Assessment of Spatial Properties of Karst Areas on a Regional Scale Using GIS and Statistics – the Case of Slovenia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Atlas of Blue Earth County, Minnesota
Prepared and Published with the Support of COUNTY ATLAS SERIES THE BLUE EARTH COUNTY BOARD OF COMMISSIONERS AND ATLAS C-26, PART A MINNESOTA GEOLOGICAL SURVEY the Minnesota ENVironment and Natural Resources Trust Fund Blue Earth County Harvey Thorleifson, Director as recommended by the LEGislatiVE-CitiZen Commission on Minnesota Resources Plate 2—Bedrock Geology NIC OLL ET COU NTY 7 Minnesota B BEDROCK GEOLOGY Ka 44°15' N. 285 300 R. 29 W. Kd m STRATIGRAPHIC COLUMN River 285 By 240 s 94° W. e i Lithostratigraphic r Composite natural gamma log 255 NICOLLET LE SUEUR COUNTY R. 26 W. COUNTY R. 25 W. e unit S 270 - e 315 Increasing count 330 Era m Lithology Kd e T. 109 N. sl Os 315 Julia R. Steenberg t Group, 0 100 s 24 Map symbol 19 y 300 300 24 24 Formation 270 lr 19 S API-G units Oo Thickness (in feet) 300 River 285 LIME JAMESTOWN 345 94°15' W. 255 Kd Wita Kd Creek 315 2012 315 )68 j Kd Lake j Dakota Kd 5-90 m.y.) Upper Formation Os Y 300 (99.6-93.5 T Duck Cretaceous 300 lr Morgan Os Lake N T. 109 N. CAMBRIA U 315 O 300 Minnesota 240 Ballantyne C LOCATION DIAGRAM Oo 300 Lake R 270 Madison MESOZOIC R. 28 W. U 31 Kd 300 31 Oo Unnamed Ka Os E Kd 30-90 36 31 Eagle Lake lr lr 36 315 36 U 36 S Cretaceous 300 ) 31 300 22 (112-93.5 m.y.) (112-93.5 Gilfillin 315 E Lower to Upper Lake L Judson Lake 315 300 lr 240 1 6 Y 6 240 Os Platteville Formation 255 315 T Opg 6 Madison 5-20 1 1 N 6 Glenwood Formation Ph 1 255 U sl 255 1 CORRELATION OF MAP UNITS O )60 Upper 315 315 C Lake A j (450 m.y.) 315 C ? E Kd Upper Cretaceous 285 14 Kd S Lithology Key 315 A St. -
Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy)
Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy). A. Iannace, M. Gasparrini, T. Gabellone, S. Mazzoli To cite this version: A. Iannace, M. Gasparrini, T. Gabellone, S. Mazzoli. Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy).. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2012, 67 (1), pp.59-75. 10.2516/ogst/2011166. hal-00702860 HAL Id: hal-00702860 https://hal-ifp.archives-ouvertes.fr/hal-00702860 Submitted on 31 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ogst100136_Iannace 16/03/12 11:45 Page 59 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 1, pp. 59-75 Copyright © 2012, IFP Energies nouvelles DOI: 10.2516/ogst/2011166 Dossier Diagenesis - Fluid-Rocks Interactions Diagenèse minérale - Équilibres fluides-roches Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy) A. Iannace1, M. Gasparrini2, T. Gabellone1 -
Upper Permian.Trias Sic Facies Zones in the Transdanubian Range
Rivista Italiana di Paleontologia e Stratigra{ia volume I u I numero 3 pagine 249-266 Dicembre 1995 UPPER PERMIAN.TRIAS SIC FACIES ZONES IN THE TRANSDANUBIAN RANGE JANOS HAAS* & TAMAS BUDAI** Key-'utords: Upper Permian-Triassic, facies pattern, paleogeo- Alpine relationship of the Mesozoic section of the graphic reconstruction, Transdanubian Range, Hungary. Transdanubian Range was noticed as early as the second Riassunto. Yiene analizzata in quesro anicolo la distribuzione half of the last century (Peters, 1859; Hauer, 1862;Hof- delle facies del Permiano superiore e de1 Triassico nell'ambito della mann, 1871.; Bóckh, 1873). Later on, at rhe beginning of Catena Transdanubiana. Sono state compilate cane di {acies per sei this century others (Taeger, 1912, 1913; Lóczy, 1916) interualli di tempo, sulla base di dati di superficie e sottosuolo, che confirmed these sono state uti\jzzate per le ricostruzioni paleogeografiche. Conside- statements. In accordance with generai rando l'intervallo Permiano superiore-Triassico, le unità della Catena contemponneous concepts, the plausible relationship Transdanubiana mostrano una precisa polarità: la porzione a nordest was explained by assuming narrow seaways between the rappresenta il lato verso il mare aperto, mentre la porzione a sudovest Alpine sedimentary basins and the areas the island costituisce il lato in direzione della terraferma. IJna pane imponante of delle facies può essere correlata con facies coeve del Sudalpino e delle mountains within the Pannonian Basin (I-nczy, 1.91.6; falde dello Austroalpino superiore, fornendo un significativo stru- TelegdiRóth, 1.929 ; Yadlsz, 19 6Q). mento per la ricostruzione della posizione originale delle unità della General acceptance of the mobilistic plate rectonic Catena Transdanubiana. -
Minnesota's Mineral Heritage
MINNESOTA'S MINERAL HERITAGE CONSERVATION BULLETIN NUMBER TWELVE MINNESOTA OF CONSERVATION This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp (Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.) Author's Foreword Our natural resources constitute the foundations· of our well-being. the means of our protection, the hope of our future. The resources of any region determine to a marked degree .the activity of its inhabitants. Minnesota, though known as an agricultural state, has great mineral wealth and many of its citizens are engaged in mineral industries. Only ten states exceed Minnesota in the value of their annual mineral output. Of these ten, six are the great oil-producing states, three are the coal-producting states of Pennsylvania, West Virginia and Illinois, and one is California with its oil and gold. All of the mineral substances produced from the rocks of the states may be considered industrial minerals. Some are metals and others are non-metals. Metal mining· is restricted to the iron ranges, but the non-metals include a great variety of materials, such as limestone, agricultural lime, dolomite, marl, sand and gravel, clays and shales, wool rock, structural and architectural stone, etc., which are excavated and processed at many different places in the state. In the preparation of the articles in this bulletin, the main objective of the author was to acquaint the citizens of the state with the nature and extent of our mineral heritage. -
Limestone & Dolomite
Issue Number: 20 Limestone & Dolomite Date: March 2009 1. IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND Both materials may contain trace OF THE COMPANY / UNDERTAKING quantities of other minerals, metal salts, halides. 1.1 Identification of the substance or preparation This datasheet applies to the following products: 3.1.1 Limestone Composition 1.1.1 Limestone: Limestone Aggregates, Granules and Powders Calcium Carbonate Substance Tradenames: Superlon, Longcal and Longcliffe CaCO3 Trivial Chemical Description: Natural Calcium Carbonate Limestone Name 1.1.2 Dolomite: Magnesium Limestone Aggregates, Granules and Powders CAS 1317-65-3 Tradenames: Golconda Number EINECS Chemical Description: Natural Calcium Magnesium Carbonate 215-279-6 Number 1.2 Use of the substance/preparation Powders and granules typically used as inert filler material in applications such 3.1.2 Dolomite Composition as plastics and rubber and building products. Also used in soil stabilization, Calcium Magnesium animal and pet feeds, and glass manufacture. Aggregates used in concrete, Substance Carbonate construction and landscaping. CaMg(CO3)2 Trivial Dolomite 1.3 Company identification Name Longcliffe Quarries Ltd CAS 16389-88-1 Brassington, Matlock, Derbyshire, DE4 4BZ Number EINECS Telephone : +44 (0)1629 540284 Fax :+44 (0)1629 540569 240-440-2 Number E-mail: [email protected] 3.2 Components presenting a 1.4 Emergency telephone health hazard Emergency telephone number available during office hours: 01629 540284 The products contain no Emergency telephone number available outside office hours: No components classified as dangerous according to EC 2. HAZARDS IDENTIFICATION directive 1999/45/EC. The products contain no substances classified as being hazardous to health according to EC directive 1999/45/EC. -
The Magnesium Isotope (Оґ26mg) Signature of Dolomites
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 149 (2015) 131–151 www.elsevier.com/locate/gca The magnesium isotope (d26Mg) signature of dolomites A. Geske a, R.H. Goldstein b, V. Mavromatis c, D.K. Richter a, D. Buhl a, T. Kluge d, C.M. John d, A. Immenhauser a,⇑ a Ruhr-University Bochum, Institute for Geology, Mineralogy and Geophysics, Universita¨tsstraße 150, D-44801 Bochum, Germany b University of Kansas, Department of Geology, 1475 Jayhawk Blvd., Lawrence, KS 66045, USA c Institute of Applied Geosciences, Graz University of Technology, 8010 Graz, Austria d Imperial College London, Department of Earth Science and Engineering, Prince Consort Road, SW7 2BP London, United Kingdom Received 1 August 2014; accepted in revised form 1 November 2014; available online 13 November 2014 Abstract Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (d18O, d13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipita- tion environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evap- orative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine (“mixing zone”) dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic 26 26 investigation of dolomite magnesium isotope ratios (d Mgdol). Dolomite d Mg ratios documented here range, from 26 À2.49& to À0.45& (d Mgmean = À1.75 ± 1.08&, n = 42). -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
The Influence of Karst Aquifer Mineralogy And
water Article The Influence of Karst Aquifer Mineralogy and Geochemistry on Groundwater Characteristics: West Bank, Palestine Hassan Jebreen 1,* , Andre Banning 1 , Stefan Wohnlich 1, Andrea Niedermayr 1, Marwan Ghanem 2 and Frank Wisotzky 1 1 Hydrogeology Department, Institute of Geology, Geophysics and Mineralogy, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; [email protected] (A.B.); [email protected] (S.W.); [email protected] (A.N.); [email protected] (F.W.) 2 Department of Geography, Birzeit University, P.O. Box 14, Ramallah, Palestine; [email protected] * Correspondence: [email protected]; Tel.: +49-234-322-5387 Received: 31 October 2018; Accepted: 7 December 2018; Published: 11 December 2018 Abstract: This work reports, for the first time, the mineralogical and geochemical characteristics of karst aquifers in the Central West Bank (CWB) catchment in Palestine. It provides an integrated study approach by correlating the geochemistry of the lithology and hydrochemical data of groundwater samples. Mineralogical analysis showed that all of the samples were dominantly composed of either calcite CaCO3 (5–100 wt. %) or dolomite CaMg(CO3)2 (4–100 wt. %), with minor amounts of quartz and feldspar, which is supported by the inorganic carbon content (9–13 wt. %) and hydrochemical composition of the spring water samples. The whole-rock geochemical data indicated that the samples have low contents of trace elements and transition metals. In contrast, the concentrations of alkaline earth elements (Mg, Ca, Sr, Ba) and Mn were high in the rock and groundwater samples. Generally, the trace elements of rock samples with concentrations >10 ppm included Sr (17–330 ppm), Mn (17–367 ppm), Ba (2–32 ppm), W (5–37 ppm), Cr (3–23 ppm), Zn (1.7–28 ppm), V (4–23 ppm), and Zr (1–22 ppm), while the concentrations of all the other trace elements was below 10 ppm. -
Research Article
kj8 z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 11, Issue, 05, pp.3546-3552, May, 2019 DOI: https://doi.org/10.24941/ijcr.34579.05.2019 ISSN: 0975-833X RESEARCH ARTICLE THE CAVE OPENING TYPES OF THE BAKONY REGION (TRANSDANUBIAN MOUNTAINS, HUNGARY) *Márton Veress and Szilárd Vetési-Foith Department of Physical and Geography, University of Pécs, Pécs, Hungary ARTICLE INFO ABSTRACT Article History: The genetic classification of the cave openings in the Bakony Region is described. The applied Received 09th February, 2019 methods are the following: studying the relation between the distribution of phreatic caves and the Received in revised form quality of the host rock and in case of antecedent valley sections, making theoretical geological 12th March, 2019 longitudinal profiles. The phreatic caves developed at the margins of the buried karst terrains of the th Accepted 15 April, 2019 mountains. The streams of these terrains created epigenetic valleys, while their seeping waters created th Published online 30 May, 2019 karst water storeys over the local impermeable beds. Cavity formation took place in the karst water storeys. Phreatic cavities also developed in the main karst water of the mountains. The caves are Key Words: primarily of valley side position, but they may occur on the roof or in the side of blocks. The cavities Gorge, Phreatic Cave, of valley side position were opened up by the streams downcutting the carboniferous rocks (these are Development of Cave openings. the present caves of the gorges). While cavities of block roof position developed at the karst water storey at the mound of the block. -
Hydrothermal-Sedimentary Dolomite
Zhang et al. Journal of Palaeogeography (2020) 9:24 https://doi.org/10.1186/s42501-020-00070-0 Journal of Palaeogeography ORIGINAL ARTICLE Open Access Hydrothermal-sedimentary dolomite — a case from the Middle Permian in eastern Junggar Basin, China Shuai Zhang1,2,3,4, Yi-Qun Liu1,2*, Hong Li1,2, Xin Jiao1,2 and Ding-Wu Zhou1,2 Abstract The Middle Permian Lucaogou Formation in the Jimusar Sag, eastern Junggar Basin, NW China, was deposited in a salt lake within an intracontinental rift basin with intense hydrothermal activity. Hydrothermal-sedimentary dolomite in the form of three types of dolostones, namely, analcime-feldspar dolostone (AFD), silicic dolostone (SD) and buddingtonite-albite dolostone (BAD), related to syn-sedimentary hydrothermal activity at lake bottom was discovered. The characteristics and formation mechanism of the dolomite were studied based on micron-scale petrographic and isotopic geochemical research. The syn-depositional formation of these dolostones was indicated by their rock-mineral features and syn-sedimentary deformation stage. The dolomite was composed of relatively poorly ordered proto-dolomite crystals with micron-sized spherical or sub-spherical morphology and coexisted with hydrothermal minerals, including analcime, buddingtonite, albite and chalcedony. Albite clasts were replaced by the dolomite, indicating high-temperature conditions during formation. The remarkably low strontium isotopic compositions of the dolostones (87Sr/86Sr with an average of 0.705687) indicated that mantle-derived materials 13 might have involved in the ore-forming fluid. The dolostones had positive δ CPDB values (with an average of 18 18 6.94‰) and negative δ OPDB values (with an average of − 8.12‰). -
Sinkholes – Fillmore County
STATE OF MINNESOTA Prepared and Published with the Support of COUNTY ATLAS SERIES DEPARTMENT OF NATURAL RESOURCES THE MINNESOTA ENVIRONMENT AND NATURAL RESOURCES TRUST FUND ATLAS C-8, PART B DIVISION OF WATERS Plate 8 — Sinkholes and Sinkhole Probability SINKHOLES AND SINKHOLE PROBABILITY Geologic Atlas indicate that the recently recharged water in Fillmore County aquifers usually shows varying levels of By anthropogenic pollutants. These human-induced chemical Kathleen M. Witthuhn and E. Calvin Alexander, Jr. changes are absent in the water from aquifers recharged more 1995 than about 40 years ago. Other environmental problems created by sinkholes are INTRODUCTION The highest sinkhole densities occur as Sinkhole Plains in a physical. Soil loss can be a significant problem if sheet and gully northwest to southeast band across the central part of Fillmore erosion are allowed to develop around the sinkholes. Potentially In Fillmore County, mildly acidic ground water slowly County and are part of a sinkhole trend extending from hazardous incidents have occurred when new sinkholes open dissolves the carbonate bedrock and produces distinctive ground- southeastern Olmsted County into northeastern Iowa. Sinkhole catastrophically under farm equipment being driven over fields. water conditions and landscapes known as karst (White, 1988; Plains occur where the first bedrock is the Spillville, Any facility may be structurally damaged if a sinkhole opens Ford and Williams, 1989). Karst landscapes are characterized by Maquoketa/Dubuque, or Stewartville Formations or the Prosser under or adjacent to it. Home owners have experienced economic sinkholes, caves, sinking streams and subsurface drainage with Limestone and are restricted to flat hilltops adjacent to or losses from sinkholes collapsing near or under house an associated lack of surface water in all but base-level streams between stream valleys. -
Comparison of Calcite + Dolomite Thermometry and Carbonate +
American Mineralogist, Volume 80, pages 131-143, 1995 Comparison of calcite + dolomite thermometry and carbonate + silicate equilibria: Constraints on the conditions of metamorphism of the Llano uplift, central Texas, U.S.A. CHERITH M. R. LETARGO,WILLIAM M. LAMB* Department of Geology and Geophysics, Texas A & M University, College Station, Texas 77843, U.S.A. JONG-SIM PARK** Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. ABSTRACT Temperatures based on the composition of calcite coexisting with dolomite (calcite + dolomite thermometry) range from 475 to 600°C for 63 marbles from the Llano uplift of central Texas. The highest temperatures, -600°C, were obtained by carefully reintegrating calcite containing exsolved lamellae of dolomite. In some cases, these high temperatures were determined for marbles that contain an isobarically invariant assemblage consisting of calcite + dolomite + tremolite + diopside + forsterite. At a pressure of 3 kbar, these five minerals are stable at 630 OCand Xco, = 0.62. In contrast, relatively low calcite + dolomite temperatures of 475-480 °Cwere obtained for marbles containing the assemblage calcite + dolomite + tremolite + talc. This talc-bearing assemblage is stable at ~475 OC, depending on fluid composition, at a pressure of 3 kbar. Additional isobarically univariant equilibria are stable at intermediate temperatures (generally between 535 and 630 0q, and these are also generally consistent with results obtained from calcite + dolomite thermom-