Epidemiology of Clostridium Perfringens and Clostridium Difficile Among Ontario Broiler Chicken Flocks

Total Page:16

File Type:pdf, Size:1020Kb

Epidemiology of Clostridium Perfringens and Clostridium Difficile Among Ontario Broiler Chicken Flocks Epidemiology of Clostridium perfringens and Clostridium difficile among Ontario broiler chicken flocks By Hind Kasab-Bachi A thesis presented to the University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Population Medicine Guelph, Ontario, Canada © Hind Kasab-Bachi, May, 2017 ABSTRACT Epidemiology of Clostridium Perfringens and Clostridium Difficile Among Ontario Broiler Chicken Flocks Hind Kasab-Bachi Advisor University of Guelph, 2017 Dr. Michele Guerin This thesis is an investigation of the epidemiology and antimicrobial susceptibility of C. perfringens and C. difficile, and the use of antimicrobials, among commercial broiler chicken flocks in Ontario. Data were obtained from the Enhanced Surveillance Project, a large-scale, cross-sectional study (July 2010 to January 2012). Caecal and colon/caecal swabs (5-pooled samples from 15 birds per flock) from 231 randomly selected flocks were collected and delivered to the laboratory for microbiological testing. Flock data were collected from producers using a questionnaire. Clostridium perfringens was frequently recovered from flocks. The netB gene was found in a moderate number of isolates and flocks. All of the C. perfringens isolates were classified as type A, except for one type E. Clostridium perfringens isolates had reduced susceptibility to ceftiofur, erythromycin, tylosin tartrate, clindamycin, oxytetracycline, tetracycline, and bacitracin. The most commonly used antimicrobials in the feed were polypeptides and ionophores. The most commonly used antimicrobials in the water were penicillins and sulfonamides. A small proportion of flocks received cephalosporins at the hatchery. Our study identified a number of factors associated with the presence of C. perfringens (and netB among C. perfringens positive flocks), and C. perfringens resistance to ceftiofur, tylosin, erythromycin, and clindamycin, oxytetracycline, tetracycline, and bacitracin. Factors included some feed mills, use of feed containing antimicrobials, feed problems, season, average duration of monitoring the flock per visit, and presence of a garbage bin at the barn entrance. Clostridium difficile was infrequently isolated from flocks. Genes encoding for toxin A and/or B, and ribotypes 001 and 014, were detected in isolates. Isolates had reduced susceptibility to ceftiofur, tylosin tartrate, erythromycin, penicillin, oxytetracycline, tetracycline, clindamycin, ampicillin, imipenem, and cefoxitin. Our study identified the baseline prevalence, genetic characteristics, and antimicrobial susceptibility of C. perfringens and C. difficile, and described the use of antimicrobials, among Ontario broiler chicken flocks. Our study also identified biosecurity, and management practices factors, including antimicrobials, significantly associated with the presence of C. perfringens (and netB), and with C. perfringens resistance to several antimicrobials. Our study findings can be used to inform future disease intervention studies. ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Michele Guerin for giving me the opportunity to join her team of students. I learned a great deal from Dr. Guerin both on an academic and personal level. I learned the importance of teamwork, organization, and the value of high quality work. Her expertise, guidance, and continued demand for excellence taught me to always challenge myself. I would also like to thank Dr. Scott McEwen for his support and guidance. Dr. McEwen’s expertise in the area of antimicrobial use and resistance has been invaluable. I would also like to thank Dr. David Pearl for sharing his expertise in epidemiology, support, and guidance. Dr. Pearl’s reassuring words really helped me to get back on track during stressful days. I would also like to thank Dr. Durda Slavic for sharing her expertise in microbiology, and also for her guidance and support. Dr. Slavic’s door has always been open to answer my questions, and I truly appreciate all the guidance she offered. I would also like to thank Dr. Andreas Boecker for his guidance and support. I truly value all the knowledge I gained from attending his agricultural economics class. I would also like to thank Dr. Scott Weese and Dr. Patrick Boerlin for sharing their expertise in microbiology and antimicrobial resistance. This study would not have been possible without the dedication of key individuals. I would like to thank the broiler farmers and slaughter plants for their collaboration. Many thanks go to Dr. Marina Brash for sharing her technical expertise in sample collection. Many thanks also go to the Enhanced Surveillance Project graduate students, Michael Eregae and Eric Nham, for sample and data collection. I would also like to thank research assistants Elise Myers, Chanelle Taylor, Heather McFarlane, Stephanie Wong, Veronique Gulde, and laboratory technician, Amanda Drexler, for their contributions. IV I would also like to thank all the individuals in the Population Medicine building for the wonderful memories I have made over the years. To mention a few names, I would like to thank Glen Cassar, Karen Richardson, and Bryan Bloomfield for teaching me how to play Euchre, and fellow graduate students Katherine Bottoms, Andreia Arruda, Tara Roberts, Julianna Ferreira, and research assistant Tatiana Petukhova for their friendship. I would also like to thank all the funding agencies that helped make this study possible. Financial support for the project has been provided by the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) - University of Guelph Partnership, OMAFRA - University of Guelph Agreement through the Animal Health Strategic Investment fund (AHSI) managed by the Animal Health Laboratory of the University of Guelph, the Poultry Industry Council, and the Chicken Farmers of Ontario. Student stipend support was provided by the Ontario Veterinary College MSc Scholarship and OVC incentive funding. Of course, this work would not have been possible without the support and love of my family. I would like to thank my father, Dr. Zakaria, for all his support and guidance during this program. My father is, and will always be, my rock and role model. Many thanks go to my mother, Roua, for her support and guidance, and most importantly, for all the tasty meals she prepared for me. Thanks to my brother, Mohamed, and my sister, Hadil, for their support and friendship. Being in university at the same time has thrown many challenges our way, but these challenges have only made our bond stronger. I would also like to thank my loving grandmother, Sabiha, for her endless support. Thanks to my best friend Alya Ali Othman, whose words of encouragement have always steered me in the right direction, and whose companionship has been essential to my success. V This thesis is dedicated to my family, Zakaria, Roua, Mohamed, and Hadil, and my best friend, Alya, for their love and support. VI STATEMENT OF WORK This thesis is part of the Enhanced Surveillance Project, a large-scale cross-sectional study that aimed to investigate the epidemiology of 13 pathogens in Ontario commercial broiler chicken flocks. The sampling period for this project was from July 2010 to January 2012. This thesis is focused on investigating the epidemiology and antimicrobial susceptibility of two bacterial pathogens, C. perfringens and C. difficile. When I joined the team in September 2010, sample and data collection for this project were underway. Dr. Michele Guerin, the principal investigator, designed this project in collaboration with experts in the fields of poultry diseases and microbiology. Dr. Michele Guerin also designed the questionnaire used to collect information for this project, and Dr. Michael Eraegae, who was a PhD student in 2010 and a research team member, contributed additional questions to the questionnaire. When I first joined the research team, I took some time to learn the different components of the broiler industry, and to familiarize myself with the project study design. After training in the various methods of sample and data collection, I started to join the team in administering the questionnaire to farmers during face-to face interviews. I also participated in sample collection at the slaughter plants, and processing samples for submission to the Animal Health Laboratory. My main task in this project was to determine the baseline prevalence, genetic characteristics, and antimicrobial susceptibility of C. perfringens and C. difficile among Ontario broiler chicken flocks. The antimicrobial use chapter in this thesis was inspired by the drive to explore different methods of analyzing antimicrobial use data. I was also responsible for conducting all statistical and data analysis related to C. perfringens and C. difficile under the supervision of my advisor, Dr. Guerin and my other committee members (Drs. McEwen, Pearl, Slavic, and Boecker).. VII TABLE OF CONTENTS CHAPTER ONE ........................................................................................................................... 1 Introduction, literature review, study rationale, and objectives .............................................. 1 INTRODUCTION .......................................................................................................................... 1 LITERATURE REVIEW ............................................................................................................... 3 Clostridium perfringens .................................................................................................................
Recommended publications
  • Detoxification Strategies for Zearalenone Using
    microorganisms Review Detoxification Strategies for Zearalenone Using Microorganisms: A Review 1, 2, 1 1, Nan Wang y, Weiwei Wu y, Jiawen Pan and Miao Long * 1 Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China 2 Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 21 June 2019; Accepted: 19 July 2019; Published: 21 July 2019 Abstract: Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA. Keywords: zearalenone (ZEA); reproductive toxicity; cytotoxicity; immunotoxicity; biological detoxification; probiotics; ZEA biotransformation 1.
    [Show full text]
  • Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
    Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition.
    [Show full text]
  • Feed Safety 2016
    Annual Report The surveillance programme for feed materials, complete and complementary feed in Norway 2016 - Mycotoxins, fungi and bacteria NORWEGIAN VETERINARY INSTITUTE The surveillance programme for feed materials, complete and complementary feed in Norway 2016 – Mycotoxins, fungi and bacteria Content Summary ...................................................................................................................... 3 Introduction .................................................................................................................. 4 Aims ........................................................................................................................... 5 Materials and methods ..................................................................................................... 5 Quantitative determination of total mould, Fusarium and storage fungi ........................................ 6 Chemical analysis .......................................................................................................... 6 Bacterial analysis .......................................................................................................... 7 Statistical analysis ......................................................................................................... 7 Results and discussion ...................................................................................................... 7 Cereals .....................................................................................................................
    [Show full text]
  • Mycotoxins: a Review of Dairy Concerns
    Mycotoxins: A Review of Dairy Concerns L. W. Whitlow, Department of Animal Science and W. M. Hagler, Jr., Department of Poultry Science North Carolina State University, Raleigh, NC 27695 Introduction mycotoxins such as the ergots are known to affect cattle and may be prevalent at times in certain feedstuffs. Molds are filamentous (fuzzy or dusty looking) fungi that occur in many feedstuffs including roughages and There are hundreds of different mycotoxins, which are concentrates. Molds can infect dairy cattle, especially diverse in their chemistry and effects on animals. It is during stressful periods when they are immune likely that contaminated feeds will contain more than one suppressed, causing a disease referred to as mycosis. mycotoxin. This paper is directed toward those Molds also produce poisons called mycotoxins that affect mycotoxins thought to occur most frequently at animals when they consume mycotoxin contaminated concentrations toxic to dairy cattle. A more extensive feeds. This disorder is called mycotoxicosis. Mycotoxins review is available in the popular press (Whitlow and are produced by a wide range of different molds and are Hagler, 2004). classified as secondary metabolites, meaning that their function is not essential to the mold’s existence. The Major toxigenic fungi and mycotoxins thought to be U.N.’s Food and Agriculture Organization (FAO) has the most prevalent and potentially toxic to dairy cattle. estimated that worldwide, about 25% of crops are affected annually with mycotoxins (Jelinek, 1987). Such surveys Fungal genera Mycotoxins reveal sufficiently high occurrences and concentrations of Aspergillus Aflatoxin, Ochratoxin, mycotoxins to suggest that mycotoxins are a constant Sterigmatocystin, Fumitremorgens, concern.
    [Show full text]
  • Vomitoxin (DON) Fact Sheet
    Crop File 6.05.013 Issued 09/17 ffv Livestock and Feedstuff Management Vomitoxin (DON) fact sheet “Mycotoxins” are natural chemicals produced by certain Table 2. FDA advisory levels for vomitoxin (DON) in various fungi, many that produce molds. Mycotoxins can affect commodities human or animal health if they consume contaminated food GRAINS and GRAIN PRODUCTS Advisory level1 or feed. There are currently 400 to 500 known mycotoxins, intended for: (mg/kg or ppm) Beef or feedlot cattle, older than 4 each produced by a different mold. 10 (11.4) months A. What is “vomitoxin”? Dairy cattle, older than 4 months 10 (11.4) 1. Common name for deoxynivalenol (DON) Swine 5 (5.7) Chickens 10 (11.4) 2. Produced by Fusarium and GIbberella fungi a. Fusarium graminearum is most notable for DON All other animals 5 (5.7) DISTILLERS GRAIN, BREWERS GRAINS, production Advisory level1 GLUTEN FEEDS, and GLUTEN MEAL i. Responsible for head blight or “scab” disease of (mg/kg or ppm) intended for: wheat Beef cattle, older than 4 months 30 (34) ii. Responsible for “red ear rot” in corn b. Molds can proliferate before harvest, but continue to Dairy cattle, older than 4 months 30 (34) grow postharvest TOTAL RATION2 Advisory level1 intended for: (mg/kg or ppm) B. Vomitoxin (DON) advisory levels Beef or feedlot cattle, older than 4 10 (11.4) months 1. Advisory levels differ from action levels Dairy cattle, older than 4 months 5 (5.7) a. Provide an adequate margin of safety to protect human and animal health Swine 1 (1.1) b.
    [Show full text]
  • Biological Toxins As the Potential Tools for Bioterrorism
    International Journal of Molecular Sciences Review Biological Toxins as the Potential Tools for Bioterrorism Edyta Janik 1, Michal Ceremuga 2, Joanna Saluk-Bijak 1 and Michal Bijak 1,* 1 Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected] (E.J.); [email protected] (J.S.-B.) 2 CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-(0)426354336 Received: 3 February 2019; Accepted: 3 March 2019; Published: 8 March 2019 Abstract: Biological toxins are a heterogeneous group produced by living organisms. One dictionary defines them as “Chemicals produced by living organisms that have toxic properties for another organism”. Toxins are very attractive to terrorists for use in acts of bioterrorism. The first reason is that many biological toxins can be obtained very easily. Simple bacterial culturing systems and extraction equipment dedicated to plant toxins are cheap and easily available, and can even be constructed at home. Many toxins affect the nervous systems of mammals by interfering with the transmission of nerve impulses, which gives them their high potential in bioterrorist attacks. Others are responsible for blockage of main cellular metabolism, causing cellular death. Moreover, most toxins act very quickly and are lethal in low doses (LD50 < 25 mg/kg), which are very often lower than chemical warfare agents. For these reasons we decided to prepare this review paper which main aim is to present the high potential of biological toxins as factors of bioterrorism describing the general characteristics, mechanisms of action and treatment of most potent biological toxins.
    [Show full text]
  • Clostridium Perfringens
    CLOSTRIDIUM PERFRINGENS: SPORES & CELLS MEDIA & MODELING Promotor: prof. dr. ir. Frans M. Rombouts Hoogleraar in de levensmiddelenhygiëne en –microbiologie Co-promotor: dr. Rijkelt R. Beumer Universitair docent Leerstoelgroep levensmiddelenmicrobiologie Promotiecommissie: prof. dr. ir. Johan M. Debevere (Universiteit Gent, België) dr. ir. Servé H.W. Notermans (TNO Voeding, Zeist) prof. dr. Michael W. Peck (Institute of Food Research, Norwich, UK) prof. dr. ir. Marcel H. Zwietering (Wageningen Universiteit) CLOSTRIDIUM PERFRINGENS: SPORES & CELLS MEDIA & MODELING Aarieke Eva Irene de Jong Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 21 oktober 2003 des namiddags te vier uur in de Aula A.E.I. de Jong – Clostridium perfringens: spores & cells, media & modeling – 2003 Thesis Wageningen University, Wageningen, The Netherlands – With summary in Dutch ISBN 90-5808-931-2 ABSTRACT Clostridium perfringens is one of the five major food borne pathogens in the western world (expressed in cases per year). Symptoms are caused by an enterotoxin, for which 6% of type A strains carry the structural gene. This enterotoxin is released when ingested cells sporulate in the small intestine. Research on C. perfringens has been limited to a couple of strains that sporulate well in Duncan and Strong (DS) medium. These abundantly sporulating strains in vitro are not necessarily a representation of the most dangerous strains in vivo. Therefore, sporulation was optimized for C. perfringens strains in general. None of the tested media and methods performed well for all strains, but Peptone-Bile- Theophylline medium (with and without starch) yielded highest spore numbers.
    [Show full text]
  • Determination of Zeranol and Its Metabolites in Bovine Muscle Tissue with Gas Chromatography-Mass Spectrometry
    Bull Vet Inst Pulawy 56, 335-342, 2012 DOI: 10.2478/v10213-012-0059-4 DETERMINATION OF ZERANOL AND ITS METABOLITES IN BOVINE MUSCLE TISSUE WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY IWONA MATRASZEK-ŻUCHOWSKA, BARBARA WOŹNIAK, AND JAN ŻMUDZKI Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland [email protected] Received: June 19, 2012 Accepted: September 7, 2012 Abstract This paper describes the quantitative method of determination of chosen substances from resorcylic acid lactones group: zeranol, taleranol, α-zearalenol, β-zearalenol, and zearalanone in bovine muscle tissue. The presented method is based on double diethyl ether liquid-liquid extraction (LLE), solid phase extraction (SPE) clean up, and gas chromatography mass spectrometry (GC- MS) analysis. The residues were derivatised with a mixture of N-methyl-N-trimethylsilyltrifluoroacetamide, ammonium iodide, and DL-dithiothreitol (1,000:2:5, v/w/w). The GC-MS apparatus was operated in positive electron ionisation mode. The method was validated according to the European Union performance criteria pointed in Decision Commission 2002/657/EC. The average recoveries of all analytes at 1 µg kg-1 level were located between 83.7% and 94.5% values with the coefficients of variation values <25%. The decision limits (CCα) and detection capabilities (CCβ) for all analytes ranged from 0.58 to 0.82 µg kg-1 and from 0.64 to 0.94 µg kg-1, respectively. The procedure has been accredited and is used as a screening and confirmatory method in control of hormone residues in animal tissues. Key words: bovine muscle tissue, zeranol, GC-MS.
    [Show full text]
  • 615.9Barref.Pdf
    INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine­ Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G.
    [Show full text]
  • Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
    17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs.
    [Show full text]
  • Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: an Update
    toxins Review Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update Giuseppe Conte , Marco Fontanelli, Francesca Galli , Lorenzo Cotrozzi * , Lorenzo Pagni and Elisa Pellegrini Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] (G.C.); [email protected] (M.F.); [email protected] (F.G.); [email protected] (L.P.); [email protected] (E.P.) * Correspondence: [email protected] Received: 12 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Abstract: Mycotoxins are secondary metabolites produced by some filamentous fungi, which can cause toxicity in animal species, including humans. Because of their high toxicological impacts, mycotoxins have received significant consideration, leading to the definition of strict legislative thresholds and limits in many areas of the world. Mycotoxins can reduce farm profits not only through reduced crop quality and product refusal, but also through a reduction in animal productivity and health. This paper briefly addresses the impacts of mycotoxin contamination of feed and food on animal and human health, and describes the main pre- and post-harvest systems to control their levels, including genetic, agronomic, biological, chemical, and physical methods. It so highlights (i) the lack of effective and straightforward solutions to control mycotoxin contamination in the field, at pre-harvest, as well as later post-harvest; and (ii) the increasing demand for novel methods to control mycotoxin infections, intoxications, and diseases, without leaving toxic chemical residues in the food and feed chain. Thus, the broad objective of the present study was to review the literature on the use of ozone for mycotoxin decontamination, proposing this gaseous air pollutant as a powerful tool to detoxify mycotoxins from feed and food.
    [Show full text]
  • Diagnosis of Clostridium Perfringens
    Received: January 12, 2009 J Venom Anim Toxins incl Trop Dis. Accepted: March 25, 2009 V.15, n.3, p.491-497, 2009. Abstract published online: March 31, 2009 Original paper. Full paper published online: August 31, 2009 ISSN 1678-9199. GENOTYPING OF Clostridium perfringens ASSOCIATED WITH SUDDEN DEATH IN CATTLE Miyashiro S (1), Baldassi L (1), Nassar AFC (1) (1) Animal Health Research and Development Center, Biological Institute, São Paulo, São Paulo State, Brazil. ABSTRACT: Toxigenic types of Clostridium perfringens are significant causative agents of enteric disease in domestic animals, although type E is presumably rare, appearing as an uncommon cause of enterotoxemia of lambs, calves and rabbits. We report herein the typing of 23 C. perfringens strains, by the polymerase chain reaction (PCR) technique, isolated from small intestine samples of bovines that have died suddenly, after manifesting or not enteric or neurological disorders. Two strains (8.7%) were identified as type E, two (8.7%) as type D and the remainder as type A (82.6%). Commercial toxoids available in Brazil have no label claims for efficacy against type E-associated enteritis; however, the present study shows the occurrence of this infection. Furthermore, there are no recent reports on Clostridium perfringens typing in the country. KEY WORDS: Clostridium perfringens, iota toxin, sudden death, PCR, cattle. CONFLICTS OF INTEREST: There is no conflict. CORRESPONDENCE TO: SIMONE MIYASHIRO, Instituto Biológico, Av. Conselheiro Rodrigues Alves, 1252, Vila Mariana, São Paulo, SP, 04014-002, Brasil. Phone: +55 11 5087 1721. Fax: +55 11 5087 1721. Email: [email protected]. Miyashiro S et al.
    [Show full text]