Inverse Matrix Theorem

Total Page:16

File Type:pdf, Size:1020Kb

Inverse Matrix Theorem Inverse matrix theorem Brian Krummel September 13, 2019 Theorem 1 (Inverse matrix theorem). Let A be an n × n matrix. The following statements are logically equivalent: (a) A is an invertible matrix. (b) A is row equivalent to the n × n identity matrix. (c) A has n pivot positions. (d) The equation Ax = 0 has only the trivial solution. (e) The columns of A are linearly independent. (f) The linear transformation T (x) = Ax is one-to-one. (g) The equation Ax = b has at least one solution for each b in Rn. (h) The columns of A span Rn. (i) The linear transformation T (x) = Ax is onto. (j) There is an n × n matrix C such that CA = I. (k) There is an n × n matrix D such that AD = I. (`) AT is an invertible matrix. Let us look at this theorem carefully: • (a) , (b) by a theorem from last lecture, the reduced echelon form of an invertible matrix. In particular, we showed that if A is invertible then Ax = b has a unique solution for each b in Rn. It followed that A must be a square matrix with a pivot in every row and in every column, that is the reduced echelon form of A is the identity matrix. On the other hand, using elementary matrices we showed that if the reduced echelon form of A is the identity matrix, then A is invertible. • (b) , (c): Clearly if the reduced echelon form of an n × n matrix A is the identity matrix, then A has n pivot position. In fact, the only n × n reduced echelon form with n pivots is the identity matrix. Now (a){(c) are all equivalent. 1 • From Section 1, we know that (d), (e), (f), and (c) are all equivalent statements for unique- ness \Ax = 0 has only the trivial solution." Here we restate (c) as \A has n pivot positions in each column." • Also from Section 1, we know that (g), (h), (i), and (c) are all equivalent statements for existence \Ax = b has at least one solution for each b in Rn." Here we restate (c) as \A has n pivot positions in each row." Now (a){(i) are all equivalent. • Notice that the theorem is stating that existence of solutions to Ax = b is logically equivalent to uniqueness of solutions to Ax = b. This is a very special property of square n×n matrices and does not hold true for non-square matrices. • By the definition of inverse matrix, (a) implies both (j) and (k). The theorem asserts that knowing either (j) or (k) implies (a). • (j) ) (d): If there is a matrix C such that CA = I, then we can multiply both sides of Ax = 0 by C to obtain x = Ix = CAx = C0 = 0 and thus the only solution is the trivial solution x = 0. Since we showed above that (a) , (d), it follows from (j) ) (d) that (j) ) (a). • (k) ) (g): If there is a matrix D such that AD = I, then x = Db is a solution to Ax = b for each b in Rm: Ax = ADb = Ib = b: Since we showed above that (a) , (g), it follows from (k) ) (g) that (k) ) (a). Now we know that (a){(k) are all equivalent. • (a) , (`): By the properties of invertible matrices we know that if A is invertible, then AT is also invertible. But A = (AT )T so by the same reasoning if AT is invertible, then A = (AT )T is also invertible. 2.
Recommended publications
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Partitioned (Or Block) Matrices This Version: 29 Nov 2018
    Partitioned (or Block) Matrices This version: 29 Nov 2018 Intermediate Econometrics / Forecasting Class Notes Instructor: Anthony Tay It is frequently convenient to partition matrices into smaller sub-matrices. e.g. 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 A B (2×2) (2×3) 3 1 1 0 0 = 3 1 1 0 0 = C I 1 3 0 1 0 1 3 0 1 0 (3×2) (3×3) 2 0 0 0 1 2 0 0 0 1 The same matrix can be partitioned in several different ways. For instance, we can write the previous matrix as 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 a b0 (1×1) (1×4) 3 1 1 0 0 = 3 1 1 0 0 = c D 1 3 0 1 0 1 3 0 1 0 (4×1) (4×4) 2 0 0 0 1 2 0 0 0 1 One reason partitioning is useful is that we can do matrix addition and multiplication with blocks, as though the blocks are elements, as long as the blocks are conformable for the operations. For instance: A B D E A + D B + E (2×2) (2×3) (2×2) (2×3) (2×2) (2×3) + = C I C F 2C I + F (3×2) (3×3) (3×2) (3×3) (3×2) (3×3) A B d E Ad + BF AE + BG (2×2) (2×3) (2×1) (2×3) (2×1) (2×3) = C I F G Cd + F CE + G (3×2) (3×3) (3×1) (3×3) (3×1) (3×3) | {z } | {z } | {z } (5×5) (5×4) (5×4) 1 Intermediate Econometrics / Forecasting 2 Examples (1) Let 1 2 1 1 2 1 c 1 4 2 3 4 2 3 h i A = = = a a a and c = c 1 2 3 2 3 0 1 3 0 1 c 0 1 3 0 1 3 3 c1 h i then Ac = a1 a2 a3 c2 = c1a1 + c2a2 + c3a3 c3 The product Ac produces a linear combination of the columns of A.
    [Show full text]
  • The Invertible Matrix Theorem
    The Invertible Matrix Theorem Ryan C. Daileda Trinity University Linear Algebra Daileda The Invertible Matrix Theorem Introduction It is important to recognize when a square matrix is invertible. We can now characterize invertibility in terms of every one of the concepts we have now encountered. We will continue to develop criteria for invertibility, adding them to our list as we go. The invertibility of a matrix is also related to the invertibility of linear transformations, which we discuss below. Daileda The Invertible Matrix Theorem Theorem 1 (The Invertible Matrix Theorem) For a square (n × n) matrix A, TFAE: a. A is invertible. b. A has a pivot in each row/column. RREF c. A −−−→ I. d. The equation Ax = 0 only has the solution x = 0. e. The columns of A are linearly independent. f. Null A = {0}. g. A has a left inverse (BA = In for some B). h. The transformation x 7→ Ax is one to one. i. The equation Ax = b has a (unique) solution for any b. j. Col A = Rn. k. A has a right inverse (AC = In for some C). l. The transformation x 7→ Ax is onto. m. AT is invertible. Daileda The Invertible Matrix Theorem Inverse Transforms Definition A linear transformation T : Rn → Rn (also called an endomorphism of Rn) is called invertible iff it is both one-to-one and onto. If [T ] is the standard matrix for T , then we know T is given by x 7→ [T ]x. The Invertible Matrix Theorem tells us that this transformation is invertible iff [T ] is invertible.
    [Show full text]
  • Handout 9 More Matrix Properties; the Transpose
    Handout 9 More matrix properties; the transpose Square matrix properties These properties only apply to a square matrix, i.e. n £ n. ² The leading diagonal is the diagonal line consisting of the entries a11, a22, a33, . ann. ² A diagonal matrix has zeros everywhere except the leading diagonal. ² The identity matrix I has zeros o® the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and A I = I A = A for any n £ n matrix A. ² An upper triangular matrix has all its non-zero entries on or above the leading diagonal. ² A lower triangular matrix has all its non-zero entries on or below the leading diagonal. ² A symmetric matrix has the same entries below and above the diagonal: aij = aji for any values of i and j between 1 and n. ² An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: aij = ¡aji for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero. Transpose To transpose a matrix, we reect it across the line given by the leading diagonal a11, a22 etc. In general the result is a di®erent shape to the original matrix: a11 a21 a11 a12 a13 > > A = A = 0 a12 a22 1 [A ]ij = A : µ a21 a22 a23 ¶ ji a13 a23 @ A > ² If A is m £ n then A is n £ m. > ² The transpose of a symmetric matrix is itself: A = A (recalling that only square matrices can be symmetric).
    [Show full text]
  • Week 8-9. Inner Product Spaces. (Revised Version) Section 3.1 Dot Product As an Inner Product
    Math 2051 W2008 Margo Kondratieva Week 8-9. Inner product spaces. (revised version) Section 3.1 Dot product as an inner product. Consider a linear (vector) space V . (Let us restrict ourselves to only real spaces that is we will not deal with complex numbers and vectors.) De¯nition 1. An inner product on V is a function which assigns a real number, denoted by < ~u;~v> to every pair of vectors ~u;~v 2 V such that (1) < ~u;~v>=< ~v; ~u> for all ~u;~v 2 V ; (2) < ~u + ~v; ~w>=< ~u;~w> + < ~v; ~w> for all ~u;~v; ~w 2 V ; (3) < k~u;~v>= k < ~u;~v> for any k 2 R and ~u;~v 2 V . (4) < ~v;~v>¸ 0 for all ~v 2 V , and < ~v;~v>= 0 only for ~v = ~0. De¯nition 2. Inner product space is a vector space equipped with an inner product. Pn It is straightforward to check that the dot product introduces by ~u ¢ ~v = j=1 ujvj is an inner product. You are advised to verify all the properties listed in the de¯nition, as an exercise. The dot product is also called Euclidian inner product. De¯nition 3. Euclidian vector space is Rn equipped with Euclidian inner product < ~u;~v>= ~u¢~v. De¯nition 4. A square matrix A is called positive de¯nite if ~vT A~v> 0 for any vector ~v 6= ~0. · ¸ 2 0 Problem 1. Show that is positive de¯nite. 0 3 Solution: Take ~v = (x; y)T . Then ~vT A~v = 2x2 + 3y2 > 0 for (x; y) 6= (0; 0).
    [Show full text]
  • Math 54. Selected Solutions for Week 8 Section 6.1 (Page 282) 22. Let U = U1 U2 U3 . Explain Why U · U ≥ 0. Wh
    Math 54. Selected Solutions for Week 8 Section 6.1 (Page 282) 2 3 u1 22. Let ~u = 4 u2 5 . Explain why ~u · ~u ≥ 0 . When is ~u · ~u = 0 ? u3 2 2 2 We have ~u · ~u = u1 + u2 + u3 , which is ≥ 0 because it is a sum of squares (all of which are ≥ 0 ). It is zero if and only if ~u = ~0 . Indeed, if ~u = ~0 then ~u · ~u = 0 , as 2 can be seen directly from the formula. Conversely, if ~u · ~u = 0 then all the terms ui must be zero, so each ui must be zero. This implies ~u = ~0 . 2 5 3 26. Let ~u = 4 −6 5 , and let W be the set of all ~x in R3 such that ~u · ~x = 0 . What 7 theorem in Chapter 4 can be used to show that W is a subspace of R3 ? Describe W in geometric language. The condition ~u · ~x = 0 is equivalent to ~x 2 Nul ~uT , and this is a subspace of R3 by Theorem 2 on page 187. Geometrically, it is the plane perpendicular to ~u and passing through the origin. 30. Let W be a subspace of Rn , and let W ? be the set of all vectors orthogonal to W . Show that W ? is a subspace of Rn using the following steps. (a). Take ~z 2 W ? , and let ~u represent any element of W . Then ~z · ~u = 0 . Take any scalar c and show that c~z is orthogonal to ~u . (Since ~u was an arbitrary element of W , this will show that c~z is in W ? .) ? (b).
    [Show full text]
  • New Foundations for Geometric Algebra1
    Text published in the electronic journal Clifford Analysis, Clifford Algebras and their Applications vol. 2, No. 3 (2013) pp. 193-211 New foundations for geometric algebra1 Ramon González Calvet Institut Pere Calders, Campus Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain E-mail : [email protected] Abstract. New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multiple quantities.
    [Show full text]
  • Matrix Determinants
    MATRIX DETERMINANTS Summary Uses ................................................................................................................................................. 1 1‐ Reminder ‐ Definition and components of a matrix ................................................................ 1 2‐ The matrix determinant .......................................................................................................... 2 3‐ Calculation of the determinant for a matrix ................................................................. 2 4‐ Exercise .................................................................................................................................... 3 5‐ Definition of a minor ............................................................................................................... 3 6‐ Definition of a cofactor ............................................................................................................ 4 7‐ Cofactor expansion – a method to calculate the determinant ............................................... 4 8‐ Calculate the determinant for a matrix ........................................................................ 5 9‐ Alternative method to calculate determinants ....................................................................... 6 10‐ Exercise .................................................................................................................................... 7 11‐ Determinants of square matrices of dimensions 4x4 and greater ........................................
    [Show full text]
  • The Invertible Matrix Theorem II in Section 2.8, We Gave a List of Characterizations of Invertible Matrices (Theorem 2.8.1)
    i i “main” 2007/2/16 page 312 i i 312 CHAPTER 4 Vector Spaces For Problems 9–12, determine the solution set to Ax = b, 14. Show that a 6 × 4 matrix A with nullity(A) = 0 must and show that all solutions are of the form (4.9.3). have rowspace(A) = R4. Is colspace(A) = R4? 13−1 4 15. Prove that if rowspace(A) = nullspace(A), then A 9. A = 27 9 , b = 11 . contains an even number of columns. 15 21 10 16. Show that a 5×7 matrix A must have 2 ≤ nullity(A) ≤ 2 −114 5 7. Give an example of a 5 × 7 matrix A with 10. A = 1 −123 , b = 6 . nullity(A) = 2 and an example of a 5 × 7 matrix 1 −255 13 A with nullity(A) = 7. 11−2 −3 17. Show that 3 × 8 matrix A must have 5 ≤ nullity(A) ≤ 3 −1 −7 2 8. Give an example of a 3 × 8 matrix A with 11. A = , b = . 111 0 nullity(A) = 5 and an example of a 3 × 8 matrix 22−4 −6 A with nullity(A) = 8. 11−15 0 18. Prove that if A and B are n × n matrices and A is 12. A = 02−17 , b = 0 . invertible, then 42−313 0 nullity(AB) = nullity(B). 13. Show that a 3 × 7 matrix A with nullity(A) = 4 must have colspace(A) = R3. Is rowspace(A) = R3? [Hint: Bx = 0 if and only if ABx = 0.] 4.10 The Invertible Matrix Theorem II In Section 2.8, we gave a list of characterizations of invertible matrices (Theorem 2.8.1).
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • 6 Inner Product Spaces
    Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space quite a special type of a vector space. Essentially all these are consequences of the dot product. Thus, it makes sense to look for operations which share the basic properties of the dot product. In this section we shall briefly discuss this. Definition 6.1 Let V be a vector space. By an inner product on V we mean a binary operation, which associates a scalar say u, v for each pair of vectors u, v) in V, satisfying h i the following properties for all u, v, w in V and α, β any scalar. (Let “ ” denote the complex − conjugate of a complex number.) (1) u, v = v, u (Hermitian property or conjugate symmetry); h i h i (2) u, αv + βw = α u, v + β u, w (sesquilinearity); h i h i h i (3) v, v > 0 if v =0 (positivity). h i 6 A vector space with an inner product is called an inner product space. Remark 6.1 (i) Observe that we have not mentioned whether V is a real vector space or a complex vector space. The above definition includes both the cases. The only difference is that if K = R then the conjugation is just the identity. Thus for real vector spaces, (1) will becomes ‘symmetric property’ since for a real number c, we have c¯ = c. (ii) Combining (1) and (2) we obtain (2’) αu + βv, w =α ¯ u, w + β¯ v, w .
    [Show full text]
  • On Bounds and Closed Form Expressions for Capacities Of
    On Bounds and Closed Form Expressions for Capacities of Discrete Memoryless Channels with Invertible Positive Matrices Thuan Nguyen Thinh Nguyen School of Electrical and School of Electrical and Computer Engineering Computer Engineering Oregon State University Oregon State University Corvallis, OR, 97331 Corvallis, 97331 Email: [email protected] Email: [email protected] Abstract—While capacities of discrete memoryless channels are That said, it is still beneficial to find the channel capacity well studied, it is still not possible to obtain a closed form expres- in closed form expression for a number of reasons. These sion for the capacity of an arbitrary discrete memoryless channel. include (1) formulas can often provide a good intuition about This paper describes an elementary technique based on Karush- Kuhn-Tucker (KKT) conditions to obtain (1) a good upper bound the relationship between the capacity and different channel of a discrete memoryless channel having an invertible positive parameters, (2) formulas offer a faster way to determine the channel matrix and (2) a closed form expression for the capacity capacity than that of algorithms, and (3) formulas are useful if the channel matrix satisfies certain conditions related to its for analytical derivations where closed form expression of the singular value and its Gershgorin’s disk. capacity is needed in the intermediate steps. To that end, our Index Terms—Wireless Communication, Convex Optimization, Channel Capacity, Mutual Information. paper describes an elementary technique based on the theory of convex optimization, to find closed form expressions for (1) a new upper bound on capacities of discrete memoryless I. INTRODUCTION channels with positive invertible channel matrix and (2) the Discrete memoryless channels (DMC) play a critical role optimality conditions of the channel matrix such that the upper in the early development of information theory and its ap- bound is precisely the capacity.
    [Show full text]