An Objective Determination of Probability of Fog Formation *

Total Page:16

File Type:pdf, Size:1020Kb

An Objective Determination of Probability of Fog Formation * 158 BULLETIN AMERICAN METEOROLOGICAL SOCIETY An Objective Determination of Probability of Fog Formation * LOUIS BERKOFSKY Atmospheric Analysis Laboratory, Base Directorate for Geophysical Research, Air Force Cambridge Research Laboratories, 230 Albany St., Cambridge, Mass. ABSTRACT A method of approach to objective fog forecasting, based on the use of probability charts is suggested. Given two parameters, say wind speed and dew-point depression, at sunset as ordinate and abscissa of a chart, occurrences and non-occurrences of fog following sunset are plotted as functions of these parameters. Isolines of relative frequency are drawn, giving a probability chart. Two more such charts, using four additional parameters, are constructed, and a total probability of fog occurrence following sunset is computed as a linear function of the three individual probabilities. This result is used as a criterion for the forecast. Time of formation equations are developed, to be applied in the event a fog proves to be likely. I. INTRODUCTION sive—during which period the fog was mainly non-frontal. Only those cases were considered in ANY objective methods of forecasting which precipitation was not occurring at time of fog deal primarily with determination of fog formation, in order to simplify the investiga- time of formation. The determination M tion.1 of likelihood of formation is largely subjective. If it is decided subjectively that a fog must be II. THE PARAMETERS forecast, the objective time graphs are then en- No so-called objective method is truly objective, tered. Such graphs must of necessity consider due to the fact that it is necessary for the investi- only cases of occurrence, and therefore should gator to select certain parameters. He selects apply quite well if the forecast of occurrence is those which, for statistical reasons, or by reason correct. of personal experience, show an inter relationship. It frequently occurs that, under apparently quite Obviously, if the exact nature of the relationship similar conditions, one situation may produce fog among the parameters were known, objective and the other not, at a given location. If, then, methods would be unnecessary. An attempt is the problem is to be handled statistically, consid- made to reduce the amount of subjectivity by con- eration must be given to the probability of fog sidering those parameters which show the best occurrence following a given "deadline" time, be- statistical relationship. fore any attempt is made to predict time of for- The following parameters were selected after a mation. Such an approach would be more com- careful survey of Stewart Field's data for 1943- pletely objective. 1947 inclusive: We have applied such a method to fog in the a. Wind Speed at Sunset.—It is generally study reported here, basing it on the work of Brier agreed that, if the wind is above a certain maxi- [1] and Mook [2], Fog, as defined here, will mum, or below a certain minimum speed, fog is mean a ceiling of 500 feet or less and/or a visibility not likely to form after sunset. At Stewart Field, of one mile or less. Cases of non-occurrence as the data indicated that most cases of fog occurred well as occurrence of fog are considered in order with wind not less than 3 miles per hour nor to arrive at numerical probabilities. Using these greater than 15 miles per hour at sunset. There figures, the actual forecasts can be stated as per- were, however, some cases where fog formed al- centages. However, they are called "yes" or "no" though the wind at sunset was calm. forecasts, depending upon whether the probability b. Dew-Point Depression at Sunset.—If other does or does not exceed 50%. conditions are favorable, a small dew point de- The study, prepared for Stewart Field, New pression at sunset is generally an indication of fog likelihood following sunset. At Stewart Field, York, included only months of maximum foggi- ness—July through November, 1943, 1947 inclu- 1 Miller, J. E. and Mantis, H. T., 1947: An Objective Method of Forecasting Visibility, New York University, * Adapted from a Master's thesis completed at New College of Engineering, Research Division, Department York University, 1948. of Meteorology, p. 3. Unauthenticated | Downloaded 09/27/21 03:21 PM UTC VOL. 31, No. 5, MAY, 1950 159 most cases occurred with a depression of less than thus calls for a "no fog" forecast. Calm cases 15 degrees Fahrenheit at sunset. were considered separately. c. Stability at Sunset.—The stability of the The quantities described in SECTION II were lower levels of the air was measured by consider- selected because they are quantities which are con- ing the difference in temperature at sunset be- sidered to have most effect on fog formation at tween Stewart and Bear Mountain. (Bear Moun- Stewart Field. These parameters, along with tain is about 18 miles SSE of Stewart Field, and wind direction, could be combined in various ways about 800 feet higher.) Fog rarely formed when other than in the objective method described be- the difference between Stewart Field's tempera- low. The combinations were chosen in the fol- ture and Bear Mountain's temperature was more lowing manner. First, those quantities generally than 7F°. (rSWF - TBMN < 7F° ; where SWF believed to be most effective in fog production = Stewart Field, BMN - Bear Mountain.) (wind speed and dew-point depression at sunset) d. Wind Shear at Sunset.—Since, in most were combined. Additional parameters (stability cases, the wind direction at sunset was the same and shear) were then introduced in an attempt to at both Stewart Field and at Bear Mountain, the improve the forecast of probability of formation. vertical shear of the horizontal wind was measured Finally, two more parameters (low cloud cover by taking the difference between observed winds and vertical dew-point gradient) were introduced. at both places. This quantity (FBMN — ^SWF) There are actually fifteen ways in which the ele- ranged from +10 miles per hour to — 5 miles ments could have been combined, for a given per hour inclusive, in general. Observations quadrant. Trial and error attempts with several showed that fog occurred for all values of wind of the fifteen combinations led to the belief that shear within this range. those finally selected would yield best results. e. Vertical Dew-Point Gradient at Sunset.— All cases in the study were plotted as a function The difference between dew-point temperature at of wind speed and dew-point depression at sunset, Bear Mountain and at Stewart Field at sunset for each of Quadrants I, II, III. In the following, was calculated in order to obtain a measure of only Quadrant III will be described, but the pro- the vertical distribution of moisture. Most cases cedure is exactly the same for the others. In the of fog occurred when Bear Mountain's dew-point wind speed—dew-point depression chart for Quad- temperature was 10F° or less smaller than Stew- rant III, a line of separation could be drawn be- art Field's, or 2F° or more greater. tween a region of both occurrence and non-occur- f. Low Cloud Cover at Sunset.—Any cloudi- rence following sunset, and a region of non- ness below 10,000 feet was considered to have an effect on fog formation. Most cases formed with either very little low cloudiness or almost com- plete overcast at sunset, so that the likelihood of formation could not be determined merely on the basis of cloud cover. III. COMBINING THE PARAMETERS In order to take into account the probability of fog formation with winds from different direc- tions, four quadrants were designated: Quadrant I—which includes all cases where the wind was N through ENE at sunset, Quadrant II—which includes all cases where the wind was E through SSE at sunset, Quadrant III—S through WSW at sunset, Quadrant IV—W through NNW at sunset. Quadrant IV was eliminated from further study when it was observed that fog occurred only 5 times out of 153 cases when the wind was from FIG. 1. Wind speed (mph) vs. dew-point depression this quadrant at sunset. This is due to adiabatic (°F) for Quadrant III (S through WSW) at sunset. warming of air flowing downslope from the Cats- Lines are isolines of probability of fog occurrence after kill Mountains. A Quadrant IV wind at sunset sunset. Unauthenticated | Downloaded 09/27/21 03:21 PM UTC 160 BULLETIN AMERICAN METEOROLOGICAL SOCIETY above statement holds to a good degree if we interpret dying down of turbulence to mean in- creasing fog probability and conversely. Thus, since the chart seems to follow the formula, we may assume that there is more justification in drawing for actual values rather than by large- scale smoothing. There does not seem to be any a priori reason for such smoothing. FIGURE 3 shows the distribution of isolines when all cases are again re-plotted as functions of vertical dew-point gradient and low cloud cover. IV. A WORKING HYPOTHESIS FOR PROBABILITY OF FOG FORMATION At this point, given the data at sunset, a sep- arate forecast of the probability of formation FIG. 2. Stability (°F) vs. wind shear (mph) for could be made from each of the charts in each Quadrant III (S through WSW) at sunset. Lines are quadrant. In order to combine all the charts, the isolines of probability of fog occurrence after sunset. assumption was made that the total probability is a linear function of the three separate proba- occurrence only. All cases on the side of the line bilities : away from the origin are non-occurrences; and, P = Ap + Bp + CPs + D, (1) therefore, if a plotted point falls on that side of c 1 2 the line, it is assigned a zero probability.
Recommended publications
  • Role of the Dew Water on the Ground Surface in HONO Distribution: a Case Measurement in Melpitz
    Atmos. Chem. Phys., 20, 13069–13089, 2020 https://doi.org/10.5194/acp-20-13069-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Role of the dew water on the ground surface in HONO distribution: a case measurement in Melpitz Yangang Ren1, Bastian Stieger2, Gerald Spindler2, Benoit Grosselin1, Abdelwahid Mellouki1, Thomas Tuch2, Alfred Wiedensohler2, and Hartmut Herrmann2 1Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021), Observatoire des Sciences de l’Univers en région Centre (OSUC), 1C Avenue de la Recherche Scientifique, 45071 Orléans CEDEX 2, France 2Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany Correspondence: Abdelwahid Mellouki ([email protected]) and Hartmut Herrmann ([email protected]) Received: 25 November 2019 – Discussion started: 30 January 2020 Revised: 27 August 2020 – Accepted: 13 September 2020 – Published: 9 November 2020 Abstract. To characterize the role of dew water for the eas that provide a large amount of ground surface based on ground surface HONO distribution, nitrous acid (HONO) the OH production rate calculation. measurements with a Monitor for AeRosols and Gases in am- bient Air (MARGA) and a LOng Path Absorption Photome- ter (LOPAP) instrument were performed at the Leibniz In- 1 Introduction stitute for Tropospheric Research (TROPOS) research site in Melpitz, Germany, from 19 to 29 April 2018. The dew water Nitrous acid (HONO) is important in atmospheric chemistry was also collected and analyzed from 8 to 14 May 2019 using as its photolysis (Reaction R1) is an important source of OH a glass sampler. The high time resolution of HONO measure- radicals.
    [Show full text]
  • Electricity Demand Reduction in Sydney and Darwin with Local Climate Mitigation
    P. Rajagopalan and M.M Andamon (eds.), Engaging Architectural Science: Meeting the Challenges of Higher Density: 52nd 285 International Conference of the Architectural Science Association 2018, pp.285–293. ©2018, The Architectural Science Association and RMIT University, Australia. Electricity demand reduction in Sydney and Darwin with local climate mitigation Riccardo Paolini UNSW Built Environment, UNSW Sydney, Australia [email protected] Shamila Haddad UNSW Built Environment, UNSW Sydney, Australia [email protected] Afroditi Synnefa UNSW Built Environment, UNSW Sydney, Australia [email protected] Samira Garshasbi UNSW Built Environment, UNSW Sydney, Australia [email protected] Mattheos Santamouris UNSW Built Environment, UNSW Sydney, Australia [email protected] Abstract: Urban overheating in synergy with global climate change will be enhanced by the increasing population density and increased land use in Australian Capital Cities, boosting the total and peak electricity demand. Here we assess the relation between ambient conditions and electricity demand in Sydney and Darwin and the impact of local climate mitigation strategies including greenery, cool materials, water and their combined use at precinct scale. By means of a genetic algorithm, we produced two site-specific surrogate models, for New South Wales and Darwin CBD, to compute the electricity demand as a function of air temperature, humidity and incoming solar radiation. For Western Sydney, the total electricity savings computed under the different mitigation scenarios range between 0.52 and 0.91 TWh for the summer of 2016/2017, namely 4.5 % of the total, with the most relevant saving concerning the peak demand, equal to 9 % with cool materials and water sprinkling.
    [Show full text]
  • Impact of Air Pollution Controls on Radiation Fog Frequency in the Central Valley of California
    RESEARCH ARTICLE Impact of Air Pollution Controls on Radiation Fog 10.1029/2018JD029419 Frequency in the Central Valley of California Special Section: Ellyn Gray1 , S. Gilardoni2 , Dennis Baldocchi1 , Brian C. McDonald3,4 , Fog: Atmosphere, biosphere, 2 1,5 land, and ocean interactions Maria Cristina Facchini , and Allen H. Goldstein 1Department of Environmental Science, Policy and Management, Division of Ecosystem Sciences, University of 2 Key Points: California, Berkeley, CA, USA, Institute of Atmospheric Sciences and Climate ‐ National Research Council (ISAC‐CNR), • Central Valley fog frequency Bologna, BO, Italy, 3Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO, increased 85% from 1930 to 1970, USA, 4Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA, 5Department of Civil then declined 76% in the last 36 and Environmental Engineering, University of California, Berkeley, CA, USA winters, with large short‐term variability • Short‐term fog variability is dominantly driven by climate Abstract In California's Central Valley, tule fog frequency increased 85% from 1930 to 1970, then fluctuations declined 76% in the last 36 winters. Throughout these changes, fog frequency exhibited a consistent • ‐ Long term temporal and spatial north‐south trend, with maxima in southern latitudes. We analyzed seven decades of meteorological data trends in fog are dominantly driven by changes in air pollution and five decades of air pollution data to determine the most likely drivers changing fog, including temperature, dew point depression, precipitation, wind speed, and NOx (oxides of nitrogen) concentration. Supporting Information: Climate variables, most critically dew point depression, strongly influence the short‐term (annual) • Supporting Information S1 variability in fog frequency; however, the frequency of optimal conditions for fog formation show no • Table S1 • Table S2 observable trend from 1980 to 2016.
    [Show full text]
  • Guide to Understanding Condensation
    Guide to Understanding Condensation The complete Andersen® Owner-To-Owner™ limited warranty is available at: www.andersenwindows.com. “Andersen” is a registered trademark of Andersen Corporation. All other marks where denoted are marks of Andersen Corporation. © 2007 Andersen Corporation. All rights reserved. 7/07 INTRODUCTION 2 The moisture that suddenly appears in cold weather on the interior We have created this brochure to answer questions you may have or exterior of window and patio door glass can block the view, drip about condensation, indoor humidity and exterior condensation. on the floor or freeze on the glass. It can be an annoying problem. We’ll start with the basics and offer solutions and alternatives While it may seem natural to blame the windows or doors, interior along the way. condensation is really an indication of excess humidity in the home. Exterior condensation, on the other hand, is a form of dew — the Should you run into problems or situations not covered in the glass simply provides a surface on which the moisture can condense. following pages, please contact your Andersen retailer. The important thing to realize is that if excessive humidity is Visit the Andersen website: www.andersenwindows.com causing window condensation, it may also be causing problems elsewhere in your home. Here are some other signs of excess The Andersen customer service toll-free number: 1-888-888-7020. humidity: • A “damp feeling” in the home. • Staining or discoloration of interior surfaces. • Mold or mildew on surfaces or a “musty smell.” • Warped wooden surfaces. • Cracking, peeling or blistering interior or exterior paint.
    [Show full text]
  • Chapter 7.0 – Determining Wind Direction Section 7.1 Overview Of
    Chapter 7.0 – Determining Wind Direction Section 7.1 Overview of Wind Direction The wind direction is a measure or indication of where the air movement originated from. The wind direction can be measured through the use of a wind sock, wind vane, or a light object attached to a pole and string (example: A ping pong ball attached to a string which is tied to a stick). Wind direction is generally reported in either Azimuth degrees or Cardinal direction. Azimuth uses a circle with the northern most position indicating 0 degrees. The Cardinal direction system gives an Azimuth degree value a name. For example, 180 degrees is South(S) and 270 degrees is West (W) (See Figure 18 - A basic compass rose). Figure 18 - A basic compass rose Section 7.2 Overview of the homemade Wind Vane The wind vane used in this design was a homemade wind vane using a miniature absolute magnetic shaft encoder. The encoder chosen for use was the MA3 produced by US Digital. The purpose for choosing this specific encoder in regards to this design was that the MA3 met four (4) critical objectives. First, the MA3 was the correct size for the application. Second, the MA3 uses an analog output of 0 volts to 5 volts with respect to the current positions (See Figure 19 – MA3 Output behaviour) Figure 19 – MA3 Output behaviour Third, the MA3 uses a 5 volt input. This was a major consideration when choosing an encoder as a 5 volt input allowed for a more simple integration. Fourth, and final, the MA3 met the requirements of being able to function in an adverse environment, having an operational temperature of -40 ºC to +125 ºC.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • Forecasting of Thunderstorms in the Pre-Monsoon Season at Delhi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Meteorol. Appl. 6, 29–38 (1999) Forecasting of thunderstorms in the pre-monsoon season at Delhi N Ravi1, U C Mohanty1, O P Madan1 and R K Paliwal2 1Centre for Atmospheric Sciences, Indian Institute of Technology, New Delhi 110 016, India 2National Centre for Medium Range Weather Forecasting, Mausam Bhavan Complex, Lodi Road, New Delhi 110 003, India Accurate prediction of thunderstorms during the pre-monsoon season (April–June) in India is essential for human activities such as construction, aviation and agriculture. Two objective forecasting methods are developed using data from May and June for 1985–89. The developed methods are tested with independent data sets of the recent years, namely May and June for the years 1994 and 1995. The first method is based on a graphical technique. Fifteen different types of stability index are used in combinations of different pairs. It is found that Showalter index versus Totals total index and Jefferson’s modified index versus George index can cluster cases of occurrence of thunderstorms mixed with a few cases of non-occurrence along a zone. The zones are demarcated and further sub-zones are created for clarity. The probability of occurrence/non-occurrence of thunderstorms in each sub-zone is then calculated. The second approach uses a multiple regression method to predict the occurrence/non- occurrence of thunderstorms. A total of 274 potential predictors are subjected to stepwise screening and nine significant predictors are selected to formulate a multiple regression equation that gives the forecast in probabilistic terms.
    [Show full text]
  • לב שלם Siddur Lev Shalem לשבת ויום טוב for Shabbat & FESTIVALS
    סדור לב שלם Siddur Lev Shalem לשבת ויום טוב for shabbat & fEstIVaLs For restricted use only: March-April 2020 Do not copy, sell, or distribute the rabbinical assembly Copyright © 2016 by The Rabbinical Assembly, Inc. First edition. All rights reserved. No part of this book may be reproduced or transmitted in any form The Siddur Lev Shalem Committee or by any means, electronic or mechanical, including photocopy, recording or any information storage or retrieval system, except Rabbi Edward Feld, Senior Editor and Chair for brief passages in connection with a critical review, without permission in writing from: Rabbi Jan Uhrbach, Associate Editor The Rabbinical Assembly Rabbi David M. Ackerman 3080 Broadway New York, NY 10027 Ḥazzan Joanna Dulkin www.rabbinicalassembly.org Rabbi Amy Wallk Katz Permissions and copyrights for quoted materials may be found on pages 463–465. Rabbi Cantor Lilly Kaufman isbn: 978-0-916219-64-2 Rabbi Alan Lettofsky Library of Congress Cataloging-in-Publication Data is available. Rabbi Robert Scheinberg Designed, composed, and produced by Scott-Martin Kosofsky at The Philidor Company, Rabbi Carol Levithan, ex officio Rhinebeck, New York. www.philidor.com The principal Hebrew type, Milon (here in its second and third Rabbi Julie Schonfeld, ex officio iterations), was designed and made by Scott-Martin Kosofsky; it was inspired by the work of Henri Friedlaender. The principal roman and italic is Rongel, by Mário Feliciano; the sans serif is Cronos, by Robert Slimbach. The Hebrew sans serif is Myriad Hebrew, by Robert Slimbach with Scott-Martin Kosofsky. Printed and bound by LSC Communications, Crawfordsville, Indiana.
    [Show full text]
  • Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain
    Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain M. J. SOUTO, C. F. BALSEIRO AND V. P…REZ-MU—UZURI Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain Ming Xue University of Oklahoma, School of Meteorology, and CAPS Oklahoma, USA Keith BREWSTER Center for Analysis and Prediction of Storms, Oklahoma, USA April, 2001 Revised December, 2001 Corresponding author address: Dra. M. J. Souto, Group of Nonlinear Physics Faculty of Physics, University of Santiago de Compostela E-15706, Santiago de Compostela, Spain e-mail: [email protected] ABSTRACT The Advanced Regional Prediction System (ARPS) is applied to operational numerical weather forecast in Galicia, northwest Spain. A 72-hour forecast at a 10-km horizontal resolution is produced dta for the region. Located on the northwest coast of Spain and influenced by the Atlantic weather systems, Galicia has a high percentage (almost 50%) of rainy days per year. For these reasons, the precipitation processes and the initialization of moisture and cloud fields are very important. Even though the ARPS model has a sophisticated data analysis system (ADAS) that includes a 3D cloud analysis package, due to operational constraint, our current forecast starts from 12-hour forecast of the NCEP AVN model. Still, procedures from the ADAS cloud analysis are being used to construct the cloud fields based on AVN data, and then applied to initialize the microphysical variables in ARPS. Comparisons of the ARPS predictions with local observations show that ARPS can predict quite well both the daily total precipitation and its spatial distribution.
    [Show full text]
  • CHAPTER NO.4 Psychrometry
    CHAPTER NO.4 Psychrometry C605.4-Explain Psychometric properties & calculate various parameters. Necessity of Air conditioning Purpose of air conditioning is 1) To provide comfort conditions for human comfort. 2) To provide comfort in commercial places like office, restaurant ,shopping complex , banks etc. 3) To provide controlled conditions for industrial process. 4) To provide ultra clean atmosphere for precision work. Dalton’s low of partial pressure • Dalton’s law of partial pressure statures that ‘the total pressure of mixture of gases equal to the sum of the partial pressures exerted by each gas when it occupies the mixture volume at there temperature of mixture’. • According to Dalton’s law of partial pressure, • Pt = Pa + Pb + Pc. Psychometrics properties of air 1. Dry air : It is a mixture of oxygen (20.91%) and nitrogen (79.09 %) by volume. 2. Moist air: It is mixture of dry air and water vapour. 3. Saturated air : Air which have maximum amount of water vapor. 4. Dry bulb temp.(DBT) : It is temperature of air recorded by ordinary thermometer with clean and dry sensing elements.(td or tdb) 5. Wet bulb temp.(WBT) : It is temperature of air recorded by thermometer when its bulb is covered with a wet cloth.(tw or twb) Psychometric properties of air 6. Wet bulb depression : It is the difference between dry bulb temp. and wet bulb temp. 7. Dew point temp.: It is the temperature of air recorded by thermometer when the moisture present in the air begins to condensed. 8. Dew point depression : It is difference between dry bulb temp.
    [Show full text]
  • Atmospheric Moisture
    Name_____________________________________Date___________________Period________ Atmospheric Moisture Background Whether in solid, liquid or gaseous form, water is the most important component of the atmosphere and essentially helps control all other aspects of weather. However, in order to truly understand the atmosphere, simply describing moisture is not enough. In meteorology, several different moisture measurements are used to determine the overall stability and characteristics of the air. All of these “moisture variables” can be broken down into two categories. The first are those that are solely dependent upon the physical amount of water contained in the air and are known as absolute measurements. Relative measurements are those variables that not only depend upon the amount of water present but also the temperature of the air. Vapor Pressure (e) and Saturation Vapor Pressure (es) The total atmospheric pressure at any time is actually the sum of many small pressures for each of the atmosphere’s components. For example, oxygen, nitrogen, etc. all exert their own individual pressures that are all added together to create the overall atmospheric pressure. Vapor pressure is the portion of total pressure contributed by water. This amount is very small which is why huge differences in water vapor content in the atmosphere yield only small fluctuations in the overall atmospheric pressure. This measure is also an absolute measurement since it is solely dependent upon the actual amount of water vapor in the air. However, there is a maximum amount of pressure that water vapor can exert in the atmosphere before the water is squeezed out into a liquid again and condenses. This limit is known as the saturation vapor pressure and is dependent upon both water content and temperature.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]