Chapter 9 Eigenvectors and Eigenvalues

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 Eigenvectors and Eigenvalues Chapter 9 Eigenvectors and Eigenvalues 9.1 Eigenvectors and Eigenvalues of a Linear Map Given a finite-dimensional vector space E,letf : E E ! be any linear map. If, by luck, there is a basis (e1,...,en) of E with respect to which f is represented by a diagonal matrix λ1 0 ... 0 0 λ ... D = 2 , 0 . ... ... 0 1 B 0 ... 0 λ C B nC @ A then the action of f on E is very simple; in every “direc- tion” ei,wehave f(ei)=λiei. 511 512 CHAPTER 9. EIGENVECTORS AND EIGENVALUES We can think of f as a transformation that stretches or shrinks space along the direction e1,...,en (at least if E is a real vector space). In terms of matrices, the above property translates into the fact that there is an invertible matrix P and a di- agonal matrix D such that a matrix A can be factored as 1 A = PDP− . When this happens, we say that f (or A)isdiagonaliz- able,theλisarecalledtheeigenvalues of f,andtheeis are eigenvectors of f. For example, we will see that every symmetric matrix can be diagonalized. 9.1. EIGENVECTORS AND EIGENVALUES OF A LINEAR MAP 513 Unfortunately, not every matrix can be diagonalized. For example, the matrix 11 A = 1 01 ✓ ◆ can’t be diagonalized. Sometimes, a matrix fails to be diagonalizable because its eigenvalues do not belong to the field of coefficients, such as 0 1 A = , 2 10− ✓ ◆ whose eigenvalues are i. ± This is not a serious problem because A2 can be diago- nalized over the complex numbers. However, A1 is a “fatal” case! Indeed, its eigenvalues are both 1 and the problem is that A1 does not have enough eigenvectors to span E. 514 CHAPTER 9. EIGENVECTORS AND EIGENVALUES The next best thing is that there is a basis with respect to which f is represented by an upper triangular matrix. In this case we say that f can be triangularized. As we will see in Section 9.2, if all the eigenvalues of f belong to the field of coefficients K,thenf can be triangularized. In particular, this is the case if K = C. Now, an alternative to triangularization is to consider the representation of f with respect to two bases (e1,...,en) and (f1,...,fn), rather than a single basis. In this case, if K = R or K = C,itturnsoutthatwecan even pick these bases to be orthonormal,andwegeta diagonal matrix ⌃with nonnegative entries,suchthat f(e )=σ f , 1 i n. i i i The nonzero σisarethesingular values of f,andthe corresponding representation is the singular value de- composition,orSVD. 9.1. EIGENVECTORS AND EIGENVALUES OF A LINEAR MAP 515 Definition 9.1. Given any vector space E and any lin- ear map f : E E,ascalarλ K is called an eigen- value, or proper! value, or characteristic2 value of f if there is some nonzero vector u E such that 2 f(u)=λu. Equivalently, λ is an eigenvalue of f if Ker (λI f)is nontrivial (i.e., Ker (λI f) = 0 ). − − 6 { } Avectoru E is called an eigenvector, or proper vec- tor, or characteristic2 vector of f if u =0andifthere is some λ K such that 6 2 f(u)=λu; the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with λ. Given any eigenvalue λ K,thenontrivialsubspace Ker (λI f)consistsofalltheeigenvectorsassociated2 with λ together− with the zero vector; this subspace is denoted by Eλ(f), or E(λ, f), or even by Eλ,andiscalled the eigenspace associated with λ, or proper subspace associated with λ. 516 CHAPTER 9. EIGENVECTORS AND EIGENVALUES Remark: As we emphasized in the remark following Definition 4.4, we require an eigenvector to be nonzero. This requirement seems to have more benefits than incon- venients, even though it may considered somewhat inel- egant because the set of all eigenvectors associated with an eigenvalue is not a subspace since the zero vector is excluded. Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct eigenvalues correspond to disjoint sets of eigenvectors. Let us now assume that E is of finite dimension n. Proposition 9.1. Let E be any vector space of finite dimension n and let f be any linear map f : E E. The eigenvalues of f are the roots (in K) of the! polynomial det(λI f). − 9.1. EIGENVECTORS AND EIGENVALUES OF A LINEAR MAP 517 Definition 9.2. Given any vector space E of dimen- sion n,foranylinearmapf : E E,thepolynomial ! Pf (X)=χf (X)=det(XI f)iscalledthecharac- teristic polynomial of f.Foranysquarematrix− A,the polynomial PA(X)=χA(X)=det(XI A)iscalled the characteristic polynomial of A. − Note that we already encountered the characteristic poly- nomial in Section 3.7; see Definition 3.9. Given any basis (e1,...,en), if A = M(f)isthematrix of f w.r.t. (e1,...,en), we can compute the characteristic polynomial χf (X)=det(XI f)off by expanding the following determinant: − X a a ... a − 11 − 12 − 1 n a21 X a22 ... a2 n det(XI A)= − . −. − . . − . ... a a ... X a − n 1 − n 2 − nn If we expand this determinant, we find that n n 1 χ (X)=det(XI A)=X (a + + a )X − A − − 11 ··· nn + +( 1)n det(A). ··· − 518 CHAPTER 9. EIGENVECTORS AND EIGENVALUES The sum tr(A)=a11+ +ann of the diagonal elements of A is called the trace··· of A. Since the characteristic polynomial depends only on f, tr(A)hasthesamevalueforallmatricesA representing f.Welettr(f)=tr(A)bethetrace of f. Remark: The characteristic polynomial of a linear map is sometimes defined as det(f XI). Since − det(f XI)=( 1)n det(XI f), − − − this makes essentially no di↵erence but the version det(XI f)hasthesmalladvantagethatthecoefficient of Xn is− +1. If we write n n 1 χA(X)=det(XI A)=X ⌧1(A)X − − k n−k n + +( 1) ⌧ (A)X − + +( 1) ⌧ (A), ··· − k ··· − n then we just proved that ⌧1(A)=tr(A)and⌧n(A)=det(A). 9.1. EIGENVECTORS AND EIGENVALUES OF A LINEAR MAP 519 If all the roots, λ1,...,λn,ofthepolynomialdet(XI A) belong to the field K,thenwecanwrite − det(XI A)=(X λ ) (X λ ), − − 1 ··· − n where some of the λismayappearmorethanonce. Consequently, n n 1 χA(X)=det(XI A)=X σ1(λ)X − − k n−k n + +( 1) σ (λ)X − + +( 1) σ (λ), ··· − k ··· − n where σk(λ)= λi, I 1,...,n i I ✓{XI =k } Y2 | | the kth symmetric function of the λi’s. From this, it clear that σk(λ)=⌧k(A) and, in particular, the product of the eigenvalues of f is equal to det(A)=det(f)andthesumoftheeigenvalues of f is equal to the trace, tr(A)=tr(f), of f. 520 CHAPTER 9. EIGENVECTORS AND EIGENVALUES For the record, tr(f)=λ + + λ 1 ··· n det(f)=λ λ , 1 ··· n where λ1,...,λn are the eigenvalues of f (and A), where some of the λismayappearmorethanonce. In particular, f is not invertible i↵it admits 0 has an eigenvalue. Remark: Depending on the field K,thecharacteristic polynomial χA(X)=det(XI A)mayormaynothave roots in K. − This motivates considering algebraically closed fields. For example, over K = R,noteverypolynomialhasreal roots. For example, for the matrix cos ✓ sin ✓ A = , sin ✓ −cos ✓ ✓ ◆ the characteristic polynomial det(XI A)hasnoreal roots unless ✓ = k⇡. − 9.1. EIGENVECTORS AND EIGENVALUES OF A LINEAR MAP 521 However, over the field C of complex numbers, every poly- nomial has roots. For example, the matrix above has the i✓ roots cos ✓ i sin ✓ = e± . ± Definition 9.3. Let A be an n n matrix over a field, K.Assumethatalltherootsofthecharacteristicpoly-⇥ nomial χA(X)=det(XI A)ofA belong to K,which means that we can write − det(XI A)=(X λ )k1 (X λ )km, − − 1 ··· − m where λ1,...,λm K are the distinct roots of det(XI A)and2k + + k = n. − 1 ··· m The integer, ki,iscalledthealgebraic multiplicity of the eigenvalue λi and the dimension of the eigenspace, E =Ker(λ I A), is called the geometric multiplicity λi i − of λi.Wedenotethealgebraicmultiplicityofλi by alg(λi) and its geometric multiplicity by geo(λi). By definition, the sum of the algebraic multiplicities is equal to n but the sum of the geometric multiplicities can be strictly smaller. 522 CHAPTER 9. EIGENVECTORS AND EIGENVALUES Proposition 9.2. Let A be an n n matrix over a field K and assume that all the roots⇥ of the charac- teristic polynomial χ (X)=det(XI A) of A belong A − to K. For every eigenvalue λi of A, the geometric multiplicity of λi is always less than or equal to its algebraic multiplicity, that is, geo(λ ) alg(λ ). i i Proposition 9.3. Let E be any vector space of fi- nite dimension n and let f be any linear map. If u1,...,um are eigenvectors associated with pairwise distinct eigenvalues λ1,...,λm, then the family (u1,...,um) is linearly independent. Thus, from Proposition 9.3, if λ1,...,λm are all the pair- wise distinct eigenvalues of f (where m n), we have a direct sum E E λ1 ⊕···⊕ λm of the eigenspaces Eλi. Unfortunately, it is not always the case that E = E E . λ1 ⊕···⊕ λm 9.1. EIGENVECTORS AND EIGENVALUES OF A LINEAR MAP 523 When E = E E , λ1 ⊕···⊕ λm we say that f is diagonalizable (and similarly for any matrix associated with f). Indeed, picking a basis in each Eλi,weobtainamatrix which is a diagonal matrix consisting of the eigenvalues, each λi occurring a number of times equal to the dimen- sion of Eλi.
Recommended publications
  • Orthogonal Reduction 1 the Row Echelon Form -.: Mathematical
    MATH 5330: Computational Methods of Linear Algebra Lecture 9: Orthogonal Reduction Xianyi Zeng Department of Mathematical Sciences, UTEP 1 The Row Echelon Form Our target is to solve the normal equation: AtAx = Atb ; (1.1) m×n where A 2 R is arbitrary; we have shown previously that this is equivalent to the least squares problem: min jjAx−bjj : (1.2) x2Rn t n×n As A A2R is symmetric positive semi-definite, we can try to compute the Cholesky decom- t t n×n position such that A A = L L for some lower-triangular matrix L 2 R . One problem with this approach is that we're not fully exploring our information, particularly in Cholesky decomposition we treat AtA as a single entity in ignorance of the information about A itself. t m×m In particular, the structure A A motivates us to study a factorization A=QE, where Q2R m×n is orthogonal and E 2 R is to be determined. Then we may transform the normal equation to: EtEx = EtQtb ; (1.3) t m×m where the identity Q Q = Im (the identity matrix in R ) is used. This normal equation is equivalent to the least squares problem with E: t min Ex−Q b : (1.4) x2Rn Because orthogonal transformation preserves the L2-norm, (1.2) and (1.4) are equivalent to each n other. Indeed, for any x 2 R : jjAx−bjj2 = (b−Ax)t(b−Ax) = (b−QEx)t(b−QEx) = [Q(Qtb−Ex)]t[Q(Qtb−Ex)] t t t t t t t t 2 = (Q b−Ex) Q Q(Q b−Ex) = (Q b−Ex) (Q b−Ex) = Ex−Q b : Hence the target is to find an E such that (1.3) is easier to solve.
    [Show full text]
  • The Invertible Matrix Theorem
    The Invertible Matrix Theorem Ryan C. Daileda Trinity University Linear Algebra Daileda The Invertible Matrix Theorem Introduction It is important to recognize when a square matrix is invertible. We can now characterize invertibility in terms of every one of the concepts we have now encountered. We will continue to develop criteria for invertibility, adding them to our list as we go. The invertibility of a matrix is also related to the invertibility of linear transformations, which we discuss below. Daileda The Invertible Matrix Theorem Theorem 1 (The Invertible Matrix Theorem) For a square (n × n) matrix A, TFAE: a. A is invertible. b. A has a pivot in each row/column. RREF c. A −−−→ I. d. The equation Ax = 0 only has the solution x = 0. e. The columns of A are linearly independent. f. Null A = {0}. g. A has a left inverse (BA = In for some B). h. The transformation x 7→ Ax is one to one. i. The equation Ax = b has a (unique) solution for any b. j. Col A = Rn. k. A has a right inverse (AC = In for some C). l. The transformation x 7→ Ax is onto. m. AT is invertible. Daileda The Invertible Matrix Theorem Inverse Transforms Definition A linear transformation T : Rn → Rn (also called an endomorphism of Rn) is called invertible iff it is both one-to-one and onto. If [T ] is the standard matrix for T , then we know T is given by x 7→ [T ]x. The Invertible Matrix Theorem tells us that this transformation is invertible iff [T ] is invertible.
    [Show full text]
  • On the Eigenvalues of Euclidean Distance Matrices
    “main” — 2008/10/13 — 23:12 — page 237 — #1 Volume 27, N. 3, pp. 237–250, 2008 Copyright © 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam On the eigenvalues of Euclidean distance matrices A.Y. ALFAKIH∗ Department of Mathematics and Statistics University of Windsor, Windsor, Ontario N9B 3P4, Canada E-mail: [email protected] Abstract. In this paper, the notion of equitable partitions (EP) is used to study the eigenvalues of Euclidean distance matrices (EDMs). In particular, EP is used to obtain the characteristic poly- nomials of regular EDMs and non-spherical centrally symmetric EDMs. The paper also presents methods for constructing cospectral EDMs and EDMs with exactly three distinct eigenvalues. Mathematical subject classification: 51K05, 15A18, 05C50. Key words: Euclidean distance matrices, eigenvalues, equitable partitions, characteristic poly- nomial. 1 Introduction ( ) An n ×n nonzero matrix D = di j is called a Euclidean distance matrix (EDM) 1, 2,..., n r if there exist points p p p in some Euclidean space < such that i j 2 , ,..., , di j = ||p − p || for all i j = 1 n where || || denotes the Euclidean norm. i , ,..., Let p , i ∈ N = {1 2 n}, be the set of points that generate an EDM π π ( , ,..., ) D. An m-partition of D is an ordered sequence = N1 N2 Nm of ,..., nonempty disjoint subsets of N whose union is N. The subsets N1 Nm are called the cells of the partition. The n-partition of D where each cell consists #760/08. Received: 07/IV/08. Accepted: 17/VI/08. ∗Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS.
    [Show full text]
  • Math 54. Selected Solutions for Week 8 Section 6.1 (Page 282) 22. Let U = U1 U2 U3 . Explain Why U · U ≥ 0. Wh
    Math 54. Selected Solutions for Week 8 Section 6.1 (Page 282) 2 3 u1 22. Let ~u = 4 u2 5 . Explain why ~u · ~u ≥ 0 . When is ~u · ~u = 0 ? u3 2 2 2 We have ~u · ~u = u1 + u2 + u3 , which is ≥ 0 because it is a sum of squares (all of which are ≥ 0 ). It is zero if and only if ~u = ~0 . Indeed, if ~u = ~0 then ~u · ~u = 0 , as 2 can be seen directly from the formula. Conversely, if ~u · ~u = 0 then all the terms ui must be zero, so each ui must be zero. This implies ~u = ~0 . 2 5 3 26. Let ~u = 4 −6 5 , and let W be the set of all ~x in R3 such that ~u · ~x = 0 . What 7 theorem in Chapter 4 can be used to show that W is a subspace of R3 ? Describe W in geometric language. The condition ~u · ~x = 0 is equivalent to ~x 2 Nul ~uT , and this is a subspace of R3 by Theorem 2 on page 187. Geometrically, it is the plane perpendicular to ~u and passing through the origin. 30. Let W be a subspace of Rn , and let W ? be the set of all vectors orthogonal to W . Show that W ? is a subspace of Rn using the following steps. (a). Take ~z 2 W ? , and let ~u represent any element of W . Then ~z · ~u = 0 . Take any scalar c and show that c~z is orthogonal to ~u . (Since ~u was an arbitrary element of W , this will show that c~z is in W ? .) ? (b).
    [Show full text]
  • 4.1 RANK of a MATRIX Rank List Given Matrix M, the Following Are Equal
    page 1 of Section 4.1 CHAPTER 4 MATRICES CONTINUED SECTION 4.1 RANK OF A MATRIX rank list Given matrix M, the following are equal: (1) maximal number of ind cols (i.e., dim of the col space of M) (2) maximal number of ind rows (i.e., dim of the row space of M) (3) number of cols with pivots in the echelon form of M (4) number of nonzero rows in the echelon form of M You know that (1) = (3) and (2) = (4) from Section 3.1. To see that (3) = (4) just stare at some echelon forms. This one number (that all four things equal) is called the rank of M. As a special case, a zero matrix is said to have rank 0. how row ops affect rank Row ops don't change the rank because they don't change the max number of ind cols or rows. example 1 12-10 24-20 has rank 1 (maximally one ind col, by inspection) 48-40 000 []000 has rank 0 example 2 2540 0001 LetM= -2 1 -1 0 21170 To find the rank of M, use row ops R3=R1+R3 R4=-R1+R4 R2ØR3 R4=-R2+R4 2540 0630 to get the unreduced echelon form 0001 0000 Cols 1,2,4 have pivots. So the rank of M is 3. how the rank is limited by the size of the matrix IfAis7≈4then its rank is either 0 (if it's the zero matrix), 1, 2, 3 or 4. The rank can't be 5 or larger because there can't be 5 ind cols when there are only 4 cols to begin with.
    [Show full text]
  • The Invertible Matrix Theorem II in Section 2.8, We Gave a List of Characterizations of Invertible Matrices (Theorem 2.8.1)
    i i “main” 2007/2/16 page 312 i i 312 CHAPTER 4 Vector Spaces For Problems 9–12, determine the solution set to Ax = b, 14. Show that a 6 × 4 matrix A with nullity(A) = 0 must and show that all solutions are of the form (4.9.3). have rowspace(A) = R4. Is colspace(A) = R4? 13−1 4 15. Prove that if rowspace(A) = nullspace(A), then A 9. A = 27 9 , b = 11 . contains an even number of columns. 15 21 10 16. Show that a 5×7 matrix A must have 2 ≤ nullity(A) ≤ 2 −114 5 7. Give an example of a 5 × 7 matrix A with 10. A = 1 −123 , b = 6 . nullity(A) = 2 and an example of a 5 × 7 matrix 1 −255 13 A with nullity(A) = 7. 11−2 −3 17. Show that 3 × 8 matrix A must have 5 ≤ nullity(A) ≤ 3 −1 −7 2 8. Give an example of a 3 × 8 matrix A with 11. A = , b = . 111 0 nullity(A) = 5 and an example of a 3 × 8 matrix 22−4 −6 A with nullity(A) = 8. 11−15 0 18. Prove that if A and B are n × n matrices and A is 12. A = 02−17 , b = 0 . invertible, then 42−313 0 nullity(AB) = nullity(B). 13. Show that a 3 × 7 matrix A with nullity(A) = 4 must have colspace(A) = R3. Is rowspace(A) = R3? [Hint: Bx = 0 if and only if ABx = 0.] 4.10 The Invertible Matrix Theorem II In Section 2.8, we gave a list of characterizations of invertible matrices (Theorem 2.8.1).
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • §9.2 Orthogonal Matrices and Similarity Transformations
    n×n Thm: Suppose matrix Q 2 R is orthogonal. Then −1 T I Q is invertible with Q = Q . n T T I For any x; y 2 R ,(Q x) (Q y) = x y. n I For any x 2 R , kQ xk2 = kxk2. Ex 0 1 1 1 1 1 2 2 2 2 B C B 1 1 1 1 C B − 2 2 − 2 2 C B C T H = B C ; H H = I : B C B − 1 − 1 1 1 C B 2 2 2 2 C @ A 1 1 1 1 2 − 2 − 2 2 x9.2 Orthogonal Matrices and Similarity Transformations n×n Def: A matrix Q 2 R is said to be orthogonal if its columns n (1) (2) (n)o n q ; q ; ··· ; q form an orthonormal set in R . Ex 0 1 1 1 1 1 2 2 2 2 B C B 1 1 1 1 C B − 2 2 − 2 2 C B C T H = B C ; H H = I : B C B − 1 − 1 1 1 C B 2 2 2 2 C @ A 1 1 1 1 2 − 2 − 2 2 x9.2 Orthogonal Matrices and Similarity Transformations n×n Def: A matrix Q 2 R is said to be orthogonal if its columns n (1) (2) (n)o n q ; q ; ··· ; q form an orthonormal set in R . n×n Thm: Suppose matrix Q 2 R is orthogonal. Then −1 T I Q is invertible with Q = Q . n T T I For any x; y 2 R ,(Q x) (Q y) = x y.
    [Show full text]
  • The Jordan Canonical Forms of Complex Orthogonal and Skew-Symmetric Matrices Roger A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Linear Algebra and its Applications 302–303 (1999) 411–421 www.elsevier.com/locate/laa The Jordan Canonical Forms of complex orthogonal and skew-symmetric matrices Roger A. Horn a,∗, Dennis I. Merino b aDepartment of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112–0090, USA bDepartment of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA Received 25 August 1999; accepted 3 September 1999 Submitted by B. Cain Dedicated to Hans Schneider Abstract We study the Jordan Canonical Forms of complex orthogonal and skew-symmetric matrices, and consider some related results. © 1999 Elsevier Science Inc. All rights reserved. Keywords: Canonical form; Complex orthogonal matrix; Complex skew-symmetric matrix 1. Introduction and notation Every square complex matrix A is similar to its transpose, AT ([2, Section 3.2.3] or [1, Chapter XI, Theorem 5]), and the similarity class of the n-by-n complex symmetric matrices is all of Mn [2, Theorem 4.4.9], the set of n-by-n complex matrices. However, other natural similarity classes of matrices are non-trivial and can be characterized by simple conditions involving the Jordan Canonical Form. For example, A is similar to its complex conjugate, A (and hence also to its T adjoint, A∗ = A ), if and only if A is similar to a real matrix [2, Theorem 4.1.7]; the Jordan Canonical Form of such a matrix can contain only Jordan blocks with real eigenvalues and pairs of Jordan blocks of the form Jk(λ) ⊕ Jk(λ) for non-real λ.We denote by Jk(λ) the standard upper triangular k-by-k Jordan block with eigenvalue ∗ Corresponding author.
    [Show full text]
  • Fifth Lecture
    Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. n Definition 1 A set of k vectors fu1; u2;:::; ukg, where each ui 2 R , is said to be an orthogonal with respect to the inner product (·; ·) if (ui; uj) = 0 for i =6 j. The set is said to be orthonormal if it is orthogonal and (ui; ui) = 1 for i = 1; 2; : : : ; k The definition of an orthogonal matrix is related to the definition for vectors, but with a subtle difference. n×k Definition 2 The matrix U = (u1; u2;:::; uk) 2 R whose columns form an orthonormal set is said to be left orthogonal. If k = n, that is, U is square, then U is said to be an orthogonal matrix. Note that the columns of (left) orthogonal matrices are orthonormal, not merely orthogonal. Square complex matrices whose columns form an orthonormal set are called unitary. Example 1 Here are some common 2 × 2 orthogonal matrices ! 1 0 U = 0 1 ! p 1 −1 U = 0:5 1 1 ! 0:8 0:6 U = 0:6 −0:8 ! cos θ sin θ U = − sin θ cos θ Let x 2 Rn then k k2 T Ux 2 = (Ux) (Ux) = xT U T Ux = xT x k k2 = x 2 1 So kUxk2 = kxk2: This property is called orthogonal invariance, it is an important and useful property of the two norm and orthogonal transformations. That is, orthog- onal transformations DO NOT AFFECT the two-norm, there is no compa- rable property for the one-norm or 1-norm.
    [Show full text]
  • Advanced Linear Algebra (MA251) Lecture Notes Contents
    Algebra I – Advanced Linear Algebra (MA251) Lecture Notes Derek Holt and Dmitriy Rumynin year 2009 (revised at the end) Contents 1 Review of Some Linear Algebra 3 1.1 The matrix of a linear map with respect to a fixed basis . ........ 3 1.2 Changeofbasis................................... 4 2 The Jordan Canonical Form 4 2.1 Introduction.................................... 4 2.2 TheCayley-Hamiltontheorem . ... 6 2.3 Theminimalpolynomial. 7 2.4 JordanchainsandJordanblocks . .... 9 2.5 Jordan bases and the Jordan canonical form . ....... 10 2.6 The JCF when n =2and3 ............................ 11 2.7 Thegeneralcase .................................. 14 2.8 Examples ...................................... 15 2.9 Proof of Theorem 2.9 (non-examinable) . ...... 16 2.10 Applications to difference equations . ........ 17 2.11 Functions of matrices and applications to differential equations . 19 3 Bilinear Maps and Quadratic Forms 21 3.1 Bilinearmaps:definitions . 21 3.2 Bilinearmaps:changeofbasis . 22 3.3 Quadraticforms: introduction. ...... 22 3.4 Quadraticforms: definitions. ..... 25 3.5 Change of variable under the general linear group . .......... 26 3.6 Change of variable under the orthogonal group . ........ 29 3.7 Applications of quadratic forms to geometry . ......... 33 3.7.1 Reduction of the general second degree equation . ....... 33 3.7.2 The case n =2............................... 34 3.7.3 The case n =3............................... 34 1 3.8 Unitary, hermitian and normal matrices . ....... 35 3.9 Applications to quantum mechanics . ..... 41 4 Finitely Generated Abelian Groups 44 4.1 Definitions...................................... 44 4.2 Subgroups,cosetsandquotientgroups . ....... 45 4.3 Homomorphisms and the first isomorphism theorem . ....... 48 4.4 Freeabeliangroups............................... 50 4.5 Unimodular elementary row and column operations and the Smith normal formforintegralmatrices .
    [Show full text]
  • On Bounds and Closed Form Expressions for Capacities Of
    On Bounds and Closed Form Expressions for Capacities of Discrete Memoryless Channels with Invertible Positive Matrices Thuan Nguyen Thinh Nguyen School of Electrical and School of Electrical and Computer Engineering Computer Engineering Oregon State University Oregon State University Corvallis, OR, 97331 Corvallis, 97331 Email: [email protected] Email: [email protected] Abstract—While capacities of discrete memoryless channels are That said, it is still beneficial to find the channel capacity well studied, it is still not possible to obtain a closed form expres- in closed form expression for a number of reasons. These sion for the capacity of an arbitrary discrete memoryless channel. include (1) formulas can often provide a good intuition about This paper describes an elementary technique based on Karush- Kuhn-Tucker (KKT) conditions to obtain (1) a good upper bound the relationship between the capacity and different channel of a discrete memoryless channel having an invertible positive parameters, (2) formulas offer a faster way to determine the channel matrix and (2) a closed form expression for the capacity capacity than that of algorithms, and (3) formulas are useful if the channel matrix satisfies certain conditions related to its for analytical derivations where closed form expression of the singular value and its Gershgorin’s disk. capacity is needed in the intermediate steps. To that end, our Index Terms—Wireless Communication, Convex Optimization, Channel Capacity, Mutual Information. paper describes an elementary technique based on the theory of convex optimization, to find closed form expressions for (1) a new upper bound on capacities of discrete memoryless I. INTRODUCTION channels with positive invertible channel matrix and (2) the Discrete memoryless channels (DMC) play a critical role optimality conditions of the channel matrix such that the upper in the early development of information theory and its ap- bound is precisely the capacity.
    [Show full text]