Coordinatization

Total Page:16

File Type:pdf, Size:1020Kb

Coordinatization MATH 355 Supplemental Notes Coordinatization Coordinatization In R3, we have the standard basis i, j and k. When we write a vector in coordinate form, say 3 v 2 , (1) “ »´ fi 5 — ffi – fl it is understood as v 3i 2j 5k. “ ´ ` The numbers 3, 2 and 5 are the coordinates of v relative to the standard basis ⇠ i, j, k . It has p´ q “p q always been understood that a coordinate representation such as that in (1) is with respect to the ordered basis ⇠. A little thought reveals that it need not be so. One could have chosen the same basis elements in a di↵erent order, as in the basis ⇠ i, k, j . We employ notation indicating the 1 “p q coordinates are with respect to the di↵erent basis ⇠1: 3 v 5 , to mean that v 3i 5k 2j, r s⇠1 “ » fi “ ` ´ 2 —´ ffi – fl reflecting the order in which the basis elements fall in ⇠1. Of course, one could employ similar notation even when the coordinates are expressed in terms of the standard basis, writing v for r s⇠ (1), but whenever we have coordinatization with respect to the standard basis of Rn in mind, we will consider the wrapper to be optional. r¨s⇠ Of course, there are many non-standard bases of Rn. In fact, any linearly independent collection of n vectors in Rn provides a basis. Say we take 1 1 1 4 ´ ´ » 0fi » 1fi » 1fi » 1fi u , u u u ´ . 1 “ 2 “ 3 “ 4 “ — 3ffi — 1ffi — 0ffi — 2ffi — ffi —´ ffi — ffi — ffi — 0ffi — 4ffi — 2ffi — 1ffi — ffi — ffi — ffi —´ ffi – fl – fl – fl – fl As per the discussion above, these vectors are being expressed relative to the standard basis of R4. A quick check of a related 4-by-4 determinant reveals these vectors are linearly independent, and hence form a basis of R4. octave:80> A = [ 1 0 3 0; 1 1 1 4; 1 1 0 2; 4 12 1]’ ⌥ ´ ´ ´ ´ ´ ⌅ A = 11 14 ´ ´ 011 1 ´ 3 10 2 ´ 042 1 ´ 2 MATH 355 Supplemental Notes Matrix of a Linear Transformation octave:81> det(A) ans = 17 ´ ⌃ ⇧ Let us denote the ordered basis as ↵ u , u , u , u . Every vector of R4 can be expressed uniquely “p 1 2 3 4q as a linear combination of elements in the basis ↵. Gaussian elimination is a tool that reveals the weights. Example 1: Find the coordinatization relative to the basis ↵ of the vector v 8, 3, 13, 5 . “p ´ ´ q We can reduce the relevant augmented matrix to RREF: octave:85> augA = [A [8; 3; 13; 5]] ⌥ ´ ´ ⌅ augA = 11 14 8 ´ ´ 011 1 3 ´ ´ 3 1 0 2 13 ´ 042 1 5 ´ ´ octave:86> rref(augA) ans = 10002 0100 1 ´ 00101 00013 ⌃ ⇧ Thus, v 2u u u 3u , and “ 1 ´ 2 ` 3 ` 4 2 » 1fi v ´ . r s↵ “ — 1ffi — ffi — 3ffi — ffi – fl Matrix of a Linear Transformation Let T : be a linear transformation from the n-dimensional vector space having ordered V Ñ W V basis ↵ v , v2,...,v into to the m-dimensional vector space , having ordered basis β “p 1 nq W “ w , w ,...,w . As we have seen, as soon as one knows the outputs from T for a basis, all of its p 1 2 mq 3 MATH 355 Supplemental Notes Matrix of a Linear Transformation behavior is known. Let us suppose we know the outputs of T on the basis ↵. More specifically, let us assume we know how each T v , an element of , is expressed relative to the basis β. p kq W Specifically, we know the weights aik in the expression a1k »a2k fi T v a w a w a w , so that T v . p kq“ 1k 1 ` 2k 2 `¨¨¨` mk m r p kqsβ “ . — . ffi — ffi —a ffi — mkffi – fl Then the matrix of T in the ordered bases ↵ and β is a a a 11 12 ¨¨¨ 1n β T v1 T v2 T vn »a21 a22 a2n fi T p q β p q β ¨¨¨ p q β ¨¨¨ . (2) ↵ “ “ . .. «“ ‰ “ ‰ “ ‰ ff — . ffi “ ‰ ÓÓ Ó— ffi —a a a ffi — m1 m2 ¨¨¨ mnffi – fl Note that, if , it is still possible to have di↵erent bases ↵ and β, but if the same basis V “ W ↵ is used twice, we can simplify the notation and write T ↵ as T ↵. You may realize from this discussion that there are many di↵erent matrix representations“ ‰ for“ ‰ the same linear transformation T, potentially one for each pair of bases ↵ and β. Example 2: In R2 and R3 consider ordered bases ↵ v , v and β w , w , w , respectively, where “p 1 2q “p 1 2 3q 4 0 1 2 1 ´ v1 , v2 ´ , and w1 » 2fi , w2 » 3fi , w3 » 2fi . “ «3ff “ « 5ff “ ´ “ “ 0 2 3 — ffi —´ ffi — ffi – fl – fl – fl Suppose T : R2 R3 is linear, and produces the following images for the elements in ↵: Ñ 5 5 T v 1 and T v2 2 . p 1q“»´ fi p q“» fi 11 7 — ffi —´ ffi – fl – fl β Find the matrix T ↵. “ ‰ Since the augmented matrices 4015 100 2 2 ´ 2321 010 1 , we have T v 1 , and »´ ´ fi „ » ´ fi p 1q β “ »´ fi 0 2 3 11 001 3 3 — ´ ffi — ffi “ ‰ — ffi – fl – fl – fl 4015 100 1 1 ´ 2322 010 2, so T v2 2 . »´ fi „ » fi p q β “ » fi 0 237 001 1 1 — ´ ´ ffi — ´ ffi “ ‰ —´ ffi – fl – fl – fl 4 MATH 355 Supplemental Notes Matrix of a Linear Transformation Thus, 21 T v T v β p 1q β p 2q β T ↵ » 12fi . “ « ff “ ´ “ ÓÓ‰ “ ‰ 3 1 “ ‰ — ´ ffi – fl β One expects that, having found the matrix T , it can be used to find T v for any input vector ↵ r p qsβ v. Notice that one obtains “ ‰ 21 2 1 T v1 β » 12fi » 1fi . r p qs “ ´ «0ff “ ´ 3 1 3 — ´ ffi — ffi – fl – fl That is, the result T v comes from matrix multiplication after expressing v as 1, 0 , which is r p 1qsβ 1 p q its coordinatization relative to the basis ↵. Speaking generally, it is the case that β T v T v . (3) p q β “ ↵ ↵ “ ‰ “ ‰ “ ‰ Example 3: rd 3, the vector subspace of R consisting of at-most-3 -degree polynomials, has ordered P 2 3 Cp q basis ↵ 1, x, x , x . Vectors/members of 3 can be coordinatized with respect to this basis. “p q P For instance, the polynomial 7 » 1fi p x 2x3 x 7 has coordinates p ´ . p q“ ´ ` ↵ “ — 0ffi “ ‰ — ffi — 2ffi — ffi – fl The operation of di↵erentiation, d dx, is linear, and for each input p x from 3 the image/result { p q P d dx p p1 x is in 2 and can be represented by coordinates relative to the ordered basis { p q“2 p q P β 1, x, x of 2. We have “p q P 0100 d dx 1 d dx x d dx x2 d dx x3 β { p q β { p q β { p q β { p q β d dx ↵ »0020fi . { “ « ff “ “ ÓÓ‰ “ ‰ “ Ó‰ “ Ó‰ 0003 “ ‰ — ffi – fl 3 Using this, you can find the derivative of any polynomial in 3. For p x 2x x 7, for P p q“ ´ ` instance, its derivative is 7 0100 1 β » 1fi ´ d dx p 0020 ´ 0 , { ↵ ↵ “ » fi “ » fi — 0ffi “ ‰ “ ‰ 0003— ffi 6 — ffi — 2ffi — ffi – fl — ffi – fl – fl which should be understood as p x 6x2 1. 1p q“ ´ 5 MATH 355 Supplemental Notes Change of Basis An important result is the following, which affirms that matrix multiplication is defined in the right way. Theorem 1: Suppose , , and are finite-dimensional vector spaces with ordered bases U V W ↵, β and γ, respectively. Suppose that S: and T : are linear transformations. U Ñ V V Ñ W Then The composition T S given by T S x T S x is a linear transformation from • ˝ p ˝ qp q“ p p qq to . U W The matrix of T S in the ordered bases ↵ and γ is the product of the matrix of S in • ˝ the ordered bases ↵ and β with the matrix of T in the ordered bases β and γ; that is γ γ β T S T S . ˝ ↵ “ β ↵ “ ‰ “ ‰ “ ‰ Change of Basis A special instance is the identity operator id: Rn Rn, given by id x x. If ⇠ represents the Ñ p q“ standard basis for Rn, and ↵ v ,...,v is another ordered basis, then “p 1 nq ⇠ v1 v2 vn id ↵ ¨¨¨ . “ « ff “ ‰ ÓÓ Ó We call this a change-of-basis, or transition matrix, as it maps a vector from its coordinate representation relative to basis ↵ to its representation in another (in this case, the standard) basis, ⇠: ⇠ v id v . ⇠ “ ↵ ↵ “ ‰ “ ‰ “ ‰ What this means is that any nonsingular matrix X can be viewed as a change-of-basis matrix, mapping from coordinates relative to the ordered basis ↵ consisting of the columns of X to standard coordinates. The matrix which maps from standard coordinates back to coordinates in the ordered ⇠ ↵ basis ↵ is naturally X 1. That is, if id X, then id X 1. ´ ↵ “ ⇠ “ ´ As with general linear maps, one might“ ‰ use two nonstandard“ ‰ bases ↵ v ,...,v and β for Rn. “p 1 nq The matrix of the identity map id: Rn Rn in the ordered bases ↵ and β, since id v v , is Ñ p jq“ j 6 MATH 355 Supplemental Notes Similarity found by tailoring the formula (2) appropriately: v v v β 1 β 2 β ¨¨¨ n β id ↵ .
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • 28. Exterior Powers
    28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1.
    [Show full text]
  • Review a Basis of a Vector Space 1
    Review • Vectors v1 , , v p are linearly dependent if x1 v1 + x2 v2 + + x pv p = 0, and not all the coefficients are zero. • The columns of A are linearly independent each column of A contains a pivot. 1 1 − 1 • Are the vectors 1 , 2 , 1 independent? 1 3 3 1 1 − 1 1 1 − 1 1 1 − 1 1 2 1 0 1 2 0 1 2 1 3 3 0 2 4 0 0 0 So: no, they are dependent! (Coeff’s x3 = 1 , x2 = − 2, x1 = 3) • Any set of 11 vectors in R10 is linearly dependent. A basis of a vector space Definition 1. A set of vectors { v1 , , v p } in V is a basis of V if • V = span{ v1 , , v p} , and • the vectors v1 , , v p are linearly independent. In other words, { v1 , , vp } in V is a basis of V if and only if every vector w in V can be uniquely expressed as w = c1 v1 + + cpvp. 1 0 0 Example 2. Let e = 0 , e = 1 , e = 0 . 1 2 3 0 0 1 3 Show that { e 1 , e 2 , e 3} is a basis of R . It is called the standard basis. Solution. 3 • Clearly, span{ e 1 , e 2 , e 3} = R . • { e 1 , e 2 , e 3} are independent, because 1 0 0 0 1 0 0 0 1 has a pivot in each column. Definition 3. V is said to have dimension p if it has a basis consisting of p vectors. Armin Straub 1 [email protected] This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.
    [Show full text]
  • MATH 304 Linear Algebra Lecture 14: Basis and Coordinates. Change of Basis
    MATH 304 Linear Algebra Lecture 14: Basis and coordinates. Change of basis. Linear transformations. Basis and dimension Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis. Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements (called the dimension of V ). Example. Vectors e1 = (1, 0, 0,..., 0, 0), e2 = (0, 1, 0,..., 0, 0),. , en = (0, 0, 0,..., 0, 1) form a basis for Rn (called standard) since (x1, x2,..., xn) = x1e1 + x2e2 + ··· + xnen. Basis and coordinates If {v1, v2,..., vn} is a basis for a vector space V , then any vector v ∈ V has a unique representation v = x1v1 + x2v2 + ··· + xnvn, where xi ∈ R. The coefficients x1, x2,..., xn are called the coordinates of v with respect to the ordered basis v1, v2,..., vn. The mapping vector v 7→ its coordinates (x1, x2,..., xn) is a one-to-one correspondence between V and Rn. This correspondence respects linear operations in V and in Rn. Examples. • Coordinates of a vector n v = (x1, x2,..., xn) ∈ R relative to the standard basis e1 = (1, 0,..., 0, 0), e2 = (0, 1,..., 0, 0),. , en = (0, 0,..., 0, 1) are (x1, x2,..., xn). a b • Coordinates of a matrix ∈ M2,2(R) c d 1 0 0 0 0 1 relative to the basis , , , 0 0 1 0 0 0 0 0 are (a, c, b, d). 0 1 • Coordinates of a polynomial n−1 p(x) = a0 + a1x + ··· + an−1x ∈Pn relative to 2 n−1 the basis 1, x, x ,..., x are (a0, a1,..., an−1).
    [Show full text]
  • Vectors, Change of Basis and Matrix Representation: Onto-Semiotic Approach in the Analysis of Creating Meaning
    International Journal of Mathematical Education in Science and Technology ISSN: 0020-739X (Print) 1464-5211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmes20 Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning Mariana Montiel , Miguel R. Wilhelmi , Draga Vidakovic & Iwan Elstak To cite this article: Mariana Montiel , Miguel R. Wilhelmi , Draga Vidakovic & Iwan Elstak (2012) Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning, International Journal of Mathematical Education in Science and Technology, 43:1, 11-32, DOI: 10.1080/0020739X.2011.582173 To link to this article: http://dx.doi.org/10.1080/0020739X.2011.582173 Published online: 01 Aug 2011. Submit your article to this journal Article views: 174 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmes20 Download by: [Universidad Pública de Navarra - Biblioteca] Date: 22 January 2017, At: 10:06 International Journal of Mathematical Education in Science and Technology, Vol. 43, No. 1, 15 January 2012, 11–32 Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning Mariana Montiela*, Miguel R. Wilhelmib, Draga Vidakovica and Iwan Elstaka aDepartment of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; bDepartment of Mathematics, Public University of Navarra, Pamplona 31006, Spain (Received 26 July 2010) In a previous study, the onto-semiotic approach was employed to analyse the mathematical notion of different coordinate systems, as well as some situations and university students’ actions related to these coordinate systems in the context of multivariate calculus.
    [Show full text]
  • Orthonormal Bases
    Math 108B Professor: Padraic Bartlett Lecture 3: Orthonormal Bases Week 3 UCSB 2014 In our last class, we introduced the concept of \changing bases," and talked about writ- ing vectors and linear transformations in other bases. In the homework and in class, we saw that in several situations this idea of \changing basis" could make a linear transformation much easier to work with; in several cases, we saw that linear transformations under a certain basis would become diagonal, which made tasks like raising them to large powers far easier than these problems would be in the standard basis. But how do we find these \nice" bases? What does it mean for a basis to be\nice?" In this set of lectures, we will study one potential answer to this question: the concept of an orthonormal basis. 1 Orthogonality To start, we should define the notion of orthogonality. First, recall/remember the defini- tion of the dot product: n Definition. Take two vectors (x1; : : : xn); (y1; : : : yn) 2 R . Their dot product is simply the sum x1y1 + x2y2 + : : : xnyn: Many of you have seen an alternate, geometric definition of the dot product: n Definition. Take two vectors (x1; : : : xn); (y1; : : : yn) 2 R . Their dot product is the product jj~xjj · jj~yjj cos(θ); where θ is the angle between ~x and ~y, and jj~xjj denotes the length of the vector ~x, i.e. the distance from (x1; : : : xn) to (0;::: 0). These two definitions are equivalent: 3 Theorem. Let ~x = (x1; x2; x3); ~y = (y1; y2; y3) be a pair of vectors in R .
    [Show full text]
  • Pl¨Ucker Basis Vectors
    Pluck¨ er Basis Vectors Roy Featherstone Department of Information Engineering The Australian National University Canberra, ACT 0200, Australia Email: [email protected] Abstract— 6-D vectors are routinely expressed in Pluck¨ er Pluck¨ er coordinate vector and the 6-D vector it represents; it coordinates; yet there is almost no mention in the literature of explains the relationship between a 6-D vector and the two the basis vectors that give rise to these coordinates. This paper 3-D vectors that define it; and it shows how to differentiate identifies the Pluck¨ er basis vectors, and uses them to explain the following: the relationship between a 6-D vector and its Pluck¨ er a 6-D vector in a moving Pluck¨ er coordinate system, using coordinates, the relationship between a 6-D vector and the pair of acceleration as an example. For the sake of a concrete expo- 3-D vectors used to define it, and the correct way to differentiate sition, this paper uses the notation and terminology of spatial a 6-D vector in a moving coordinate system. vectors; but the results apply generally to any 6-D vector that is expressed using Pluck¨ er coordinates. I. INTRODUCTION The rest of this paper is organized as follows. First, the 6-D vectors are used to describe the motions of rigid bodies Pluck¨ er basis vectors are described. Then the topic of dual and the forces acting upon them. They are therefore useful for coordinate systems is discussed. This is relevant to those 6-D describing the kinematics and dynamics of rigid-body systems vector formalisms in which force vectors are deemed to occupy in general, and robot mechanisms in particular.
    [Show full text]
  • Linear Transformations and Determinants Matrix Multiplication As a Linear Transformation
    Linear transformations and determinants Math 40, Introduction to Linear Algebra Monday, February 13, 2012 Matrix multiplication as a linear transformation Primary example of a = matrix linear transformation ⇒ multiplication Given an m n matrix A, × define T (x)=Ax for x Rn. ∈ Then T is a linear transformation. Astounding! Matrix multiplication defines a linear transformation. This new perspective gives a dynamic view of a matrix (it transforms vectors into other vectors) and is a key to building math models to physical systems that evolve over time (so-called dynamical systems). A linear transformation as matrix multiplication Theorem. Every linear transformation T : Rn Rm can be → represented by an m n matrix A so that x Rn, × ∀ ∈ T (x)=Ax. More astounding! Question Given T, how do we find A? Consider standard basis vectors for Rn: Transformation T is 1 0 0 0 completely determined by its . e1 = . ,...,en = . action on basis vectors. 0 0 0 1 Compute T (e1),T(e2),...,T(en). Standard matrix of a linear transformation Question Given T, how do we find A? Consider standard basis vectors for Rn: Transformation T is 1 0 0 0 completely determined by its . e1 = . ,...,en = . action on basis vectors. 0 0 0 1 Compute T (e1),T(e2),...,T(en). Then || | is called the T (e ) T (e ) T (e ) 1 2 ··· n standard matrix for T. || | denoted [T ] Standard matrix for an example Example x 3 2 x T : R R and T y = → y z 1 0 0 1 0 0 T 0 = T 1 = T 0 = 0 1 0 0 0 1 100 2 A = What is T 5 ? 010 − 12 2 2 100 2 A 5 = 5 = ⇒ − 010− 5 12 12 − Composition T : Rn Rm is a linear transformation with standard matrix A Suppose → S : Rm Rp is a linear transformation with standard matrix B.
    [Show full text]
  • Notes on Change of Bases Northwestern University, Summer 2014
    Notes on Change of Bases Northwestern University, Summer 2014 Let V be a finite-dimensional vector space over a field F, and let T be a linear operator on V . Given a basis (v1; : : : ; vn) of V , we've seen how we can define a matrix which encodes all the information about T as follows. For each i, we can write T vi = a1iv1 + ··· + anivn 2 for a unique choice of scalars a1i; : : : ; ani 2 F. In total, we then have n scalars aij which we put into an n × n matrix called the matrix of T relative to (v1; : : : ; vn): 0 1 a11 ··· a1n B . .. C M(T )v := @ . A 2 Mn;n(F): an1 ··· ann In the notation M(T )v, the v showing up in the subscript emphasizes that we're taking this matrix relative to the specific bases consisting of v's. Given any vector u 2 V , we can also write u = b1v1 + ··· + bnvn for a unique choice of scalars b1; : : : ; bn 2 F, and we define the coordinate vector of u relative to (v1; : : : ; vn) as 0 1 b1 B . C n M(u)v := @ . A 2 F : bn In particular, the columns of M(T )v are the coordinates vectors of the T vi. Then the point of the matrix M(T )v is that the coordinate vector of T u is given by M(T u)v = M(T )vM(u)v; so that from the matrix of T and the coordinate vectors of elements of V , we can in fact reconstruct T itself.
    [Show full text]