Fish Parasites and Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Fish Parasites and Diseases Journal of Oceanography and Marine Research Editorial Fish Parasites and Diseases Jai-Dong Kim* Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea DESCRIPTION difficulty to kill their host. For instance, a few tapeworms make some fish act so that a ruthless bird can get it. The ruthless bird Like people and different creatures, fish experience the ill effects is the following host for the parasite in the following phase of its of infections and parasites. Fish protections against sickness are life cycle.Specifically, the tapeworm Schistocephalus solidus explicit and vague. Vague guards incorporate skin and scales, just turns contaminated threespine stickleback white, and afterward as the bodily fluid layer discharged by the epidermis that traps makes them more light so they sprinkle along at the outside of microorganisms and represses their development. On the off the water, getting simple to see and simple to get for a passing chance that microorganisms penetrate these guards, fish can bird. Parasites can be interior (endoparasites) or outside foster provocative reactions that expansion the progression of (ectoparasites). Some inward fish parasites are terrific, for blood to contaminated regions and convey white platelets that example, the philometrid nematode Philometra fasciati which is endeavor to obliterate the microbes. parasitic in the ovary of female Blacktip grouper;the grown-up female parasite is a red worm which can reach up to 40 Explicit guards are specific reactions to specific microbes centimeters long, for a breadth of just 1.6 millimeter; the guys perceived by the fish's body, which are adaptive invulnerable are little. Other interior parasites are discovered living inside fish responses. As of late, antibodies have gotten broadly utilized in gills, incorporate encysted grown-up didymozoid trematodes, a hydroponics and decorative fish, for instance immunizations for couple trichosomoidid nematodes of the class Huffmanela, furunculosis in cultivated salmon and koi herpes infection in including Huffmanela ossicola which lives inside the gill bone, koi. Some industrially significant fish illnesses are VHS, ICH, and spinning infection. and the encysted parasitic turbellarian Paravortex. Different protists and Myxosporea are additionally parasitic on gills, where Parasites in fish are a typical normal event. Parasites can give they structure pimples. data about have populace environment. In fisheries science, for Fish gills are additionally the favored living space of numerous instance, parasite networks can be utilized to recognize particular outside parasites, connected to the gill yet living out of it. The populaces of similar fish animal categories co-occupying a locale. most well-known are monogeneans and certain gatherings of Furthermore, parasites have an assortment of specific parasitic copepods, which can be incredibly various. Other outer characteristics and life-history techniques that empower them to parasites found on gills are leeches and, in seawater, hatchlings colonize have. Understanding these parts of parasite nature, of of gnathiid isopods. Isopod fish parasites are for the most part premium by their own doing, can enlighten parasite-aversion techniques utilized by has. outer and feed on blood. The hatchlings of the Gnathiidae family and grown-up cymothoidids have penetrating and sucking Typically parasites (and microbes) need to try not to kill their mouthparts and pawed appendages adjusted for sticking onto hosts, since wiped out hosts can mean wiped out parasites. their hosts. Cymothoa exigua is a parasite of different marine Developmental imperatives may work so parasites try not to kill fish. It makes the tongue of the fish decay and has its spot in their hosts, or the regular inconstancy in have guarded what is accepted to be the principal occasion found of a parasite techniques may get the job done to keep have populaces viable. practically supplanting a host structure in creatures. Parasite diseases can impede the romance dance of male Other parasitic disorders, include Gyrodactylus salaris, threespine sticklebacks. At the point when that occurs, the Ichthyophthirius multifiliis, cryptocaryon, velvet disease, females reject them, proposing a solid system for the choice of parasite resistance." Brooklynella hostilis, Hole in the head, Glugea, Ceratomyxa shasta, Kudoa thyrsites, Tetracapsuloides bryosalmonae, Notwithstanding, not all parasites need to keep their hosts alive, Cymothoa exigua, leeches, nematode, flukes, carp lice and and there are parasites with multistage life cycles who go to some salmon lice. Correspondence to: Jai-Dong Kim, Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea, Email: [email protected] Received: July 02, 2021; Accepted: July 16, 2021; Published: July 23, 2021 Citation: Kim JD (2021) Fish Parasites and Diseases. J Oceangr Mar Res. 9:e004 Copyright: © 2021 Kim JD. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. J Oceangr Mar Res, Vol.9 Iss.7 No:100e004 1 Kim JD In spite of the fact that parasites are for the most part viewed as physically dimorphic qualities. Parasites give a chance to the unsafe, the annihilation, everything being equal, would not exchange of hereditary material between species. On really be useful. Parasites represent as much as or the greater uncommon, however critical, events this may work with part of life's variety; they play out a significant biological job (by developmental changes that would not in any case happen, or debilitating prey) that environments would set aside some effort that would somehow take significantly more. to adjust to; and without parasites life forms may ultimately keep an eye on agamic multiplication, lessening the variety of J Oceangr Mar Res, Vol.9 Iss.7 No:100e004 2.
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Catálogo De Endoparásitos En Peces Del Estero El Venado
    Catálogo de Endoparásitos en Peces del Estero El Venado Universidad Nacional Autónoma de Nicaragua, León (UNAN-León) Escuela de Ciencias Agrarias y Veterinarias Elaborado por: ● Julián Valentín González López ● Bryan Snayder Hernández Mejía ● Adonis Josías Pereira López Agosto, 2019 Página 21 Rodríguez, M., Gerson, R., Monroy, Y., & Mata, J. (2001). Manual de Enfermedades de peces. México: CONA- PESCA. Ruiz, A., & Madrid, J. (1992). Estudio de la biología del isó- podo parasito Cymothoa exigua Schioedte y Meinert, 1884 y su relación con el huachinango Lutjanus peru (pisces: Lutjanidae) Nichols y Murphy, 1992, a partir de capturas comerciales en Michoacan. Ciencias Ma- rinas, 19.34. Serrano-Martínez, E., Quispe, M., Hinostroza, E., & Plasen- cia, L. (2017). Detección de Parásitos en Peces Mari- nos Destinados al Consumo Humano en Lima Metro- politana. Revista de Investigaciones Veterinarias del Perú, 160-168. Vidal, V., Aguirre, M., Scholz, T., González, D., & Mendoza, E. (2002). Atlas de los helmintos parásitos de cícli- dos de México. México: Instituto politécnico Nacio- nal Dirección de publicaciones Tresguerras . Yubero, F., Auroux, F., & López, V. (2004). Anisakidos pa- rásitos de peces comerciales. Riesgos asociados a la salud publica. España: Anales de la real academia de ciencias veterinarias de Andalucía oriental. Ing. Acuícola 2019 Página 20 INDICE Kinkelin, P., & Ghittino, P. (1985). Tratado de la enferme- Introducción ……………………………………………...………….. 4 dades de los peces. Zaragoza: Acribia. Mancini, M. (2000). Estudio ictiopatologico en poblaciones Cymothoidae spp…………………………………………………….. 5 silvestres de la región centro-sur de la provincia de Córdoba. Argentina: La argentina. Anisakis spp……………………………………………………………. 6 Martínez, E., Quispe, M., Hinostroza, E., & Plasencia, L. (2017). Detección de parásitos en peces marinos des- tinados al consumo humano.
    [Show full text]
  • Nematoda: Philometridae) from Freshwater Drum (Aplodinotus Grunniens)
    J. Helminthol. Soc. Wash. 60(1), 1993, pp. 48-54 infrastructure of the First-Stage Larvae of a Philometra sp. (Nematoda: Philometridae) from Freshwater Drum (Aplodinotus grunniens) ROSMARIE KELLY AND JOHN L. CRITES Department of Zoology, The Ohio State University, Columbus, Ohio 43210 ABSTRACT. An ultrastructural study of the first-stage larvae of Philometra sp., utilizing scanning and transmission electron microscopy, was undertaken to understand behaviors of this larval stage better. Larvae have an egg tooth present on the dorsal labial ridge and may penetrate the gut wall of the copepod host through its use. Internally, first-stage larvae were found to have a partially developed digestive system that is filled with a yolklike material and ends in storage cells. Larvae may not feed at this stage, relying instead on this material for an energy source. The caudal end of the first-stage larva consists of a concave, oval-spatulate structure abundantly supplied with muscle. Muscular contractions possibly allow the attachment to particles seen during the free- swimming phase of this larval stage. KEY WORDS: Philometra sp., Nematoda, morphology, ultrastructure, SEM, TEM. Nematodes of the family Philometridae pro- tinct cells and an intestine filled with refractile duce free-swimming first-stage larvae. From late granules (Uhazy, 1976). Uhazy (1976) also men- June to early August, larvigerous females of Phi- tioned that Philometroides nodulosa and P. san- lometra sp. can be found streaming from the eyes guinea do not have terminal buttonlike swellings of the freshwater drum. These worms rupture, on the tail, but P. huronensis does. Thomas' releasing thousands of first-stage larvae into the (1929) description of P.
    [Show full text]
  • Isolation of Intestinal Parasites of Schilbe Mystus from the Mid Cross River Flood System Southeastern Nigeria
    AASCIT Journal of Health 2015; 2(4): 26-31 Published online July 20, 2015 (http://www.aascit.org/journal/health) Isolation of Intestinal Parasites of Schilbe mystus from the Mid Cross River Flood System Southeastern Nigeria Uneke Bilikis Iyabo, Egboruche Joy Dept of Applied Biology, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria Email address [email protected] (U. B. Iyabo), [email protected] (U. B. Iyabo) Citation Keywords Uneke Bilikis Iyabo, Egboruche Joy. Isolation of Intestinal Parasites of Schilbe mystus from the Intestinal Parasites, Mid Cross River Flood System Southeastern Nigeria. AASCIT Journal of Health. Nematodes, Vol. 2, No. 4, 2015, pp. 26-31. Trematodes, Cestodes, Abstract Protozoans, A survey of Schilbe mystus of the mid Cross River flood system was conducted between Acanthocephalans, August and October, 2014 to determine the presence of parasitic infection in S. mystus . Schilbe mystus The fish were collected with gill nets, hook and line. Seventy five out of the one hundred fish examined were infected (75.0%) with parasites. The end oparasites recovered were mostly nematodes, trematodes, cestodes, protozoa and acanthocephalans. Numerical abundance of parasites showed that a total of 128 species of end oparasites occurred in Received: June 30, 2015 the fish examined. Nematodes had 33.6% (43/128), trematodes 11.7% (15/128), Revised: July 10, 2015 cestodes 24.2% (31/128), protozoa 12.5% (16/128) and acanthocephalan 18.0% Accepted: July 11, 2015 (23/128). The prevalence of end oparasites of the fish showed that parasites were most prevalent in fishes with length Class 14.1-16 cm TL with 67.2% while class 21.1-22cm had the least prevalence (1.60%).
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Proteome Analysis Reveals a Role of Rainbow Trout Lymphoid Organs During Yersinia Ruckeri Infection Process
    www.nature.com/scientificreports Correction: Author Correction OPEN Proteome analysis reveals a role of rainbow trout lymphoid organs during Yersinia ruckeri infection Received: 14 February 2018 Accepted: 30 August 2018 process Published online: 18 September 2018 Gokhlesh Kumar 1, Karin Hummel2, Katharina Noebauer2, Timothy J. Welch3, Ebrahim Razzazi-Fazeli2 & Mansour El-Matbouli1 Yersinia ruckeri is the causative agent of enteric redmouth disease in salmonids. Head kidney and spleen are major lymphoid organs of the teleost fsh where antigen presentation and immune defense against microbes take place. We investigated proteome alteration in head kidney and spleen of the rainbow trout following Y. ruckeri strains infection. Organs were analyzed after 3, 9 and 28 days post exposure with a shotgun proteomic approach. GO annotation and protein-protein interaction were predicted using bioinformatic tools. Thirty four proteins from head kidney and 85 proteins from spleen were found to be diferentially expressed in rainbow trout during the Y. ruckeri infection process. These included lysosomal, antioxidant, metalloproteinase, cytoskeleton, tetraspanin, cathepsin B and c-type lectin receptor proteins. The fndings of this study regarding the immune response at the protein level ofer new insight into the systemic response to Y. ruckeri infection in rainbow trout. This proteomic data facilitate a better understanding of host-pathogen interactions and response of fsh against Y. ruckeri biotype 1 and 2 strains. Protein-protein interaction analysis predicts carbon metabolism, ribosome and phagosome pathways in spleen of infected fsh, which might be useful in understanding biological processes and further studies in the direction of pathways. Enteric redmouth disease (ERM) causes signifcant economic losses in salmonids worldwide.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • The Morphology and Sexual Maturation of Philometra Americana
    AN ABSTRACT OF THE THESIS OF RICHARD THOMAS CARTER for the I,l.A. 1n ZooLoev r ?r;;'""' (Major) Date thesis is presentedC\t\sber- l3rl9&rD Title TI{E MORPHOL9GY AI.ID SEXUAL }IATURATION OF PHILO}FTR+ A}'lEBfICAtlA EKBAIII,I- 1 CULO ILOMETRIDAE Abstract Approved " (Major professor) '' '. The female Pbilometra americana Ekbaum, 1933 is a common subcutaneous parasite of the starry flounder, !&!!g!![reg stellatug (Pallas) of Yaquina Bay, Lincoln County, Oregon. Maturation of this worm produces noticeable red cysts subcutaneously between the fin and tail rays and similarly on the operculum. The gravid female penetrates the epidermis and leaves the fish. In sea water, the female bursts to rel-ease thousands of larvae which are presumably then ingested by an intermediate host. One thousand two hundred twenty-four starry flounders were examined and 280 fish were found to be infected. Three hundred forty-three female P, americqna were collected and studied. No male was found. The percent of infection decreased as the size of the flounders increased. This suggests that the intermediate host for P. anericana is primarily in the diet of the smalLer fish. Col-Lection data indicates that there is no seasonaL occurrence of the infection in this locality, but no conclusion was reached as to the time required for the parasite to become gravid and Leave the host fish. The digestive and reproductive systems of P. americana change drasticalLy as the animal matures. There is a multipLication of celLs in the intestinal walL during maturation. There is an atrophy of the anus, vagina and vul-va by the time the animal has become pink in color with worm-Like embryos in the uterus.
    [Show full text]
  • Temperature-Driven Proliferation of Tetracapsuloides Bryosalmonae in Bryozoan Hosts Portends Salmonid Declines
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 227–236, 2006 Published June 23 Dis Aquat Org Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines S. Tops, W. Lockwood, B. Okamura* School of Biological Sciences, Philip Lyle Research Building, University of Reading, Whiteknights, PO Box 228, Reading RG6 6BX, UK ABSTRACT: Proliferative kidney disease (PKD) is an emerging disease of salmonid fishes. It is pro- voked by temperature and caused by infective spores of the myxozoan parasite Tetracapsuloides bryosalmonae, which develops in freshwater bryozoans. We investigated the link between PKD and temperature by determining whether temperature influences the proliferation of T. bryosalmonae in the bryozoan host Fredericella sultana. Herein we show that increased temperatures drive the pro- liferation of T. bryosalmonae in bryozoans by provoking, accelerating and prolonging the production of infective spores from cryptic stages. Based on these results we predict that PKD outbreaks will increase further in magnitude and severity in wild and farmed salmonids as a result of climate-driven enhanced proliferation in invertebrate hosts, and urge for early implementation of management strategies to reduce future salmonid declines. KEY WORDS: Temperature · Climate change · Salmonids · Proliferative kidney disease · Myxozoa · Freshwater bryozoans · Covert infections Resale or republication not permitted without written consent of the publisher INTRODUCTION The source of PKD was obscure until freshwater bryozoans (benthic, colonial invertebrates) were iden- Disease outbreaks in natural and agricultural sys- tified recently as hosts of the causative agent (Ander- tems are increasing in both severity and frequency son et al. 1999), which was described as Tetracapsu- (Daszak et al. 2000, Subasinghe et al.
    [Show full text]
  • Canadian Aquaculture R&D Review 2019
    AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICATION 26 2019 CANADIAN AQUACULTURE R&D REVIEW INSIDE Development of optimal diet for Rainbow Trout (Oncorhynchus mykiss) Acoustic monitoring of wild fish interactions with aquaculture sites Potential species as cleaner fish for sea lice on farmed salmon Piscine reovirus (PRV): characterization, susceptibility, prevalence, and transmission in Atlantic and Pacific Salmon Novel sensors for fish health and welfare Effect of climate change on the culture Blue Mussel (Mytilus edulis) Oyster aquaculture in an acidifying ocean Presence, extent, and impacts of microplastics on shellfish aquaculture Validation of a hydrodynamic model to support aquaculture in the West coast of Vancouver Island CANADIAN AQUACULTURE R&D REVIEW 2019 AAC Special Publication #26 ISBN: 978-0-9881415-9-9 © 2019 Aquaculture Association of Canada Cover Photo (Front): Cultivated sugar kelp (Saccharina latissima) on a culture line at an aquaculture site. (Photo: Isabelle Gendron-Lemieux, Merinov) First Photo Inside Cover (Front): Mussels. (DFO, Gulf Region) Second Photo inside Cover (Front): American Lobsters (Homarus americanus) in a holding tank. (Jean-François Laplante, Merinov) Cover Photo (Back): Atlantic Salmon sea cages in southern Newfoundland. (KÖBB Media/DFO) The Canadian Aquaculture R&D Review 2019 has been published with support provided by Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program (ACRDP), and by the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Tricia Gheorghe, Véronique Boucher Lalonde, Emily Ryall and G. Jay Parsons Cited as: T Gheorghe, V Boucher Lalonde, E Ryall, and GJ Parsons (eds).
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]