Clostridium Perfringens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Feed Safety 2016
Annual Report The surveillance programme for feed materials, complete and complementary feed in Norway 2016 - Mycotoxins, fungi and bacteria NORWEGIAN VETERINARY INSTITUTE The surveillance programme for feed materials, complete and complementary feed in Norway 2016 – Mycotoxins, fungi and bacteria Content Summary ...................................................................................................................... 3 Introduction .................................................................................................................. 4 Aims ........................................................................................................................... 5 Materials and methods ..................................................................................................... 5 Quantitative determination of total mould, Fusarium and storage fungi ........................................ 6 Chemical analysis .......................................................................................................... 6 Bacterial analysis .......................................................................................................... 7 Statistical analysis ......................................................................................................... 7 Results and discussion ...................................................................................................... 7 Cereals ..................................................................................................................... -
Influence of Meat Spoilage Microbiota Initial Load on the Growth and Survival of Three Pathogens on a Naturally Fermented Sausag
foods Article Influence of Meat Spoilage Microbiota Initial Load on the Growth and Survival of Three Pathogens on a Naturally Fermented Sausage Luis Patarata 1,2,* , Margarida Novais 2, Maria João Fraqueza 3 and José António Silva 1,2 1 CECAV, Centro de Ciência Animal e Veterinária, 5001-801 Vila Real, Portugal; [email protected] 2 School of Agrarian and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; [email protected] 3 CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-259350539 Received: 6 May 2020; Accepted: 21 May 2020; Published: 25 May 2020 Abstract: Meat products are potential vehicles for transmitting foodborne pathogens like Salmonella, S. aureus, and L. monocytogenes. We aimed to evaluate (1) the effect of the meat’s initial natural microbiota on Salmonella, S. aureus, and L. monocytogenes growth and survival in a batter to prepare a naturally fermented sausage, made with and without curing salts and wine (2) the effect of a lactic acid bacteria (LAB) starter culture and wine on the survival of the three pathogens during the manufacturing of a naturally fermented sausage made with meat with a low initial microbial load. The results revealed that the reduced contamination that is currently expected in raw meat is favorable for the multiplication of pathogens due to reduced competition. The inhibitory effect of nitrite and nitrate on Salmonella, S. aureus, and L. monocytogenes was confirmed, particularly when competition in meat was low. -
Department of Health
CITY OF BALTIMORE ONE HUNDRED AND FIFTY-FIRST ANNUAL REPORT OF THE DEPARTMENT OF HEALTH 1965 ■ ■ ■■ ■■■■ ■■ 11 111 7■■■■ II 1MI■ BALTIMORE To the Mayor and City Council of Baltimore for the Year Ended December 31, 1965 Without health, life is not life. .. ARIPHON THE SICYONIAN If we could first know where we are and whither we are tending, we could better judge what to do and how to do it. ABRAHAM LINCOLN DEPARTMENT OF HEALTH Commissioner, ROBERT E. FARBER, M.D., M.P.H. Deputy Commissioner, MATTHEW TAYBACK, Sc.D. LOCAL HEALTH SERVICES JOHN B. DE HOFF, M.D., Director Eastern Health District Wilson M. Wing M.D., M.P.H., Health Qfficcr Druid Health District H. Maceo Williams, M.D., M.P.H., Health Officer Southeastern Health District Wilson M. Wing, M.D., M.P.H., Health Offic( r Southern Health District C. Gottfried Baumann, M.D., M.P.H., Health Officer Western Health District C. Gottfried Baumann, M.D., M.P.H., Health Officer Health Information Joseph Gordon, B.S., Director Public Health Nursing Alice M. Sundberg, R.N., M.P.H., Director Communicable Diseases James E. Peterman, M.D., M.P.H., Director Tuberculosis Allan S. Moodie, M.B., D.P.H., Control Officer Tuberculosis Clinics Meyer W. Jacobson, M.D., Clinical Director Tuberculosis Surveys M.S. Shiling, M.D., Director Venereal Diseases E. Walter Shervington, M.D., Clinical Director Dental Care H. Berton McCauley, D.D.S., Director Nutrition Eleanor M. Snyder, M.S., Chief CHILD HEALTH SERVICES J. L. RHYNE, M.D., M.P.H., Director Maternal and Child Health George H. -
USE of ORGANIC ACIDS to CONTROL LISTERIA in MEAT a Low Ph
LITERATURE SURVEY OF THE VARIOUS TECHNIQUES USED IN LISTERIA INTERVENTION USE OF ORGANIC ACIDS TO CONTROL LISTERIA IN MEAT A low pH (acidic) environment has an adverse effect on the growth of Listeria monocytogenes but it is not only the specific pH of the medium which is important but also the type of acid, temperature, and other antimicrobial compounds which are present (7). Several researchers have noted that, in culture media, acetic acid has more potent antilisterial effects than lactic acid, which, in turn, is more inhibitory than hydrochloric acid (1,19,20,36). Although similar concentrations of citric and lactic acids reduce the pH of tryptic soy broth more than acetic acid does, addition of acetic acid results in greater cell destruction (19). Malic acid, the predominant organic acid in apples, is not as effective as lactic acid in suppressing growth of L. monocytogenes (4). Sodium diacetate (a mixture of acetic acid and sodium acetate) also significantly inhibits the growth of L. monocytogenes in broth cultures (32). Several experiments in culture media demonstrated that inhibitory effects of an acid are greater at lower temperatures (5,6,13,16,17,31). Other factors, such as the presence of salt and other compounds used as preservatives, may modify the effects of organic acids on L. monocytogenes (6,16,21,31) and several models have been developed to describe these interactions (5,17,26). These models may provide useful estimates of the relative importance of different factors and the magnitude of inhibition to be expected but they may overestimate or underestimate the effects on L. -
615.9Barref.Pdf
INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G. -
Germicide Effectiveness and Taxonomic Studies on Microbial Isolates from Meat and Poultry
AN ABSTRACT OF THE THESIS OF JAMES SCHWARTZ for the MASTER OF SCIENCE (Name of student) (Degree) in Microbiology presented on 9 7.P-- (Major) /(Date) Title: GERMICIDE EFFECTIVENESS AND TAXONOMIC STUDIES ON MICROBIAL ISOLATES FROM MEAT AND POULTRY PLANTS Redacted for Privacy Abstract approved: Paul R. Elliker A large number of bacterial and yeast isolates were obtained from meat and poultry processing plants by swab and contact plate sampling methods. Most of the isolates were subjected to a brief taxonomic study and listed according to their sources.Representa- tive food spoilage, indicator and pathogenic organisms were identified to genus and species, and germicide effectiveness studies were per- formed on them. The organisms tested were Escherichia coli, Pseudomonas aeruginosa, Streptococcus faecalis, Micrococcus luteus, Salmonella derby, spores of Bacillus licheniformis, and yeast of the genus Candida. The method of preparing cultures and evaluating germicides was that of Chambers. Each isolate was exposed to varying concen- trations of four different germicides in both soft (distilled) and hard (USDA - 500 ppm CaCO3) water,and the bactericidal effectiveness of each was measured at time intervals varying from 15 to 300 seconds.The four germicides tested were sodium hypochlorite, a moderately acidic iodophor, a highly acidic iodophor and a quaternary ammonium compound (QAC). Results of the germicide studies reflect the similar effective- ness of hypochlorite and iodophor compounds and the superiority of both of these types of germicides over the QAC at any given concen- tration. The yeasts, however, were considerably more resistant to the hypochlorite than to the iodophors.This probably was due to the relatively higher concentration of organic matter in the yeast cells as opposed to bacterial cells, and reflected the greater susceptibility of chlorine to the presence of organic matter in the germicide solu- tion.Also, iodophors have been reported to be highly active against yeast alcohol and glucose-6-phosphate dehydrogenases. -
Diagnosis of Clostridium Perfringens
Received: January 12, 2009 J Venom Anim Toxins incl Trop Dis. Accepted: March 25, 2009 V.15, n.3, p.491-497, 2009. Abstract published online: March 31, 2009 Original paper. Full paper published online: August 31, 2009 ISSN 1678-9199. GENOTYPING OF Clostridium perfringens ASSOCIATED WITH SUDDEN DEATH IN CATTLE Miyashiro S (1), Baldassi L (1), Nassar AFC (1) (1) Animal Health Research and Development Center, Biological Institute, São Paulo, São Paulo State, Brazil. ABSTRACT: Toxigenic types of Clostridium perfringens are significant causative agents of enteric disease in domestic animals, although type E is presumably rare, appearing as an uncommon cause of enterotoxemia of lambs, calves and rabbits. We report herein the typing of 23 C. perfringens strains, by the polymerase chain reaction (PCR) technique, isolated from small intestine samples of bovines that have died suddenly, after manifesting or not enteric or neurological disorders. Two strains (8.7%) were identified as type E, two (8.7%) as type D and the remainder as type A (82.6%). Commercial toxoids available in Brazil have no label claims for efficacy against type E-associated enteritis; however, the present study shows the occurrence of this infection. Furthermore, there are no recent reports on Clostridium perfringens typing in the country. KEY WORDS: Clostridium perfringens, iota toxin, sudden death, PCR, cattle. CONFLICTS OF INTEREST: There is no conflict. CORRESPONDENCE TO: SIMONE MIYASHIRO, Instituto Biológico, Av. Conselheiro Rodrigues Alves, 1252, Vila Mariana, São Paulo, SP, 04014-002, Brasil. Phone: +55 11 5087 1721. Fax: +55 11 5087 1721. Email: [email protected]. Miyashiro S et al. -
Preservation Technologies for Fresh Meat – a Review
Meat Science 86 (2010) 119–128 Contents lists available at ScienceDirect Meat Science journal homepage: www.elsevier.com/locate/meatsci Review Preservation technologies for fresh meat – A review G.H. Zhou a,⁎, X.L. Xu a, Y. Liu b a Lab of Meat Processing and Quality Control, EDU, Nanjing Agricultural University, P. R. China b College of Food Science and Technology, Shanghai Ocean University, P. R. China article info abstract Article history: Fresh meat is a highly perishable product due to its biological composition. Many interrelated factors Received 3 February 2010 influence the shelf life and freshness of meat such as holding temperature, atmospheric oxygen (O2), Received in revised form 19 April 2010 endogenous enzymes, moisture, light and most importantly, micro-organisms. With the increased demand Accepted 23 April 2010 for high quality, convenience, safety, fresh appearance and an extended shelf life in fresh meat products, alternative non-thermal preservation technologies such as high hydrostatic pressure, superchilling, natural Keywords: biopreservatives and active packaging have been proposed and investigated. Whilst some of these Fresh meat fi Preservation technologies technologies are ef cient at inactivating the micro-organisms most commonly related to food-borne Superchilling diseases, they are not effective against spores. To increase their efficacy against vegetative cells, a HHP combination of several preservation technologies under the so-called hurdle concept has also been Natural biopreservation investigated. The objective of this review is to describe current methods and developing technologies for Packaging preserving fresh meat. The benefits of some new technologies and their industrial limitations is presented and discussed. © 2010 The American Meat Science Association. -
Clostridium Perfringens
RESEARCH ARTICLE Study of some Virulence Factors for Clostridium perfringens isolated from Clinical Samples and Hospital Environment and showing their Sensitivity to Antibiotics Muhsin H Edham, Asma S Karomi, Zainab I Tahseen* Department of Biology, College of Science, Kirkuk University, Iraq Received: 19th March, 2020; Revised: 24th April, 2020; Accepted: 25th May, 2020; Available Online: 25th June, 2020 ABSTRACT The study included taking 100 samples from different clinical sources, including wounds and burns, and from the hospital environment, in Kirkuk General Hospital and Azadi Teaching Hospital in the city of Kirkuk for the period from November 2017 to August 2018. The results of isolation and diagnosis showed the growth of 30 isolates that are positive for Clostridium perfringens, distributed between 15 isolates 37.5% from burns, 11 isolates 27.5% from wounds, and 4 isolates 20% from the hospital environment. These isolates were diagnosed based on microscopical, cultural and biochemical tests, in addition to being diagnosed with the Api 20A system. The sensitivity of isolates was tested toward a number of types of antibiotics, and all bacterial isolates showed a high sensitivity 100% against imipenem. As for the sensitivity to vancomycin, amikacin, tetracycline was 96.66, 90, and 66.66% respectively. While, all isolates showed a high resistance to metronidazole and colistin 100%, some virulence factors of C. perfringens isolates have been studied , and showed that all isolates (%100) have the ability to produce hemolysin, lecithinase, capsule, and spore, while 70% of the isolates produced DNAase. Keywords: Antibiotic sensitivity, Clostridium perfringens, Virulence factors. International Journal of Pharmaceutical Quality Assurance (2020); DOI: 10.25258/ijpqa.11.2.11 How to cite this article: Edham MH, Karomi AS, Tahseen ZI. -
Identification and Antimicrobial Susceptibility Testing of Anaerobic
antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance -
Identifying the Virulent Factors of Clostridium Perfringens Locally Isolated from Different Species
2020, Scienceline Publication World’s Veterinary Journal World Vet J, 10(4): 617-624, December 25, 2020 ISSN 2322-4568 DOI: https://dx.doi.org/10.29252/scil.2020.wvj74 Identifying the Virulent Factors of Clostridium perfringens Locally Isolated from Different Species El-Helw, H. A.*¹, Taha, M. M.¹, Elham F. El-Sergany¹, Ebtesam, E.Z. Kotb², Hussein, A. S.¹, and Abdalla, Y. A.¹ ¹Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Abbasia, Cairo, Postcode: 11381, Egypt. ²Animal Reproduction Research Institute, Agriculture Research Center, El-Haram, Giza, Postcode:12619, Egypt. *Corresponding author’s Email: [email protected]; : 0000-0003-2851-9632 Accepted: Accepted: Received: pii:S23224568 OR ABSTRACT I Clostridium perfringens incriminated in many diseases among different species of animals due to its ability to ARTICLE GINAL produce many virulence factors. In the current study, 135 intestinal samples were collected from different animal 07 species of different localities in Egypt. Samples were subjected to isolation and identification (morphologically and 22 Nov Dec biochemically) for obtaining Clostridium perfringens isolates (n=26, 19.25%). The PCR was carried out to elucidate 20 000 the virulence factors. It was indicated that all the 26 Clostridium perfringens isolates had CPA gene and Clostridium 20 20 20 perfringens enterotoxin (CPE gene), whereas 23% of isolates of chicken and cattle intestinal samples contained 20 74 CPA, Net B, and CPE genes as virulence factors. Consequently, those isolates are highly recommended to be used in - the preparation of enterotoxemia and necrotic enteritis vaccines as they are more virulent strains. 10 Keywords: Clostridium perfringens, CPA gene, CPE gene, Net B gene INTRODUCTION Clostridium perfringens (C. -
Decontamination of Mycotoxin-Contaminated Feedstuffs
toxins Review Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed Radmilo Colovi´cˇ 1,*, Nikola Puvaˇca 2,*, Federica Cheli 3,* , Giuseppina Avantaggiato 4 , Donato Greco 4, Olivera Đuragi´c 1, Jovana Kos 1 and Luciano Pinotti 3 1 Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; olivera.djuragic@fins.uns.ac.rs (O.Đ.); jovana.kos@fins.uns.ac.rs (J.K.) 2 Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cve´carska,21000 Novi Sad, Serbia 3 Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy; [email protected] 4 Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; [email protected] (G.A.); [email protected] (D.G.) * Correspondence: radmilo.colovic@fins.uns.ac.rs (R.C.);ˇ nikola.puvaca@fimek.edu.rs (N.P.); [email protected] (F.C.) Received: 8 August 2019; Accepted: 23 October 2019; Published: 25 October 2019 Abstract: Mycotoxins are known worldwide as fungus-produced toxins that adulterate a wide heterogeneity of raw feed ingredients and final products. Consumption of mycotoxins-contaminated feed causes a plethora of harmful responses from acute toxicity to many persistent health disorders with lethal outcomes; such as mycotoxicosis when ingested by animals. Therefore, the main task for feed producers is to minimize the concentration of mycotoxin by applying different strategies aimed at minimizing the risk of mycotoxin effects on animals and human health.