitigation strategies including greenery, cool materials, water and their combined use at precinct scale. By means of a genetic algorithm, we produced two site-specific surrogate models, for New South Wales and Darwin CBD, to compute the electricity demand as a function of air temperature, humidity and incoming solar radiation. For Western Sydney, the total electricity savings computed under the different mitigation scenarios range between 0.52 and 0.91 TWh for the summer of 2016/2017, namely 4.5 % of the total, with the most relevant saving concerning the peak demand, equal to 9 % with cool materials and water sprinkling. -
The Relative Contributions of Temperature and Moisture to Heat Stress
1 The Relative Contributions of Temperature and Moisture to Heat Stress 2 Changes Under Warming ∗ 3 Nicholas J. Lutsko 4 Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA ∗ 5 Corresponding author address: Nicholas Lutsko, [email protected] 6 E-mail: [email protected] Generated using v4.3.2 of the AMS LATEX template 1 ABSTRACT 7 Increases in the severity of heat stress extremes are potentially one of the 8 most impactful consequences of climate change, affecting human comfort, 9 productivity, health and mortality in many places on Earth. Heat stress results 10 from a combination of elevated temperature and humidity, but the relative con- 11 tributions each of these makes to heat stress changes have yet to be quantified. 12 Here, conditions on the baseline specific humidity are derived for when spe- 13 cific humidity changes will dominate heat stress changes (as measured using 14 the equivalent potential temperature, qE), and for when temperature changes 15 will dominate. Separate conditions are derived over ocean and over land, in 16 addition to a condition for when relative humidity changes dominate over the 17 temperature response at fixed relative humidity. These conditions are used to 18 interpret the qE responses in transient warming simulations with an ensemble 19 of models participating in the Sixth Climate Model Intercomparison Project. 20 The regional pattern of qE changes is shown to be largely determined by the 21 pattern of specific humidity changes, with the pattern of temperature changes 22 playing a secondary role. This holds whether considering changes in mean 23 summertime qE or in extreme (98th percentile) qE events. -
Guide to Understanding Condensation
Guide to Understanding Condensation The complete Andersen® Owner-To-Owner™ limited warranty is available at: www.andersenwindows.com. “Andersen” is a registered trademark of Andersen Corporation. All other marks where denoted are marks of Andersen Corporation. © 2007 Andersen Corporation. All rights reserved. 7/07 INTRODUCTION 2 The moisture that suddenly appears in cold weather on the interior We have created this brochure to answer questions you may have or exterior of window and patio door glass can block the view, drip about condensation, indoor humidity and exterior condensation. on the floor or freeze on the glass. It can be an annoying problem. We’ll start with the basics and offer solutions and alternatives While it may seem natural to blame the windows or doors, interior along the way. condensation is really an indication of excess humidity in the home. Exterior condensation, on the other hand, is a form of dew — the Should you run into problems or situations not covered in the glass simply provides a surface on which the moisture can condense. following pages, please contact your Andersen retailer. The important thing to realize is that if excessive humidity is Visit the Andersen website: www.andersenwindows.com causing window condensation, it may also be causing problems elsewhere in your home. Here are some other signs of excess The Andersen customer service toll-free number: 1-888-888-7020. humidity: • A “damp feeling” in the home. • Staining or discoloration of interior surfaces. • Mold or mildew on surfaces or a “musty smell.” • Warped wooden surfaces. • Cracking, peeling or blistering interior or exterior paint. -
Kshsaa Recommended Excessive Heat/Humidityactivity Modification Policy Heat Index Chart
KSHSAA RECOMMENDED EXCESSIVE HEAT/HUMIDITYACTIVITY MODIFICATION POLICY The modifications below should be applied to any sport/activity taking place outdoors OR in un-air conditioned facilities. HEAT HEAT ILLNESS RISK WITH PHYSICAL ACTIVITY AND/OR PROLONGED EXPOSURE INDEX These heat index zones are general guidelines only. Heat illness, INCLUDING HEAT STROKE, can occur in any zone depending on an individual’s reaction to the environment. 80°-89° – Fatigue possible with prolonged exposure and/or physical activity Zone 1 – Monitor at-risk athletes closely – MINIMUM 3 rest/hydration breaks per hour / Break length MINIMUM 4 minutes – Cold tubs prepared and ready (recommended) 90- 103 – Heat cramps or heat exhaustion possible Zone 2 – 2 HOUR MAXIMUM length of practice – Football: Helmets & shoulder pads only / No protective equipment when conditioning – MINIMUM 4 rest/hydration breaks per hour / Break length MINIMUM 4 minutes – Cold tubs prepared and ready 103- 124 – Heat cramps or heat exhaustion likely, heatstroke possible Zone 3 – 1 HOUR MAXIMUM length of practice – No protective equipment to be worn – No conditioning – Rest/hydration breaks MUST total 20 minutes – Cold tubs prepared and ready >124 – Heatstroke highly likely – No outdoor practices or practices in un-air conditioned facilities should be permitted – Participants should ALWAYS have unrestricted access to fluids. – If the heat index value at your location is on the border between two levels, follow the guidelines for the more conservative level. – Heat index values should be rechecked every 30 minutes. HEAT INDEX CHART Use the chart below to find the heat index based on air temperature and relative humidity at your site. -
Landforms and Resources
Name _____________________________ Class _________________ Date __________________ Physical Geography of the United States and Canada Section 1 Landforms and Resources Terms and Names Appalachian Mountains major mountain chain in the eastern United States and Canada Great Plains largely treeless area in the interior lowlands Canadian Shield rocky, flat area that surrounds Hudson Bay Rocky Mountains mountain chain in the western United States and Canada Continental Divide line of the highest points in the Rockies that marks the separation between rivers flowing to the east and to the west Great Lakes five large lakes found in the central United States and Canada Mackenzie River Canada’s longest river Before You Read In the last chapter, you read about human geography–the way humans in general relate to their environment. In this section, you will learn about the physical features and resources of the United States and Canada. As You Read Use a graphic organizer to take notes about the landforms and resources of the United States and Canada. LANDSCAPE INFLUENCED The United States and Canada are rich DEVELOPMENT (Page 117) in natural resources. They have much How vast are these countries? fertile soil and water and many forests and The United States and Canada occupy the minerals. This geographic richness has central and northern four-fifths of the attracted immigrants from around the continent of North America. Culturally, the world for centuries. region is known as Anglo America. This is 1. What binds Canada and the United because both countries were colonies of States together? Great Britain at one time and because most of _______________________________ the people speak English. -
לב שלם Siddur Lev Shalem לשבת ויום טוב for Shabbat & FESTIVALS
סדור לב שלם Siddur Lev Shalem לשבת ויום טוב for shabbat & fEstIVaLs For restricted use only: March-April 2020 Do not copy, sell, or distribute the rabbinical assembly Copyright © 2016 by The Rabbinical Assembly, Inc. First edition. All rights reserved. No part of this book may be reproduced or transmitted in any form The Siddur Lev Shalem Committee or by any means, electronic or mechanical, including photocopy, recording or any information storage or retrieval system, except Rabbi Edward Feld, Senior Editor and Chair for brief passages in connection with a critical review, without permission in writing from: Rabbi Jan Uhrbach, Associate Editor The Rabbinical Assembly Rabbi David M. Ackerman 3080 Broadway New York, NY 10027 Ḥazzan Joanna Dulkin www.rabbinicalassembly.org Rabbi Amy Wallk Katz Permissions and copyrights for quoted materials may be found on pages 463–465. Rabbi Cantor Lilly Kaufman isbn: 978-0-916219-64-2 Rabbi Alan Lettofsky Library of Congress Cataloging-in-Publication Data is available. Rabbi Robert Scheinberg Designed, composed, and produced by Scott-Martin Kosofsky at The Philidor Company, Rabbi Carol Levithan, ex officio Rhinebeck, New York. www.philidor.com The principal Hebrew type, Milon (here in its second and third Rabbi Julie Schonfeld, ex officio iterations), was designed and made by Scott-Martin Kosofsky; it was inspired by the work of Henri Friedlaender. The principal roman and italic is Rongel, by Mário Feliciano; the sans serif is Cronos, by Robert Slimbach. The Hebrew sans serif is Myriad Hebrew, by Robert Slimbach with Scott-Martin Kosofsky. Printed and bound by LSC Communications, Crawfordsville, Indiana. -
Bedrock Valleys of the New England Coast As Related to Fluctuations of Sea Level
Bedrock Valleys of the New England Coast as Related to Fluctuations of Sea Level By JOSEPH E. UPSON and CHARLES W. SPENCER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 454-M Depths to bedrock in coastal valleys of New England, and nature of sedimentary Jill resulting from sea-level fluctuations in Pleistocene and Recent time UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication, as follows: Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level, by Joseph E. Upson and Charles W. Spencer. Washington, U.S. Govt. Print. Off., 1964. iv, 42 p. illus., maps, diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 454-M) Shorter contributions to general geology. Bibliography: p. 39-41. (Continued on next card) Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level. 1964. (Card 2) l.Geology, Stratigraphic Pleistocene. 2.Geology, Stratigraphic Recent. S.Geology New England. I.Spencer, Charles Winthrop, 1930-joint author. ILTitle. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Configuration and depth of bedrock valleys, etc. Con. Page Abstract.__________________________________________ Ml Buried valleys of the Boston area. _ _______________ -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Wet Bulb Globe Temperature Faqs
3/30/17 3rd Annual Collaborative Solutions for Safety in Sport National Meeting Wet Bulb Globe Temperature FAQs Environmental Monitoring Indices • Wet bulb globe temperature (WBGT) • Air temperature • Relative humidity • Sling psychrometer • Heat index • OSHA chart 1 3/30/17 How are they different? Wet Bulb Globe Temperature • Invented in 1950s for the US Army and Marine Corps • Wet Bulb Temperature (Tw) • Humidity, (Wind) • Globe Temperature (Tg) • Solar radiation, (Wind) • Dry Bulb Temperature (Td) • Air temperature WBGT= 0.7Tw + 0.2Tg + 0.1Td Budd GM. Wet-bulb globe temperature (WBGT)--its history and its limitations. J Sci Med Sport Sports Med Aust. 2008;11(1):20-32. How are they different? Sling Psychrometer • Two thermometers mounted together in the same device. • Calculates the difference between: • Ambient temperature • Wet-bulb thermometer $50- $100/unit • Measures relative humidity • Allows clinician to then derive heat index 2 3/30/17 How are they different? Heat Index • Heat Index is how hot it feels when relative humidity is factored into the ambient temperature. • Heat Index is created based on shady, light-wind conditions. • Not full sunshine • Not strong-wind • Number may NOT be reliable under extreme heat conditions How are they different? Heat Index • Assumptions of Heat Index • Shaded Football helmet • (full sun can increase Heat Index by 15oF) • 5’7”, 147 lbs • Long pants and short sleeve shirtFootball uniform • Walking at 3 mph High physical demand 3 3/30/17 Why WBGT? • WBGT is a more comprehensive representation of environmental conditions • Solar radiation & wind speed are factored into the equation • Devised to account for physical activity Regional Specificity • Regional specific guideline by Grundstein et al. -
Dew Point Sensing Technologies and Their Performance Differences in Compressed Air Applications
APPLICATION NOTE www.vaisala.com Dew point sensing technologies and their performance differences in compressed air applications until condensation forms. A gas sample passes over a metallic mirror surface which is chilled by a cooler. Light is then directed at the mirror allowing an optical sensor to measure the amount of reflected light. When the mirror is cooled to the point at which condensation begins to form on its surface (i.e. the dew point has been reached), the amount of light reflected by the mirror diminishes which is in turn detected by the optical sensor. The rate of cooling is then carefully regulated by a temperature sensor on the mirror. Once a state of equilibrium has been reached between the rate of evaporation and condensation, Moisture is a constant issue in Different sensing the mirror temperature is equal to compressed air systems. When dew technologies the dew point. Due to the chilled point sensors are working optimally, mirror’s optical measurement measures can be taken to avoid The three most common types of principle, the sensor is highly malfunctions, inefficient operations sensors for measuring dew point sensitive to the presence of dirt, or poor quality end product. are chilled mirrors, metal oxide, oil, dust, and other contaminants However, the measurement of dew and polymer sensors. on the mirror surface. Similarly, point in compressed air systems accurate chilled mirror devices can present many challenges that Chilled mirror technology can tend to be expensive and are lead to erroneous readings, poor offer the highest accuracy over often employed when absolute stability, and even sensor failures.