6 Inner Product Spaces

Total Page:16

File Type:pdf, Size:1020Kb

6 Inner Product Spaces Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space quite a special type of a vector space. Essentially all these are consequences of the dot product. Thus, it makes sense to look for operations which share the basic properties of the dot product. In this section we shall briefly discuss this. Definition 6.1 Let V be a vector space. By an inner product on V we mean a binary operation, which associates a scalar say u, v for each pair of vectors u, v) in V, satisfying h i the following properties for all u, v, w in V and α, β any scalar. (Let “ ” denote the complex − conjugate of a complex number.) (1) u, v = v, u (Hermitian property or conjugate symmetry); h i h i (2) u, αv + βw = α u, v + β u, w (sesquilinearity); h i h i h i (3) v, v > 0 if v =0 (positivity). h i 6 A vector space with an inner product is called an inner product space. Remark 6.1 (i) Observe that we have not mentioned whether V is a real vector space or a complex vector space. The above definition includes both the cases. The only difference is that if K = R then the conjugation is just the identity. Thus for real vector spaces, (1) will becomes ‘symmetric property’ since for a real number c, we have c¯ = c. (ii) Combining (1) and (2) we obtain (2’) αu + βv, w =α ¯ u, w + β¯ v, w . In the special case when K = R, (2) and (2’) h i h i h i together are called ‘bilinearity’. Example 6.1 (i) The dot product in Rn is an inner product. This is often called the standard inner product. t t Cn n ∗ (ii) Let x =(x1, x2,...,xn) and y =(y1,y2,...,yn) . Define x, y = i=1 xiyi = x y. ∈Cn h i This is an inner product on the complex vector space . P (iii) Let V = C[0, 1]. For f,g V, put ∈ 1 f, g = f(t)g(t) dt. 0 h i Z It is easy to see that f, g is an inner product. h i 50 6.2 Norm Associated to an Inner Product Definition 6.2 Let V be an inner product space. For any v V, the norm of v, denoted by v , is the ∈ k k positive square root of v, v : v = v, v . h i k k h i q For standard inner product in Rn, v is the usual length of the vector v. k k Proposition 6.1 Let V be an inner product space. Let u, v V and c be a scalar. Then ∈ (i) cu = c u ; k k | |k k (ii) u > 0 for u = 0; k k 6 (iii) u, v u v ; |h i|≤k kk k (iv) u + v u + v , equality holds in this triangle inequality iff u, v are linearly k k≤k k k k dependent over R. Proof: (i) and (ii) follow from definitions 6.1,6.2. (iii) This is called the Cauchy-Schwarz inequality. If either u or v is zero, it is clear. So let u be nonzero. Consider the vector w = v au. − where a is a scalar to be specified later. Then 0 w, w = v au, v au ≤h i h − − i = v, v v, au au, v + au, au h i−h i−h i h i = v, v a v, u a u, v + aa u, u h i − h i − h i h i Substitute a = u, v / u, u and multiply by u, u , we get u, v 2 u, u v, v . h i h i h i |h i| ≤ h ih i This proves (iii). (iv) Using (iii), we get ( u, v ) u v . Therefore, ℜ h i ≤k kk k u + v 2 = u 2 + u, v + v, u + v 2 k k k k h i h i k k = u 2 +2 u, v + v 2 k k ℜh i k k u 2 +2 u v + v 2 ≤ k k k kk k k k = ( u + v )2. k k k k Thus u + v u + v . k k≤k k k k Now equality holds in (iv) iff u, v = u, v and equality holds in (iii). This is the ℜh i h i same as saying that u, v is real and w = 0. This is the same as saying that v = au and h i v, u = a u, u is real. Which is the same as saying that v is a real multiple of u. h i h i ♠ 6.3 Distance and Angle Definition 6.3 In any inner product space V, the distance between u and v is defined as d(u, v)= u v . k − k 51 Definition 6.4 Let V be a real inner product space. The angle between vectors u, v is defined to be the angle θ, 0 θ π so that ≤ ≤ u, v cos θ = h i . u v k kk k Proposition 6.2 (i) d(u, v) 0 and d(u, v)=0 iff u = v; ≥ (ii) d(u, v)= d(v, u); (iii) d(u, w) d(u, v)+ d(v, w). ≤ 6.4 Gram-Schmidt Orthonormalization n The standard basis E = e1, e2,...,en of R has two properties : { } (i) each ei has length one (ii) any two elements of E are mutually perpendicular. When vectors are expressed in terms of the standard basis, calculations become easy due to the above properties. Now, let V be any inner product space of dimension d. We wish to construct an analogue of E for V. Definition 6.5 Two vectors u, v of an inner product space V are called orthogonal to each other or perpendicular to each other if u, v =0. We express this symbolically by u v. A h i ⊥ set S consisting of non zero elements of V is called orthogonal if u, v =0 for every pair of h i elements of S. Further if every element of V is of unit norm then S is called an orthonormal set. Further, if S is a basis for V then it is called an orthonormal basis. One of the biggest advantage of an orthogonal set is that Pythagorus theorem and its general form are valid, which makes many computations easy. Theorem 6.1 Pythagorus Theorem: Given w, u V such that w u we have ∈ ⊥ w + u 2 = w 2 + u 2. (47) k k k k k k Proof: We have, w + u 2 = w + u, w + u = w, w + u, w + w, u + u, u = w 2 + u 2 k k h i h i h i h i h i k k k k since u, w = w, u =0. h i h i ♠ Proposition 6.3 Let S = u1, u2,..., un be an orthogonal set. Then S is linearly inde- { } pendent. Proof: Suppose c1,c2,...,cn are scalars with c1u1 + c2u2 + . + cnun =0. Take inner product with ui on both sides to get ci ui, ui =0. h i Since ui = 0, we get ci =0. Thus U is linearly independent. 6 ♠ 52 Definition 6.6 If u and v are vectors in an inner product space V and v = 0 then the 6 vector v v, u h i v 2 k k is called the orthogonal projection of u along v. Remark 6.2 The order in which you take u and v matters here when you are working over complex numbers because of the inner product is linear in the second slot and conjugate linear in the first slot. Over the real numbers, however, this is not a problem. Theorem 6.2 (Gram-Schmidt Orthonormalization Process): Let V be any inner product space. Given a linearly independent subset u1,..., un there exists an orthonormal { } set of vectors v1,..., vn such that L( u1,..., uk ) = L( v1,..., vk ) for all 1 k n. { } { } { } ≤ ≤ In particular, if V is finite dimensional, then it has an orthonormal basis. Proof: The construction of the orthonormal set is algorithmic and of course, inductive. First we construct an intermediate orthogonal set w1,..., wn with the same property for each { } k. Then we simply ‘normalize’ each element, viz, take wi vi = . wi k k That will give us an orthonormal set as required. The last part of the theorem follows if we begin with u1,..., um as any basis for V. { } Take w1 := u1. So, the construction is over for k = 1. To construct w2, subtract from u2, its orthogonal projection along w1 Thus w1 w2 = u2 w1, u2 2 . −h i w1 k k u2 w1 w2 Check that w2, w1 =0. Thus w1, w2 is an orthogonal set. Check also that L( u1, u2 )= h i { } { } L( w1, w2 ). Now suppose we have constructed wi for i k < n as required. Put { } ≤ k wj wk+1 = uk+1 wj, uk+1 2 . − j=1h i wj X k k Now check that wk+1 is orthogonal to wj, j k and L( w1, w2,..., wk+1 )= L( u1,..., uk ). ≤ { } { } By induction, this completes the proof. ♠ 53 Example 6.2 Let V = P3[ 1, 1] denote the real vector space of polynomials of degree − − at most 3 defined on [ 1, 1] together with the zero polynomial.
Recommended publications
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Partitioned (Or Block) Matrices This Version: 29 Nov 2018
    Partitioned (or Block) Matrices This version: 29 Nov 2018 Intermediate Econometrics / Forecasting Class Notes Instructor: Anthony Tay It is frequently convenient to partition matrices into smaller sub-matrices. e.g. 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 A B (2×2) (2×3) 3 1 1 0 0 = 3 1 1 0 0 = C I 1 3 0 1 0 1 3 0 1 0 (3×2) (3×3) 2 0 0 0 1 2 0 0 0 1 The same matrix can be partitioned in several different ways. For instance, we can write the previous matrix as 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 a b0 (1×1) (1×4) 3 1 1 0 0 = 3 1 1 0 0 = c D 1 3 0 1 0 1 3 0 1 0 (4×1) (4×4) 2 0 0 0 1 2 0 0 0 1 One reason partitioning is useful is that we can do matrix addition and multiplication with blocks, as though the blocks are elements, as long as the blocks are conformable for the operations. For instance: A B D E A + D B + E (2×2) (2×3) (2×2) (2×3) (2×2) (2×3) + = C I C F 2C I + F (3×2) (3×3) (3×2) (3×3) (3×2) (3×3) A B d E Ad + BF AE + BG (2×2) (2×3) (2×1) (2×3) (2×1) (2×3) = C I F G Cd + F CE + G (3×2) (3×3) (3×1) (3×3) (3×1) (3×3) | {z } | {z } | {z } (5×5) (5×4) (5×4) 1 Intermediate Econometrics / Forecasting 2 Examples (1) Let 1 2 1 1 2 1 c 1 4 2 3 4 2 3 h i A = = = a a a and c = c 1 2 3 2 3 0 1 3 0 1 c 0 1 3 0 1 3 3 c1 h i then Ac = a1 a2 a3 c2 = c1a1 + c2a2 + c3a3 c3 The product Ac produces a linear combination of the columns of A.
    [Show full text]
  • Handout 9 More Matrix Properties; the Transpose
    Handout 9 More matrix properties; the transpose Square matrix properties These properties only apply to a square matrix, i.e. n £ n. ² The leading diagonal is the diagonal line consisting of the entries a11, a22, a33, . ann. ² A diagonal matrix has zeros everywhere except the leading diagonal. ² The identity matrix I has zeros o® the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and A I = I A = A for any n £ n matrix A. ² An upper triangular matrix has all its non-zero entries on or above the leading diagonal. ² A lower triangular matrix has all its non-zero entries on or below the leading diagonal. ² A symmetric matrix has the same entries below and above the diagonal: aij = aji for any values of i and j between 1 and n. ² An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: aij = ¡aji for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero. Transpose To transpose a matrix, we reect it across the line given by the leading diagonal a11, a22 etc. In general the result is a di®erent shape to the original matrix: a11 a21 a11 a12 a13 > > A = A = 0 a12 a22 1 [A ]ij = A : µ a21 a22 a23 ¶ ji a13 a23 @ A > ² If A is m £ n then A is n £ m. > ² The transpose of a symmetric matrix is itself: A = A (recalling that only square matrices can be symmetric).
    [Show full text]
  • Week 8-9. Inner Product Spaces. (Revised Version) Section 3.1 Dot Product As an Inner Product
    Math 2051 W2008 Margo Kondratieva Week 8-9. Inner product spaces. (revised version) Section 3.1 Dot product as an inner product. Consider a linear (vector) space V . (Let us restrict ourselves to only real spaces that is we will not deal with complex numbers and vectors.) De¯nition 1. An inner product on V is a function which assigns a real number, denoted by < ~u;~v> to every pair of vectors ~u;~v 2 V such that (1) < ~u;~v>=< ~v; ~u> for all ~u;~v 2 V ; (2) < ~u + ~v; ~w>=< ~u;~w> + < ~v; ~w> for all ~u;~v; ~w 2 V ; (3) < k~u;~v>= k < ~u;~v> for any k 2 R and ~u;~v 2 V . (4) < ~v;~v>¸ 0 for all ~v 2 V , and < ~v;~v>= 0 only for ~v = ~0. De¯nition 2. Inner product space is a vector space equipped with an inner product. Pn It is straightforward to check that the dot product introduces by ~u ¢ ~v = j=1 ujvj is an inner product. You are advised to verify all the properties listed in the de¯nition, as an exercise. The dot product is also called Euclidian inner product. De¯nition 3. Euclidian vector space is Rn equipped with Euclidian inner product < ~u;~v>= ~u¢~v. De¯nition 4. A square matrix A is called positive de¯nite if ~vT A~v> 0 for any vector ~v 6= ~0. · ¸ 2 0 Problem 1. Show that is positive de¯nite. 0 3 Solution: Take ~v = (x; y)T . Then ~vT A~v = 2x2 + 3y2 > 0 for (x; y) 6= (0; 0).
    [Show full text]
  • New Foundations for Geometric Algebra1
    Text published in the electronic journal Clifford Analysis, Clifford Algebras and their Applications vol. 2, No. 3 (2013) pp. 193-211 New foundations for geometric algebra1 Ramon González Calvet Institut Pere Calders, Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain E-mail : [email protected] Abstract. New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multiple quantities.
    [Show full text]
  • Matrix Determinants
    MATRIX DETERMINANTS Summary Uses ................................................................................................................................................. 1 1‐ Reminder ‐ Definition and components of a matrix ................................................................ 1 2‐ The matrix determinant .......................................................................................................... 2 3‐ Calculation of the determinant for a matrix ................................................................. 2 4‐ Exercise .................................................................................................................................... 3 5‐ Definition of a minor ............................................................................................................... 3 6‐ Definition of a cofactor ............................................................................................................ 4 7‐ Cofactor expansion – a method to calculate the determinant ............................................... 4 8‐ Calculate the determinant for a matrix ........................................................................ 5 9‐ Alternative method to calculate determinants ....................................................................... 6 10‐ Exercise .................................................................................................................................... 7 11‐ Determinants of square matrices of dimensions 4x4 and greater ........................................
    [Show full text]
  • 9. Properties of Matrices Block Matrices
    9. Properties of Matrices Block Matrices It is often convenient to partition a matrix M into smaller matrices called blocks, like so: 01 2 3 11 ! B C B4 5 6 0C A B M = B C = @7 8 9 1A C D 0 1 2 0 01 2 31 011 B C B C Here A = @4 5 6A, B = @0A, C = 0 1 2 , D = (0). 7 8 9 1 • The blocks of a block matrix must fit together to form a rectangle. So ! ! B A C B makes sense, but does not. D C D A • There are many ways to cut up an n × n matrix into blocks. Often context or the entries of the matrix will suggest a useful way to divide the matrix into blocks. For example, if there are large blocks of zeros in a matrix, or blocks that look like an identity matrix, it can be useful to partition the matrix accordingly. • Matrix operations on block matrices can be carried out by treating the blocks as matrix entries. In the example above, ! ! A B A B M 2 = C D C D ! A2 + BC AB + BD = CA + DC CB + D2 1 Computing the individual blocks, we get: 0 30 37 44 1 2 B C A + BC = @ 66 81 96 A 102 127 152 0 4 1 B C AB + BD = @10A 16 0181 B C CA + DC = @21A 24 CB + D2 = (2) Assembling these pieces into a block matrix gives: 0 30 37 44 4 1 B C B 66 81 96 10C B C @102 127 152 16A 4 10 16 2 This is exactly M 2.
    [Show full text]
  • Notes on Change of Bases Northwestern University, Summer 2014
    Notes on Change of Bases Northwestern University, Summer 2014 Let V be a finite-dimensional vector space over a field F, and let T be a linear operator on V . Given a basis (v1; : : : ; vn) of V , we've seen how we can define a matrix which encodes all the information about T as follows. For each i, we can write T vi = a1iv1 + ··· + anivn 2 for a unique choice of scalars a1i; : : : ; ani 2 F. In total, we then have n scalars aij which we put into an n × n matrix called the matrix of T relative to (v1; : : : ; vn): 0 1 a11 ··· a1n B . .. C M(T )v := @ . A 2 Mn;n(F): an1 ··· ann In the notation M(T )v, the v showing up in the subscript emphasizes that we're taking this matrix relative to the specific bases consisting of v's. Given any vector u 2 V , we can also write u = b1v1 + ··· + bnvn for a unique choice of scalars b1; : : : ; bn 2 F, and we define the coordinate vector of u relative to (v1; : : : ; vn) as 0 1 b1 B . C n M(u)v := @ . A 2 F : bn In particular, the columns of M(T )v are the coordinates vectors of the T vi. Then the point of the matrix M(T )v is that the coordinate vector of T u is given by M(T u)v = M(T )vM(u)v; so that from the matrix of T and the coordinate vectors of elements of V , we can in fact reconstruct T itself.
    [Show full text]
  • Properties of Transpose
    3.2, 3.3 Inverting Matrices P. Danziger Properties of Transpose Transpose has higher precedence than multiplica- tion and addition, so T T T T AB = A B and A + B = A + B As opposed to the bracketed expressions (AB)T and (A + B)T Example 1 1 2 1 1 0 1 Let A = ! and B = !. 2 5 2 1 1 0 Find ABT , and (AB)T . T 1 1 1 2 1 1 0 1 1 2 1 0 1 ABT = ! ! = ! 0 1 2 5 2 1 1 0 2 5 2 B C @ 1 0 A 2 3 = ! 4 7 Whereas (AB)T is undefined. 1 3.2, 3.3 Inverting Matrices P. Danziger Theorem 2 (Properties of Transpose) Given ma- trices A and B so that the operations can be pre- formed 1. (AT )T = A 2. (A + B)T = AT + BT and (A B)T = AT BT − − 3. (kA)T = kAT 4. (AB)T = BT AT 2 3.2, 3.3 Inverting Matrices P. Danziger Matrix Algebra Theorem 3 (Algebraic Properties of Matrix Multiplication) 1. (k + `)A = kA + `A (Distributivity of scalar multiplication I) 2. k(A + B) = kA + kB (Distributivity of scalar multiplication II) 3. A(B + C) = AB + AC (Distributivity of matrix multiplication) 4. A(BC) = (AB)C (Associativity of matrix mul- tiplication) 5. A + B = B + A (Commutativity of matrix ad- dition) 6. (A + B) + C = A + (B + C) (Associativity of matrix addition) 7. k(AB) = A(kB) (Commutativity of Scalar Mul- tiplication) 3 3.2, 3.3 Inverting Matrices P. Danziger The matrix 0 is the identity of matrix addition.
    [Show full text]
  • Block Matrices in Linear Algebra
    PRIMUS Problems, Resources, and Issues in Mathematics Undergraduate Studies ISSN: 1051-1970 (Print) 1935-4053 (Online) Journal homepage: https://www.tandfonline.com/loi/upri20 Block Matrices in Linear Algebra Stephan Ramon Garcia & Roger A. Horn To cite this article: Stephan Ramon Garcia & Roger A. Horn (2020) Block Matrices in Linear Algebra, PRIMUS, 30:3, 285-306, DOI: 10.1080/10511970.2019.1567214 To link to this article: https://doi.org/10.1080/10511970.2019.1567214 Accepted author version posted online: 05 Feb 2019. Published online: 13 May 2019. Submit your article to this journal Article views: 86 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=upri20 PRIMUS, 30(3): 285–306, 2020 Copyright # Taylor & Francis Group, LLC ISSN: 1051-1970 print / 1935-4053 online DOI: 10.1080/10511970.2019.1567214 Block Matrices in Linear Algebra Stephan Ramon Garcia and Roger A. Horn Abstract: Linear algebra is best done with block matrices. As evidence in sup- port of this thesis, we present numerous examples suitable for classroom presentation. Keywords: Matrix, matrix multiplication, block matrix, Kronecker product, rank, eigenvalues 1. INTRODUCTION This paper is addressed to instructors of a first course in linear algebra, who need not be specialists in the field. We aim to convince the reader that linear algebra is best done with block matrices. In particular, flexible thinking about the process of matrix multiplication can reveal concise proofs of important theorems and expose new results. Viewing linear algebra from a block-matrix perspective gives an instructor access to use- ful techniques, exercises, and examples.
    [Show full text]
  • Arxiv:1711.11297V3 [Math.RA]
    ON LOCAL AUTOMORPHISMS OF sl2 T. BECKER, J. ESCOBAR SALSEDO, C. SALAS, AND R. TURDIBAEV Abstract. We establish that the set of local automorphisms LAut(sl2) is the ± group Aut (sl2) of all automorphisms and anti-automorphisms. For n ≥ 3 we prove that anti-automorphisms are local automorphisms of sln. Introduction The idea of a local automorphism dates back to 1988 [1], where for a given set of mappings S from a set X into a set Y , Larson suggests to call a mapping θ to be interpolating S if for each x ∈ X there is an element Sx ∈ S, depending on x, with θ(x) = Sx(x). Set X = Y = A to be an algebra over a field F and S = Aut(A) the set of automorphisms of A, then a linear endomorphism ∆ of A is called a local automorphism if it interpolates the set of automorphisms of A. Local automorphisms have been introduced and studied for the algebra B(X) of all bounded linear operators on infinite dimensional Banach space X by Larson and Sourour [2]. It has been proven for the associative algebra of square matrices Mn(C) that any local automorphism is either an automorphism or an anti-automorphism [2]. Investigation of local automorphisms continues for some subalgebras of Mn(C). In [3] a description of the local automorphisms of a finite-dimensional CSL algebra is given. A CSL algebra, or a digraph algebra, is an algebra which is spanned by a set of matrices which contains all diagonal matrix units {Eii}1≤i≤n and is closed under multiplication.
    [Show full text]
  • 2.5 Elementary Row Operations and the Determinant
    2.5 Elementary Row Operations and the Determinant a b Recall: Let A be a 2 × 2 matrtix : A = 0 1. The determinant of A, denoted by det(A) @ c d A or jAj, is the number ad − bc. So for example if 2 4 A = 0 1 ; det(A) = 2(5) − 4(1) = 6: @ 1 5 A The matrix A is invertible if and only if det(A) 6= 0, and in this case the inverse of A is given by − 1 d −b A 1 = 0 1 : det(A) @ −c a A d −b The matrix 0 1 is called the adjoint or adjugate of A, denoted adj(A). @ −c a A Determinants are defined for all square matrices. They have various interpretations and applications in algebra, analysis and geometry. For every square matrix A, we have that A is invertible if and only if det(A) 6= 0. a b If A is a 2 × 2 matrix, A = 0 1, then j det(A)j is the volume of the parallelogram @ c d A having the vectors ~v1 = (a; b) and ~v2 = (c; d) as edges. Similarly if 0 a b c 1 A = B d e f C B C B C @ g h i A is a 3 × 3 matrix we have j det(A)j = Volume of P , where P is the parallelepiped in R3 having ~v1 = (a; b; c); ~v2 = (d; e; f) and ~v3 = (g; h; i) as edges. The determinant of an n × n matrix can be defined recursively in terms of determinants of (n − 1) × (n − 1) matrices (which in turn are defined in terms of (n − 2) × (n − 2) determinants, etc.).
    [Show full text]