Math 217: Coordinates and B-Matrices Section 5 Professor Karen Smith **************************************************

Total Page:16

File Type:pdf, Size:1020Kb

Math 217: Coordinates and B-Matrices Section 5 Professor Karen Smith ************************************************** Math 217: Coordinates and B-matrices Section 5 Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. n n T n Definition. Let B = f~v1; : : : ; ~vng be a basis for R . Let R −! R be a linear transformation. The B-matrix of T is the n × n matrix B = [T (~v1)]B T (~v2)]B :::T (~vn)]B] : Computing the B-matrix: Compute one column at a time. For the j-th column: 1. Find T (~vj ). 2. Express T (~vj ) as a linear combination of the basis elements f~v1; : : : ; ~vng. 3. Write these B-coordinates of T (~vj ) as a column vector: this is the j-th column of the B-matrix. Do not forget this last step of converting back into B-coordinates! It is easy to n forget since the vectors T (~vj ) 2 R are columns already in standard coordinates. n For any vector ~v 2 R , we can understand T entirely in B-coordinates as follows: [T (~v)]B = B · [~v]B where B is the B-matrix of T . n T n Theorem. Let R −! R be a linear transformation (so T is multiplication by some matrix A). Then the B-matrix and the standard matrix A of T are similar: B = S−1AS where S = ~v1 ~v2 : : : ~vn : The matrix S is the change of basis matrix from B to the standard basis. The columns of S are the basis vectors of B expressed in the standard basis. ******************************************************************************* x 3x + 4y A. Let T : 2 ! 2 be the map 7! : R R y 4x − 3y 2 1. Prove that B = f~v1;~v2g = {−~e1 + 2~e2; 2~e1 + ~e2g is a basis for R . −1 2 Solution note: The square matrix has rank two, hence its columns are a 2 1 basis. −2 2. Compute and [~e + 3~e ] and 7 ~v + π~v . 4 1 2 B 13 1 2 B B 2 1 17=3 Solution note: In order, these are ; , and 0 1 π 3. Find a matrix S which \changes B-coordinates to standard coordinates." That is, S should satisfy S · [~v]B = [~v]f~e1:~e2g 2 for all vectors ~v 2 R . Verify explicitly that your S transforms the B-coordinates you found in (3) back into standard coordinates. −1 2 Solution note: S = is the change of basis matrix form B to the standard 2 1 basis. We can verify: −1 2 2 −2 −1 2 1 1 −1 2 17=3 −17=3 + 2π · = ; · = ; and · = ; 2 1 0 4 2 1 1 3 2 1 π 34=3 + π 17 which are the standard coordinates of 3 ~v1 + π~v2. 4. Find a matrix P which does the opposite|P should transform standard coordinates into B coordinates. That is, P should satisfy P · [~v]f~e1:~e2g = [~v]B 2 for all vectors ~v 2 R . Check that it works for the vectors in (2). What is the relationship between S and P ? Solution note: P does the reverse of S, so it is given by the inverse matrix: P = −1 2 −1 −1 1 −2 5 5 S = 5 = 2 1 : −2 −1 5 5 5. Find the B-matrix of T . Use to compute the image of ~v1 + ~v2. −5 0 1 Solution note: [T ] = : In B-coordinates, ~v + ~v is written . So its B 0 5 1 2 1 −5 0 1 −5 image in B-coordinates is · = . This is the vector −5~v + 5~v . 0 5 1 5 1 2 6. Find the standard matrix of T . Call it A. 3 4 Solution note: A = : 4 −3 7. What is the relationship between [T ]B and the standard matrix for T . Use this to compute [T ]B. Do you get the same answer? Alternatively, how could we compute the standard matrix from the B-matrix? −1 Solution note: [T ]B = S AS by the Theorem (memorize this carefully!). So we can compute −1 1 −2 3 4 −1 2 [T ] = : B 5 −2 −1 4 −3 2 1 Doing the multiplication we get the same answer. Alternatively, we can rearrange the statement in the theorem by multiplication on the left by S and on the right by S−1. Then we see −1 A = S[T ]BS ; so we can compute A by multiplying these three matrices together. Of course, we get the same answer, but this is a lot more tedious then finding its columns by seeing where ~e1 and ~e2 go under T . 4 B. Let B = f~e1;~e2;~e3 + ~e2;~e4 + ~e1g ⊂ R : 4 1. Prove B is a basis for R . Solution note: There are four vectors, so by Theorem 3.3.4, they are a basis for a 4-dimensional space if they span it. But their span includes all the standard vectors, since ~e1;~e2;~e3 = (~e3 + ~e2) − ~e2 and ~e4 = (~e4 + ~e1) − ~e1 are in B. T 2. Write ~x = [1 1 1 1] as a linear combination of the elements in B. What is [x]B? T Solution note: ~x = 1(~e3 + ~e2) + 1(~e4 + ~e1). So [x]B = [0 0 1 1] : 4 4 3. Consider the linear transformation T : R ! R whose matrix with respect the basis B is 23 0 0 03 60 −1 0 07 B = 6 7. Find the matrix of T in the standard basis (call it A). 40 0 a 05 0 0 0 b Solution note: The columns of the standard matrix will be the T (~ei) (expressed in T the standard basis). We know T (~e1) = 3~e1, so the first column is 3 0 0 0 . T Likewise T (~e2) = −~e2, so the second column is 0 −1 0 0 . The third column will be T (~e3) which is a tiny bit harder: we know ~e3 = (~e3 + ~e2) − ~e2, so T (~e3) = T (~e3 + ~e2) − T (~e2) = a(~e3 + ~e2) − (−~e2) = (a + 1)~e2 + a~e3. Note that in computing this, we used the B-matrix B to compute T (~e3 + ~e2). Thus the third column is 0 a + 1 a 0 : Similarly, T (~e4) = T (~e4 + ~e1) − T (~e1) = b(~e4 + ~e1) − 3(~e1), giving 23 0 0 b − 33 T 60 −1 a + 1 0 7 us b − 3 0 0 b for the fourth column. So A = 6 7. 40 0 a 0 5 0 0 0 b 213 2 2 3 3 3 C. Let T : R ! R be projection onto the plane Λ spanned by 415 and 4−15. 1 1 82 3 2 39 < 1 2 = 1. Is the set 415 ; 4−15 a basis for Λ? Explain. : 1 1 ; 3 2. Can the set in (1) be extended to a basis for all of R ? Explain. 3 3. Find a vector ~v 2 R perpendicular to Λ. 8213 2 2 39 < = S 3 4. Is the set B = 415 ; 4−15 f~vg a basis for R ? Explain. : 1 1 ; 5. Find the B-matrix of T . 6. Express the matrix for T in standard coordinates in terms of matrices you have already computed here. Solution note: (1) Yes, the plane has dimension two, and these are two vectors that are linearly independent, since neither is a scalar multiple of the other. (2) Yes, pick any vector not in the span of these. Then we have three vectors 3 linearly independent in the 3d space R . 2x3 (3) We need a vector 4y5 which has zero dot product with both given vectors. z This amounts to solving the linear system x + y + z = 0 2x − y + z = 0: Since the coefficient matrix is rank 2, by the rank-nullity theorem, this system has a one-dimensional kernel, so any non-zero vector will span it. (You can also solve it 2 2 3 directly). By inspection, we see 4 1 5 is a solution, hence a vector perpendicular to −3 the plane. (4) Yes, these are a basis, since ~v is not in the span of the previous vectors. 21 0 03 (5) [T ]B = 40 1 05 : 0 0 0 −1 (6) The standard matrix is A = S · [T ]B · S . 3 D. Let V be the subspace of R given by x1 + x2 − 2x3 = 0. 213 1 1. Find a basis of V in which the vector 1 has coordinates . 4 5 −1 1 213 223 233 2. Let ~v1 = 415, ~v2 = 405, ~v3 = 415. Find the coordinates of ~v1 in the basis (~v2;~v3), of ~v2 in 1 1 2 the basis (~v1;~v3) and of ~v3 in the basis (~v1;~v2)..
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Partitioned (Or Block) Matrices This Version: 29 Nov 2018
    Partitioned (or Block) Matrices This version: 29 Nov 2018 Intermediate Econometrics / Forecasting Class Notes Instructor: Anthony Tay It is frequently convenient to partition matrices into smaller sub-matrices. e.g. 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 A B (2×2) (2×3) 3 1 1 0 0 = 3 1 1 0 0 = C I 1 3 0 1 0 1 3 0 1 0 (3×2) (3×3) 2 0 0 0 1 2 0 0 0 1 The same matrix can be partitioned in several different ways. For instance, we can write the previous matrix as 2 3 2 1 3 2 3 2 1 3 4 1 1 0 7 4 1 1 0 7 a b0 (1×1) (1×4) 3 1 1 0 0 = 3 1 1 0 0 = c D 1 3 0 1 0 1 3 0 1 0 (4×1) (4×4) 2 0 0 0 1 2 0 0 0 1 One reason partitioning is useful is that we can do matrix addition and multiplication with blocks, as though the blocks are elements, as long as the blocks are conformable for the operations. For instance: A B D E A + D B + E (2×2) (2×3) (2×2) (2×3) (2×2) (2×3) + = C I C F 2C I + F (3×2) (3×3) (3×2) (3×3) (3×2) (3×3) A B d E Ad + BF AE + BG (2×2) (2×3) (2×1) (2×3) (2×1) (2×3) = C I F G Cd + F CE + G (3×2) (3×3) (3×1) (3×3) (3×1) (3×3) | {z } | {z } | {z } (5×5) (5×4) (5×4) 1 Intermediate Econometrics / Forecasting 2 Examples (1) Let 1 2 1 1 2 1 c 1 4 2 3 4 2 3 h i A = = = a a a and c = c 1 2 3 2 3 0 1 3 0 1 c 0 1 3 0 1 3 3 c1 h i then Ac = a1 a2 a3 c2 = c1a1 + c2a2 + c3a3 c3 The product Ac produces a linear combination of the columns of A.
    [Show full text]
  • What's in a Name? the Matrix As an Introduction to Mathematics
    St. John Fisher College Fisher Digital Publications Mathematical and Computing Sciences Faculty/Staff Publications Mathematical and Computing Sciences 9-2008 What's in a Name? The Matrix as an Introduction to Mathematics Kris H. Green St. John Fisher College, [email protected] Follow this and additional works at: https://fisherpub.sjfc.edu/math_facpub Part of the Mathematics Commons How has open access to Fisher Digital Publications benefited ou?y Publication Information Green, Kris H. (2008). "What's in a Name? The Matrix as an Introduction to Mathematics." Math Horizons 16.1, 18-21. Please note that the Publication Information provides general citation information and may not be appropriate for your discipline. To receive help in creating a citation based on your discipline, please visit http://libguides.sjfc.edu/citations. This document is posted at https://fisherpub.sjfc.edu/math_facpub/12 and is brought to you for free and open access by Fisher Digital Publications at St. John Fisher College. For more information, please contact [email protected]. What's in a Name? The Matrix as an Introduction to Mathematics Abstract In lieu of an abstract, here is the article's first paragraph: In my classes on the nature of scientific thought, I have often used the movie The Matrix to illustrate the nature of evidence and how it shapes the reality we perceive (or think we perceive). As a mathematician, I usually field questions elatedr to the movie whenever the subject of linear algebra arises, since this field is the study of matrices and their properties. So it is natural to ask, why does the movie title reference a mathematical object? Disciplines Mathematics Comments Article copyright 2008 by Math Horizons.
    [Show full text]
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • Handout 9 More Matrix Properties; the Transpose
    Handout 9 More matrix properties; the transpose Square matrix properties These properties only apply to a square matrix, i.e. n £ n. ² The leading diagonal is the diagonal line consisting of the entries a11, a22, a33, . ann. ² A diagonal matrix has zeros everywhere except the leading diagonal. ² The identity matrix I has zeros o® the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and A I = I A = A for any n £ n matrix A. ² An upper triangular matrix has all its non-zero entries on or above the leading diagonal. ² A lower triangular matrix has all its non-zero entries on or below the leading diagonal. ² A symmetric matrix has the same entries below and above the diagonal: aij = aji for any values of i and j between 1 and n. ² An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: aij = ¡aji for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero. Transpose To transpose a matrix, we reect it across the line given by the leading diagonal a11, a22 etc. In general the result is a di®erent shape to the original matrix: a11 a21 a11 a12 a13 > > A = A = 0 a12 a22 1 [A ]ij = A : µ a21 a22 a23 ¶ ji a13 a23 @ A > ² If A is m £ n then A is n £ m. > ² The transpose of a symmetric matrix is itself: A = A (recalling that only square matrices can be symmetric).
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • Geometric-Algebra Adaptive Filters Wilder B
    1 Geometric-Algebra Adaptive Filters Wilder B. Lopes∗, Member, IEEE, Cassio G. Lopesy, Senior Member, IEEE Abstract—This paper presents a new class of adaptive filters, namely Geometric-Algebra Adaptive Filters (GAAFs). They are Faces generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well- Edges suited for the description of geometric transformations. Also, (directed lines) differently from standard adaptive-filtering theory, Geometric Calculus (the extension of GA to differential calculus) allows Fig. 1. A polyhedron (3-dimensional polytope) can be completely described for applying the same derivation techniques regardless of the by the geometric multiplication of its edges (oriented lines, vectors), which type (subalgebra) of the data, i.e., real, complex numbers, generate the faces and hypersurfaces (in the case of a general n-dimensional quaternions, etc. Relying on those characteristics (among others), polytope). a deterministic quadratic cost function is posed, from which the GAAFs are devised, providing a generalization of regular adaptive filters to subalgebras of GA. From the obtained update rule, it is shown how to recover the following least-mean squares perform calculus with hypercomplex quantities, i.e., elements (LMS) adaptive filter variants: real-entries LMS, complex LMS, that generalize complex numbers for higher dimensions [2]– and quaternions LMS. Mean-square analysis and simulations in [10]. a system identification scenario are provided, showing very good agreement for different levels of measurement noise. GA-based AFs were first introduced in [11], [12], where they were successfully employed to estimate the geometric Index Terms—Adaptive filtering, geometric algebra, quater- transformation (rotation and translation) that aligns a pair of nions.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • Week 8-9. Inner Product Spaces. (Revised Version) Section 3.1 Dot Product As an Inner Product
    Math 2051 W2008 Margo Kondratieva Week 8-9. Inner product spaces. (revised version) Section 3.1 Dot product as an inner product. Consider a linear (vector) space V . (Let us restrict ourselves to only real spaces that is we will not deal with complex numbers and vectors.) De¯nition 1. An inner product on V is a function which assigns a real number, denoted by < ~u;~v> to every pair of vectors ~u;~v 2 V such that (1) < ~u;~v>=< ~v; ~u> for all ~u;~v 2 V ; (2) < ~u + ~v; ~w>=< ~u;~w> + < ~v; ~w> for all ~u;~v; ~w 2 V ; (3) < k~u;~v>= k < ~u;~v> for any k 2 R and ~u;~v 2 V . (4) < ~v;~v>¸ 0 for all ~v 2 V , and < ~v;~v>= 0 only for ~v = ~0. De¯nition 2. Inner product space is a vector space equipped with an inner product. Pn It is straightforward to check that the dot product introduces by ~u ¢ ~v = j=1 ujvj is an inner product. You are advised to verify all the properties listed in the de¯nition, as an exercise. The dot product is also called Euclidian inner product. De¯nition 3. Euclidian vector space is Rn equipped with Euclidian inner product < ~u;~v>= ~u¢~v. De¯nition 4. A square matrix A is called positive de¯nite if ~vT A~v> 0 for any vector ~v 6= ~0. · ¸ 2 0 Problem 1. Show that is positive de¯nite. 0 3 Solution: Take ~v = (x; y)T . Then ~vT A~v = 2x2 + 3y2 > 0 for (x; y) 6= (0; 0).
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • 28. Exterior Powers
    28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1.
    [Show full text]