§9.2 Orthogonal Matrices and Similarity Transformations

Total Page:16

File Type:pdf, Size:1020Kb

§9.2 Orthogonal Matrices and Similarity Transformations n×n Thm: Suppose matrix Q 2 R is orthogonal. Then −1 T I Q is invertible with Q = Q . n T T I For any x; y 2 R ,(Q x) (Q y) = x y. n I For any x 2 R , kQ xk2 = kxk2. Ex 0 1 1 1 1 1 2 2 2 2 B C B 1 1 1 1 C B − 2 2 − 2 2 C B C T H = B C ; H H = I : B C B − 1 − 1 1 1 C B 2 2 2 2 C @ A 1 1 1 1 2 − 2 − 2 2 x9.2 Orthogonal Matrices and Similarity Transformations n×n Def: A matrix Q 2 R is said to be orthogonal if its columns n (1) (2) (n)o n q ; q ; ··· ; q form an orthonormal set in R . Ex 0 1 1 1 1 1 2 2 2 2 B C B 1 1 1 1 C B − 2 2 − 2 2 C B C T H = B C ; H H = I : B C B − 1 − 1 1 1 C B 2 2 2 2 C @ A 1 1 1 1 2 − 2 − 2 2 x9.2 Orthogonal Matrices and Similarity Transformations n×n Def: A matrix Q 2 R is said to be orthogonal if its columns n (1) (2) (n)o n q ; q ; ··· ; q form an orthonormal set in R . n×n Thm: Suppose matrix Q 2 R is orthogonal. Then −1 T I Q is invertible with Q = Q . n T T I For any x; y 2 R ,(Q x) (Q y) = x y. n I For any x 2 R , kQ xk2 = kxk2. x9.2 Orthogonal Matrices and Similarity Transformations n×n Def: A matrix Q 2 R is said to be orthogonal if its columns n (1) (2) (n)o n q ; q ; ··· ; q form an orthonormal set in R . n×n Thm: Suppose matrix Q 2 R is orthogonal. Then −1 T I Q is invertible with Q = Q . n T T I For any x; y 2 R ,(Q x) (Q y) = x y. n I For any x 2 R , kQ xk2 = kxk2. Ex 0 1 1 1 1 1 2 2 2 2 B C B 1 1 1 1 C B − 2 2 − 2 2 C B C T H = B C ; H H = I : B C B − 1 − 1 1 1 C B 2 2 2 2 C @ A 1 1 1 1 2 − 2 − 2 2 Thm: Suppose A and B are similar matrices with A = S−1 BS and λ is an eigenvalue of A with associated eigenvector x. Then λ is an eigenvalue of B with associated eigenvector S x. Proof: Let x 6= 0 be such that A x = S−1 BS x = λ x: It follows that B (S x) = λ (S x) Def: Two matrices A and B are similar if a nonsingular matrix S exists with A = S−1 BS: Proof: Let x 6= 0 be such that A x = S−1 BS x = λ x: It follows that B (S x) = λ (S x) Def: Two matrices A and B are similar if a nonsingular matrix S exists with A = S−1 BS: Thm: Suppose A and B are similar matrices with A = S−1 BS and λ is an eigenvalue of A with associated eigenvector x. Then λ is an eigenvalue of B with associated eigenvector S x. Def: Two matrices A and B are similar if a nonsingular matrix S exists with A = S−1 BS: Thm: Suppose A and B are similar matrices with A = S−1 BS and λ is an eigenvalue of A with associated eigenvector x. Then λ is an eigenvalue of B with associated eigenvector S x. Proof: Let x 6= 0 be such that A x = S−1 BS x = λ x: It follows that B (S x) = λ (S x) Proof: −1 (1) (2) (n) A = SDS ; S = v ; v ; ··· ; v ; D = diag (λ1; λ2; ··· ; λn) (1) (2) (n) (1) (2) (n) () A v ; v ; ··· ; v = v ; v ; ··· ; v diag (λ1; λ2; ··· ; λn) ; (j) (j) (1) (2) (n) () A v = λj v ; j = 1; 2; ··· ; n: v ; v ; ··· ; v L.I.D. n Cor: A 2 R with n distinct eigenvalues is similar to diagonal matrix. n Thm: A 2 R is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. n Cor: A 2 R with n distinct eigenvalues is similar to diagonal matrix. n Thm: A 2 R is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. Proof: −1 (1) (2) (n) A = SDS ; S = v ; v ; ··· ; v ; D = diag (λ1; λ2; ··· ; λn) (1) (2) (n) (1) (2) (n) () A v ; v ; ··· ; v = v ; v ; ··· ; v diag (λ1; λ2; ··· ; λn) ; (j) (j) (1) (2) (n) () A v = λj v ; j = 1; 2; ··· ; n: v ; v ; ··· ; v L.I.D. n Thm: A 2 R is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. Proof: −1 (1) (2) (n) A = SDS ; S = v ; v ; ··· ; v ; D = diag (λ1; λ2; ··· ; λn) (1) (2) (n) (1) (2) (n) () A v ; v ; ··· ; v = v ; v ; ··· ; v diag (λ1; λ2; ··· ; λn) ; (j) (j) (1) (2) (n) () A v = λj v ; j = 1; 2; ··· ; n: v ; v ; ··· ; v L.I.D. n Cor: A 2 R with n distinct eigenvalues is similar to diagonal matrix. n Schur Thm: Let A 2 R .A unitary matrix U exists such that 0 1 B C −1 B C T = U AU = B C is upper-triangular. @ A The diagonal entries of T are the eigenvalues of A. n×n Def: A matrix U 2 C is unitary if kU xk2 = kxk2 for any vector x. n×n Def: A matrix U 2 C is unitary if kU xk2 = kxk2 for any vector x. n Schur Thm: Let A 2 R .A unitary matrix U exists such that 0 1 B C −1 B C T = U AU = B C is upper-triangular. @ A The diagonal entries of T are the eigenvalues of A. p p T T T Def: kuk2 = a a + b b = u u. T n Thm: Let A = A 2 R be symmetric. Then all eigenvalues of A are real. Proof: Let λ be an eigenvalue of A with eigenvector u. Then λ is eigenvalue, A u = λ u; −! A u = λ u: λ uT u = uT (A u) = (A u)T u = λ uT u : Therefore λ = λ 2 R: Def: The complexp conjugate of ap complex vector u = a + −1 b 2 Cn is u = a − −1 b. T n Thm: Let A = A 2 R be symmetric. Then all eigenvalues of A are real. Proof: Let λ be an eigenvalue of A with eigenvector u. Then λ is eigenvalue, A u = λ u; −! A u = λ u: λ uT u = uT (A u) = (A u)T u = λ uT u : Therefore λ = λ 2 R: Def: The complexp conjugate of ap complex vector u = a + −1 b 2 Cn is u = a − −1 b. p p T T T Def: kuk2 = a a + b b = u u. Proof: Let λ be an eigenvalue of A with eigenvector u. Then λ is eigenvalue, A u = λ u; −! A u = λ u: λ uT u = uT (A u) = (A u)T u = λ uT u : Therefore λ = λ 2 R: Def: The complexp conjugate of ap complex vector u = a + −1 b 2 Cn is u = a − −1 b. p p T T T Def: kuk2 = a a + b b = u u. T n Thm: Let A = A 2 R be symmetric. Then all eigenvalues of A are real. Def: The complexp conjugate of ap complex vector u = a + −1 b 2 Cn is u = a − −1 b. p p T T T Def: kuk2 = a a + b b = u u. T n Thm: Let A = A 2 R be symmetric. Then all eigenvalues of A are real. Proof: Let λ be an eigenvalue of A with eigenvector u. Then λ is eigenvalue, A u = λ u; −! A u = λ u: λ uT u = uT (A u) = (A u)T u = λ uT u : Therefore λ = λ 2 R: Proof: I By induction on n. Assume theorem true for n − 1. I Let λ be eigenvalue of A with unit eigenvector u: A u = λ u. n I We extend u into an orthonormal basis for R : u; u2; ··· ; un are unit, mutually orthogonal vectors. def def n×n I U = (u; u2; ··· ; un) = u; Ub 2 R is orthogonal. 0 1 T uT (A u) uT A U T u b U AU = T A u; A Ub = @ A Ub UbT (A u) UbT A Ub λ 0T ! = : 0 UbT A Ub T (n−1)×(n−1) I Matrix Ub A Ub 2 R is symmetric. n Thm: A matrix A 2 R is symmetric if and only if there exists a n diagonal matrix D 2 R and an orthogonal matrix Q so that 0 1 B C T B C T A = QDQ = Q B C Q . @ A n Thm: A matrix A 2 R is symmetric if and only if there exists a n diagonal matrix D 2 R and an orthogonal matrix Q so that 0 1 B C T B C T A = QDQ = Q B C Q . @ A Proof: I By induction on n.
Recommended publications
  • Diagonalizing a Matrix
    Diagonalizing a Matrix Definition 1. We say that two square matrices A and B are similar provided there exists an invertible matrix P so that . 2. We say a matrix A is diagonalizable if it is similar to a diagonal matrix. Example 1. The matrices and are similar matrices since . We conclude that is diagonalizable. 2. The matrices and are similar matrices since . After we have developed some additional theory, we will be able to conclude that the matrices and are not diagonalizable. Theorem Suppose A, B and C are square matrices. (1) A is similar to A. (2) If A is similar to B, then B is similar to A. (3) If A is similar to B and if B is similar to C, then A is similar to C. Proof of (3) Since A is similar to B, there exists an invertible matrix P so that . Also, since B is similar to C, there exists an invertible matrix R so that . Now, and so A is similar to C. Thus, “A is similar to B” is an equivalence relation. Theorem If A is similar to B, then A and B have the same eigenvalues. Proof Since A is similar to B, there exists an invertible matrix P so that . Now, Since A and B have the same characteristic equation, they have the same eigenvalues. > Example Find the eigenvalues for . Solution Since is similar to the diagonal matrix , they have the same eigenvalues. Because the eigenvalues of an upper (or lower) triangular matrix are the entries on the main diagonal, we see that the eigenvalues for , and, hence, are .
    [Show full text]
  • Orthogonal Reduction 1 the Row Echelon Form -.: Mathematical
    MATH 5330: Computational Methods of Linear Algebra Lecture 9: Orthogonal Reduction Xianyi Zeng Department of Mathematical Sciences, UTEP 1 The Row Echelon Form Our target is to solve the normal equation: AtAx = Atb ; (1.1) m×n where A 2 R is arbitrary; we have shown previously that this is equivalent to the least squares problem: min jjAx−bjj : (1.2) x2Rn t n×n As A A2R is symmetric positive semi-definite, we can try to compute the Cholesky decom- t t n×n position such that A A = L L for some lower-triangular matrix L 2 R . One problem with this approach is that we're not fully exploring our information, particularly in Cholesky decomposition we treat AtA as a single entity in ignorance of the information about A itself. t m×m In particular, the structure A A motivates us to study a factorization A=QE, where Q2R m×n is orthogonal and E 2 R is to be determined. Then we may transform the normal equation to: EtEx = EtQtb ; (1.3) t m×m where the identity Q Q = Im (the identity matrix in R ) is used. This normal equation is equivalent to the least squares problem with E: t min Ex−Q b : (1.4) x2Rn Because orthogonal transformation preserves the L2-norm, (1.2) and (1.4) are equivalent to each n other. Indeed, for any x 2 R : jjAx−bjj2 = (b−Ax)t(b−Ax) = (b−QEx)t(b−QEx) = [Q(Qtb−Ex)]t[Q(Qtb−Ex)] t t t t t t t t 2 = (Q b−Ex) Q Q(Q b−Ex) = (Q b−Ex) (Q b−Ex) = Ex−Q b : Hence the target is to find an E such that (1.3) is easier to solve.
    [Show full text]
  • On the Eigenvalues of Euclidean Distance Matrices
    “main” — 2008/10/13 — 23:12 — page 237 — #1 Volume 27, N. 3, pp. 237–250, 2008 Copyright © 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam On the eigenvalues of Euclidean distance matrices A.Y. ALFAKIH∗ Department of Mathematics and Statistics University of Windsor, Windsor, Ontario N9B 3P4, Canada E-mail: [email protected] Abstract. In this paper, the notion of equitable partitions (EP) is used to study the eigenvalues of Euclidean distance matrices (EDMs). In particular, EP is used to obtain the characteristic poly- nomials of regular EDMs and non-spherical centrally symmetric EDMs. The paper also presents methods for constructing cospectral EDMs and EDMs with exactly three distinct eigenvalues. Mathematical subject classification: 51K05, 15A18, 05C50. Key words: Euclidean distance matrices, eigenvalues, equitable partitions, characteristic poly- nomial. 1 Introduction ( ) An n ×n nonzero matrix D = di j is called a Euclidean distance matrix (EDM) 1, 2,..., n r if there exist points p p p in some Euclidean space < such that i j 2 , ,..., , di j = ||p − p || for all i j = 1 n where || || denotes the Euclidean norm. i , ,..., Let p , i ∈ N = {1 2 n}, be the set of points that generate an EDM π π ( , ,..., ) D. An m-partition of D is an ordered sequence = N1 N2 Nm of ,..., nonempty disjoint subsets of N whose union is N. The subsets N1 Nm are called the cells of the partition. The n-partition of D where each cell consists #760/08. Received: 07/IV/08. Accepted: 17/VI/08. ∗Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS.
    [Show full text]
  • 3.3 Diagonalization
    3.3 Diagonalization −4 1 1 1 Let A = 0 1. Then 0 1 and 0 1 are eigenvectors of A, with corresponding @ 4 −4 A @ 2 A @ −2 A eigenvalues −2 and −6 respectively (check). This means −4 1 1 1 −4 1 1 1 0 1 0 1 = −2 0 1 ; 0 1 0 1 = −6 0 1 : @ 4 −4 A @ 2 A @ 2 A @ 4 −4 A @ −2 A @ −2 A Thus −4 1 1 1 1 1 −2 −6 0 1 0 1 = 0−2 0 1 − 6 0 11 = 0 1 @ 4 −4 A @ 2 −2 A @ @ −2 A @ −2 AA @ −4 12 A We have −4 1 1 1 1 1 −2 0 0 1 0 1 = 0 1 0 1 @ 4 −4 A @ 2 −2 A @ 2 −2 A @ 0 −6 A 1 1 (Think about this). Thus AE = ED where E = 0 1 has the eigenvectors of A as @ 2 −2 A −2 0 columns and D = 0 1 is the diagonal matrix having the eigenvalues of A on the @ 0 −6 A main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. Definition 3.3.1 A n × n matrix is A diagonal if all of its non-zero entries are located on its main diagonal, i.e. if Aij = 0 whenever i =6 j. Diagonal matrices are particularly easy to handle computationally. If A and B are diagonal n × n matrices then the product AB is obtained from A and B by simply multiplying entries in corresponding positions along the diagonal, and AB = BA.
    [Show full text]
  • R'kj.Oti-1). (3) the Object of the Present Article Is to Make This Estimate Effective
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 259, Number 2, June 1980 EFFECTIVE p-ADIC BOUNDS FOR SOLUTIONS OF HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY B. DWORK AND P. ROBBA Dedicated to K. Iwasawa Abstract. We consider a finite set of power series in one variable with coefficients in a field of characteristic zero having a chosen nonarchimedean valuation. We study the growth of these series near the boundary of their common "open" disk of convergence. Our results are definitive when the wronskian is bounded. The main application involves local solutions of ordinary linear differential equations with analytic coefficients. The effective determination of the common radius of conver- gence remains open (and is not treated here). Let K be an algebraically closed field of characteristic zero complete under a nonarchimedean valuation with residue class field of characteristic p. Let D = d/dx L = D"+Cn_lD'-l+ ■ ■■ +C0 (1) be a linear differential operator with coefficients meromorphic in some neighbor- hood of the origin. Let u = a0 + a,jc + . (2) be a power series solution of L which converges in an open (/>-adic) disk of radius r. Our object is to describe the asymptotic behavior of \a,\rs as s —*oo. In a series of articles we have shown that subject to certain restrictions we may conclude that r'KJ.Oti-1). (3) The object of the present article is to make this estimate effective. At the same time we greatly simplify, and generalize, our best previous results [12] for the noneffective form. Our previous work was based on the notion of a generic disk together with a condition for reducibility of differential operators with unbounded solutions [4, Theorem 4].
    [Show full text]
  • 4.1 RANK of a MATRIX Rank List Given Matrix M, the Following Are Equal
    page 1 of Section 4.1 CHAPTER 4 MATRICES CONTINUED SECTION 4.1 RANK OF A MATRIX rank list Given matrix M, the following are equal: (1) maximal number of ind cols (i.e., dim of the col space of M) (2) maximal number of ind rows (i.e., dim of the row space of M) (3) number of cols with pivots in the echelon form of M (4) number of nonzero rows in the echelon form of M You know that (1) = (3) and (2) = (4) from Section 3.1. To see that (3) = (4) just stare at some echelon forms. This one number (that all four things equal) is called the rank of M. As a special case, a zero matrix is said to have rank 0. how row ops affect rank Row ops don't change the rank because they don't change the max number of ind cols or rows. example 1 12-10 24-20 has rank 1 (maximally one ind col, by inspection) 48-40 000 []000 has rank 0 example 2 2540 0001 LetM= -2 1 -1 0 21170 To find the rank of M, use row ops R3=R1+R3 R4=-R1+R4 R2ØR3 R4=-R2+R4 2540 0630 to get the unreduced echelon form 0001 0000 Cols 1,2,4 have pivots. So the rank of M is 3. how the rank is limited by the size of the matrix IfAis7≈4then its rank is either 0 (if it's the zero matrix), 1, 2, 3 or 4. The rank can't be 5 or larger because there can't be 5 ind cols when there are only 4 cols to begin with.
    [Show full text]
  • Diagonalizable Matrix - Wikipedia, the Free Encyclopedia
    Diagonalizable matrix - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Matrix_diagonalization Diagonalizable matrix From Wikipedia, the free encyclopedia (Redirected from Matrix diagonalization) In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P −1AP is a diagonal matrix. If V is a finite-dimensional vector space, then a linear map T : V → V is called diagonalizable if there exists a basis of V with respect to which T is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.[1] A square matrix which is not diagonalizable is called defective. Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle: their eigenvalues and eigenvectors are known and one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries). Contents 1 Characterisation 2 Diagonalization 3 Simultaneous diagonalization 4 Examples 4.1 Diagonalizable matrices 4.2 Matrices that are not diagonalizable 4.3 How to diagonalize a matrix 4.3.1 Alternative Method 5 An application 5.1 Particular application 6 Quantum mechanical application 7 See also 8 Notes 9 References 10 External links Characterisation The fundamental fact about diagonalizable maps and matrices is expressed by the following: An n-by-n matrix A over the field F is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to n, which is the case if and only if there exists a basis of Fn consisting of eigenvectors of A.
    [Show full text]
  • EIGENVALUES and EIGENVECTORS 1. Diagonalizable Linear Transformations and Matrices Recall, a Matrix, D, Is Diagonal If It Is
    EIGENVALUES AND EIGENVECTORS 1. Diagonalizable linear transformations and matrices Recall, a matrix, D, is diagonal if it is square and the only non-zero entries are on the diagonal. This is equivalent to D~ei = λi~ei where here ~ei are the standard n n vector and the λi are the diagonal entries. A linear transformation, T : R ! R , is n diagonalizable if there is a basis B of R so that [T ]B is diagonal. This means [T ] is n×n similar to the diagonal matrix [T ]B. Similarly, a matrix A 2 R is diagonalizable if it is similar to some diagonal matrix D. To diagonalize a linear transformation is to find a basis B so that [T ]B is diagonal. To diagonalize a square matrix is to find an invertible S so that S−1AS = D is diagonal. Fix a matrix A 2 Rn×n We say a vector ~v 2 Rn is an eigenvector if (1) ~v 6= 0. (2) A~v = λ~v for some scalar λ 2 R. The scalar λ is the eigenvalue associated to ~v or just an eigenvalue of A. Geo- metrically, A~v is parallel to ~v and the eigenvalue, λ. counts the stretching factor. Another way to think about this is that the line L := span(~v) is left invariant by multiplication by A. n An eigenbasis of A is a basis, B = (~v1; : : : ;~vn) of R so that each ~vi is an eigenvector of A. Theorem 1.1. The matrix A is diagonalizable if and only if there is an eigenbasis of A.
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • The Jordan Canonical Forms of Complex Orthogonal and Skew-Symmetric Matrices Roger A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Linear Algebra and its Applications 302–303 (1999) 411–421 www.elsevier.com/locate/laa The Jordan Canonical Forms of complex orthogonal and skew-symmetric matrices Roger A. Horn a,∗, Dennis I. Merino b aDepartment of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112–0090, USA bDepartment of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA Received 25 August 1999; accepted 3 September 1999 Submitted by B. Cain Dedicated to Hans Schneider Abstract We study the Jordan Canonical Forms of complex orthogonal and skew-symmetric matrices, and consider some related results. © 1999 Elsevier Science Inc. All rights reserved. Keywords: Canonical form; Complex orthogonal matrix; Complex skew-symmetric matrix 1. Introduction and notation Every square complex matrix A is similar to its transpose, AT ([2, Section 3.2.3] or [1, Chapter XI, Theorem 5]), and the similarity class of the n-by-n complex symmetric matrices is all of Mn [2, Theorem 4.4.9], the set of n-by-n complex matrices. However, other natural similarity classes of matrices are non-trivial and can be characterized by simple conditions involving the Jordan Canonical Form. For example, A is similar to its complex conjugate, A (and hence also to its T adjoint, A∗ = A ), if and only if A is similar to a real matrix [2, Theorem 4.1.7]; the Jordan Canonical Form of such a matrix can contain only Jordan blocks with real eigenvalues and pairs of Jordan blocks of the form Jk(λ) ⊕ Jk(λ) for non-real λ.We denote by Jk(λ) the standard upper triangular k-by-k Jordan block with eigenvalue ∗ Corresponding author.
    [Show full text]
  • Fifth Lecture
    Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. n Definition 1 A set of k vectors fu1; u2;:::; ukg, where each ui 2 R , is said to be an orthogonal with respect to the inner product (·; ·) if (ui; uj) = 0 for i =6 j. The set is said to be orthonormal if it is orthogonal and (ui; ui) = 1 for i = 1; 2; : : : ; k The definition of an orthogonal matrix is related to the definition for vectors, but with a subtle difference. n×k Definition 2 The matrix U = (u1; u2;:::; uk) 2 R whose columns form an orthonormal set is said to be left orthogonal. If k = n, that is, U is square, then U is said to be an orthogonal matrix. Note that the columns of (left) orthogonal matrices are orthonormal, not merely orthogonal. Square complex matrices whose columns form an orthonormal set are called unitary. Example 1 Here are some common 2 × 2 orthogonal matrices ! 1 0 U = 0 1 ! p 1 −1 U = 0:5 1 1 ! 0:8 0:6 U = 0:6 −0:8 ! cos θ sin θ U = − sin θ cos θ Let x 2 Rn then k k2 T Ux 2 = (Ux) (Ux) = xT U T Ux = xT x k k2 = x 2 1 So kUxk2 = kxk2: This property is called orthogonal invariance, it is an important and useful property of the two norm and orthogonal transformations. That is, orthog- onal transformations DO NOT AFFECT the two-norm, there is no compa- rable property for the one-norm or 1-norm.
    [Show full text]
  • Advanced Linear Algebra (MA251) Lecture Notes Contents
    Algebra I – Advanced Linear Algebra (MA251) Lecture Notes Derek Holt and Dmitriy Rumynin year 2009 (revised at the end) Contents 1 Review of Some Linear Algebra 3 1.1 The matrix of a linear map with respect to a fixed basis . ........ 3 1.2 Changeofbasis................................... 4 2 The Jordan Canonical Form 4 2.1 Introduction.................................... 4 2.2 TheCayley-Hamiltontheorem . ... 6 2.3 Theminimalpolynomial. 7 2.4 JordanchainsandJordanblocks . .... 9 2.5 Jordan bases and the Jordan canonical form . ....... 10 2.6 The JCF when n =2and3 ............................ 11 2.7 Thegeneralcase .................................. 14 2.8 Examples ...................................... 15 2.9 Proof of Theorem 2.9 (non-examinable) . ...... 16 2.10 Applications to difference equations . ........ 17 2.11 Functions of matrices and applications to differential equations . 19 3 Bilinear Maps and Quadratic Forms 21 3.1 Bilinearmaps:definitions . 21 3.2 Bilinearmaps:changeofbasis . 22 3.3 Quadraticforms: introduction. ...... 22 3.4 Quadraticforms: definitions. ..... 25 3.5 Change of variable under the general linear group . .......... 26 3.6 Change of variable under the orthogonal group . ........ 29 3.7 Applications of quadratic forms to geometry . ......... 33 3.7.1 Reduction of the general second degree equation . ....... 33 3.7.2 The case n =2............................... 34 3.7.3 The case n =3............................... 34 1 3.8 Unitary, hermitian and normal matrices . ....... 35 3.9 Applications to quantum mechanics . ..... 41 4 Finitely Generated Abelian Groups 44 4.1 Definitions...................................... 44 4.2 Subgroups,cosetsandquotientgroups . ....... 45 4.3 Homomorphisms and the first isomorphism theorem . ....... 48 4.4 Freeabeliangroups............................... 50 4.5 Unimodular elementary row and column operations and the Smith normal formforintegralmatrices .
    [Show full text]