Widespread Paleopolyploidy, Gene Tree Conflict, And

Total Page:16

File Type:pdf, Size:1020Kb

Widespread Paleopolyploidy, Gene Tree Conflict, And RESEARCH ARTICLE AMERICAN JOURNAL OF BOTANY Widespread paleopolyploidy, gene tree confl ict, and recalcitrant relationships among the carnivorous Caryophyllales 1 Joseph F. Walker 2,5 , Ya Yang 2,6 , Michael J. Moore 3 , Jessica Mikenas3 , Alfonso Timoneda 4 , Samuel F. Brockington 4 , and Stephen A. Smith 2,5 PREMISE OF STUDY: The carnivorous members of the large, hyperdiverse Caryophyllales (e.g., Venus fl ytrap, sundews, and Nepenthes pitcher plants) repre- sent perhaps the oldest and most diverse lineage of carnivorous plants. However, despite numerous studies seeking to elucidate their evolutionary rela- tionships, the early-diverging relationships remain unresolved. METHODS: To explore the utility of phylogenomic data sets for resolving relationships among the carnivorous Caryophyllales, we sequenced 10 transcrip- tomes, including all the carnivorous genera except those in the rare West African liana family Dioncophyllaceae. We used a variety of methods to infer the species tree, examine gene tree confl ict, and infer paleopolyploidy events. KEY RESULTS: Phylogenomic analyses supported the monophyly of the carnivorous Caryophyllales, with a crown age of 68–83 million years. In contrast to previous analyses, we recovered the remaining noncore Caryophyllales as nonmonophyletic, although the node supporting this relationship contained a signifi cant amount of gene tree discordance. We present evidence that the clade contains at least seven independent paleopolyploidy events, previously unresolved nodes from the literature have high levels of gene tree confl ict, and taxon sampling infl uences topology even in a phylogenomic data set, re- gardless of the use of coalescent or supermatrix methods. CONCLUSIONS: Our data demonstrate the importance of carefully considering gene tree confl ict and taxon sampling in phylogenomic analyses. Moreover, they provide a remarkable example of the propensity for paleopolyploidy in angiosperms, with at least seven such events in a clade of less than 2500 species. KEY WORDS Caryophyllales; gene tree confl ict; paleopolyploidy; phylogenomics; plant carnivory Carnivory in plants has long fascinated both the general public and soils that would otherwise be unsuitable for plant life by obtaining evolutionary biologists. Charles Darwin himself dedicated an entire nutrients unavailable in the soil through the digestion of animals. volume to carnivorous species in his Insectivorous Plants ( Darwin, Across angiosperms, carnivory is hypothesized to have indepen- 1875 ). Th e wide array of traps that are used to catch insects and dently evolved at least nine times ( Givnish, 2015). One of these events is other prey items make carnivorous plants some of the most mor- thought to have occurred relatively early on (~83 million years ago phologically diverse plants on Earth ( Ellison and Gotelli, 2001 ; [Ma]) in the noncore Caryophyllales ( Magallón et al., 2015 ), giving rise Heubl et al., 2006 ). Th ese plants are able to occupy nutrient poor to a “carnivorous clade” consisting of the fully carnivorous families Droseraceae, Drosophyllaceae, and Nepenthaceae, the small noncar- 1 Manuscript received 27 February 2017; revision accepted 12 May 2017. nivorous African family Ancistrocladaceae, and the rare west African 2 Department of Ecology & Evolutionary Biology, University of Michigan, 830 North family Dioncophyllaceae, which includes the unusual carnivorous University Avenue, Ann Arbor, Michigan 48109-1048 USA; 3 Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, liana Triphyophyllum peltatum and two other monotypic, noncarnivo- Oberlin, Ohio 44074-1097 USA; and rous genera (Dioncophyllum and Habropetalum ) ( Albert et al., 1992 ; 4 Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK Meimberg et al., 2000 ; Brockington et al., 2009 ; Soltis et al., 2011 ; 5 Authors for correspondence (e-mails: [email protected]; [email protected]) J.F.W. Hernández-Ledesma et al., 2015 ). Th e carnivorous clade of Caryo- ORCID id: 0000-0003-2928-8899 6 Present address: Department of Plant and Microbial Biology, University of Minnesota- phyllales comprises approximately 250 of the estimated 600 species of Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108 USA carnivorous angiosperms ( Heubl et al., 2006 ; Ellison and Gotelli, https://doi.org/10.3732/ajb.1700083 2009 ) and includes a diverse assemblage of trap plants and pitcher 858 • AMERICAN JOURNAL OF BOTANY 104 (6): 858 – 867 , 2017; http://www.amjbot.org/ © 2017 Walker et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY). JUNE 2017 , VOLUME 104 • WALKER ET AL. —PHYLOGENOMIC ANALYSIS OF CARNIVOROUS CARYOPHYLLALES • 859 plants that occupy a wide range of ecosystems, from the fully aquatic this article) (Bioproject: PRJNA350559). Assembled sequences, Aldrovanda vesiculosa to desert species of Drosera to the rainforest data fi les, programs, alignments, and trees are available from Dryad liana Triphyophyllum. Moreover, carnivory also appears to have been (data available from the Dryad Digital Repository: http://dx.doi. lost 1–3 times (Heubl et al., 2006 ) within the carnivorous clade, in- org/10.5061/dryad.vn730 ). cluding in the ancestor of the 16 species of Ancistrocladaceae ( Taylor et al., 2005 ) as well as in the ancestors of Dioncophyllum and Hab- Taxon sampling, tissue collection, sequencing, and data assem- ropetalum in Dioncophyllaceae ( Meimberg et al., 2000 ). bly— Tissue collection, RNA extraction, library preparation, and Despite broad appeal and interest, the evolutionary relationships quality control were carried out using a previously developed in the noncore Caryophyllales remain ambiguous, with studies seek- workflow ( Yang et al., 2017 ). Transcriptomes of eight noncore ing to resolve these relationships oft en resulting in individually well- Caryophyllales families representing nearly all of the major lineages supported but mutually confl icting topologies ( Meimberg et al., of noncore Caryophyllales were included in this study (Appendix S1). 2000 ; Cameron et al., 2002 ; Brockington et al., 2009 ; Hernández- Th e transcriptomes of Dionaea muscipula , Aldrovanda vesiculosa , Ledesma et al., 2015 ). Much of this confl ict involves the earliest Nepenthes ampullaria , and Reaumuria trigyna were downloaded branch in the noncore carnivorous clade, with studies fi nding Ne- from the NCBI Sequence Read Archive (accessions SRX1376794; penthaceae as sister to the remaining lineages ( Hernández-Ledesma SRR1979677; SRR2666506, SRR2866512, and SRR2866533 com- et al., 2015 ), others fi nding Droseraceae as sister to the rest of the bined; and SRX105466 and SRX099851 combined; respectively) group ( Meimberg et al., 2000 ) and yet others fi nding Droseraceae to (Dang et al., 2013 ; Brockington et al., 2015 ; Bemm et al., 2016; Wan be sister to the Nepenthaceae ( Brockington et al., 2009 ). Th e strong Zakaria et al., 2016 ). Th e assembly used for Frankenia laevis was the support for confl icting topologies from diff erent studies may be ex- same as that used by Yang et al. (2015) and can be found in Dryad plained by the reliance on one or a few genes leading to systematic ( http://dx.doi.org/10.5061/dryad.33m48 ). The genomes of Beta error ( Maddison, 1997 ; Rokas et al., 2003 ). Th is type of error can vulgaris (RefBeet-1.2) and Spinacia oleracea were downloaded arise from a variety of sources, including, but not limited to, incom- from Th e Beta vulgaris Resource ( http://bvseq.molgen.mpg.de/ plete lineage sorting, horizontal gene transfer, hybridization, and Genome/Download/index.shtml ; accessed July 10 2015) ( Dohm et al., hidden paralogy ( Galtier and Daubin, 2008 ). Untangling these pro- 2014 ). We generated 10 new transcriptomes for this study from cesses has proven to be a challenge and adds a strong level of com- fresh tissue collected from Drosera binata , Nepenthes alata , Ancis- plexity to phylogenomic analyses ( Smith et al., 2015 ). trocladus robertsoniorum , Plumbago auriculata , Ruprechtia salici- Transcriptomes have proven to be a powerful source of data for folia , and Drosophyllum lusitanicum . Th e D. binata and N. alata understanding this complexity and have helped provide insight data were also collected from trap tissue at three diff erent develop- into the evolutionary history of nonmodel species ( Dunn et al., mental stages (Appendix S1). Th e plant tissues were fl ash frozen in 2008 ; Cannon et al., 2015 ; Yang et al., 2015 ). Th e thousands of liquid nitrogen and stored at −80 °C. RNAs were extracted from the genes typically sequenced in a transcriptome provide a means of leaf tissue using the Ambion PureLink Plant RNA Reagent (Th er- identifying gene duplications and paleopolyploidy events ( Cannon moFisher Scientifi c, Waltham, Massachusetts, USA) following the et al., 2015 ; Yang et al., 2015 ; Barker et al., 2016 ), which may clarify manufacturer’s instructions and quantifi ed using the Agilent 2100 whether such events have been major drivers of evolutionary nov- Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). elty ( Ohno et al., 1968 ; Soltis et al., 2014 ). Moreover, analyses of Sequence libraries were prepared using either the TruSeq Stranded gene tree concordance and confl ict allow for a better understand- mRNA Library Prep Kit (Illumina, San Diego, California, USA) or ing of the formation of species relationships and the complexity the KAPA stranded mRNA library preparation
Recommended publications
  • 2018 May Caleyi .Cdr
    p CALEYI i c A n d r e P o r t e n e r s NORTHERN BEACHES G R O U P May 2018 ART IN THE BOTANIC GARDEN 2018 President David Drage Dr Conny Harris (02) 9451 3231 Vice-President Six members of the group, plus one friend, made the Group's annual David Drage (02) 9949 5179 pilgrimage to the Royal Botanic Gardens in Sydney to see the work of some Joint Secretaries very talented artists. It was particularly pleasing that Estelle was well enough to join us. Julia Tomkinson (02) 9949 5179 Penny Hunstead (02) 9999 1847 Treasurer Lindy Monson (02) 9953 7498 Regional Delegate Harry Loots (02) 9953 7498 Librarian Jennifer McLean (02) 9970 6528 Talks Co-ordinator Russell Beardmore 0404 023 223 Walks Co-ordinator Penny Hunstead (02) 9999 1847 Catering Officer Georgine Jakobi (02) 9981 7471 Editor Jane March 0407 220 380 Next Meeting: 7.15 pm Thursday May 3, 2018 at Catleya Goldenzel by Annie Hughes Stony Range Botanic Garden, Dee Why. Presentation: All About Stony. Eleanor Eakins. We started at Botanica where the theme this year was 'Symbiosis'. This meant Supper: Jennifer & Georgine that there were plenty of insects including bees and ants, spiders and birds included in the paintings along with the plants. As usual, the quality of the work Coming Up: was very high. We then took a break to have some lunch in the courtyard outside the exhibition venue, Lion Gate Lodge. APS NSW ANNUAL GENERAL MEETING AND QUARTERLY GATHERING Saturday, 26 May 2018. The next quarterly gathering will be held in conjunction with the AGM on Saturday, 26 May.
    [Show full text]
  • Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae
    OPEN ACCESS JCTS Article SERIES B Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae R.W. Sanders and T.C. Wood Core Academy of Science, Dayton, TN Abstract The morphological adaptations of carnivorous plants and taxonomic distributions of those adaptations are reviewed, as are the conflicting classifications of the plants based on the adaptations, reproductive morphology, and DNA sequences. To begin developing a creationist understanding of the origin of plant carnivory, we here focus specifically on pitcher plants of Nepenthaceae and Sarraceniaceae because their popularity as cultivated curiosities has generated a literature resource amenable to baraminological analysis. Hybridization records were augmented by total nucleotide differences to assess species similarities. Nonhybridizing species falling within the molecular range of hybridizing species were included in the monobaramin of the hybridizing species. The combined data support each of the three genera of the Sarraceniaceae as a monobaramin, but the three could not be combined into a larger monobaramin. With the Nepenthaceae, the data unequivocally place 73% of the species in a single monobaramin, strongly suggesting the whole genus (and, thus, family) is a monobaramin. The lack of variation in the carnivorous habit provides no evidence for the intrabaraminic origin of carnivory from non-carnivorous plants. An array of fascinating symbiotic relationships of pitchers in some species with unusual bacteria, insects, and vertebrates are known and suggest the origin of carnivory from benign functions of the adaptive structures. However, these symbioses still do not account for the apparent complex design for carnivory characteristic of all species in the two families. Editor: J.W.
    [Show full text]
  • Analyzing Contentious Relationships and Outlier Genes in Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/115774; this version posted June 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Running head: LIKELIHOOD AND OUTLIERS IN PHYLOGENOMICS Title: Analyzing contentious relationships and outlier genes in phylogenomics Joseph F. Walker1*, Joseph W. Brown2, and Stephen A. Smith1* 1Deptartment Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA 2Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom *Corresponding authors Corresponding author emails: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/115774; this version posted June 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Recent studies have demonstrated that conflict is common among gene trees in phylogenomic studies, and that less than one percent of genes may ultimately drive species tree inference in supermatrix analyses. Here, we examined two datasets where supermatrix and coalescent-based species trees conflict. We identified two highly influential “outlier” genes in each dataset. When removed from each dataset, the inferred supermatrix trees matched the topologies obtained from coalescent analyses. We also demonstrate that, while the outlier genes in the vertebrate dataset have been shown in a previous study to be the result of errors in orthology detection, the outlier genes from a plant dataset did not exhibit any obvious systematic error and therefore may be the result of some biological process yet to be determined.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Carnivorous Plant Newsletter V47 N2 June 2018
    New Cultivars Keywords: Pinguicula ‘Riva’, Drosera binata ‘Ghost’, Nepenthes ampullaria ‘Black Widow’, Nepenthes ampullaria ‘Caramel Candy Stripe’, Nepenthes ampullaria ‘Lime Delight’, Nepenthes ampullaria ‘Chocolate Delight’, Nepenthes ampullaria ‘Cherry Delight’, Nepenthes ampullaria ‘Bronze Delight’. Pinguicula ‘Riva’ Submitted: 22 February 2018 The parents of Pinguicula ‘Riva’ (Fig. 1) are P. agnata (with scented flowers) × P. gigantea (to the best of my knowledge; the second parent may have been a P. gigantea × P. emarginata). This cross was done and the resulting seed germinated in late 2013 by me in San Francisco, California. This particular plant made its specialness apparent after about 2 years of growth under lights when it began flowering. The flower is approximately 2 cm wide by 2.5 cm long and is white with a bright yellow center which is surrounded by a flaring purple ring. The petals are 1 cm long, 7-9 mm wide, slightly ruffled, and the top 2 petals have irregular slightly serrated upper margins. The spur is 12 mm long, green and straight. The flower stalk is 18-20 cm long. And, the flower is scented, quite heavily in warmer conditions. The flower does not produce pollen or seed so it is sterile. The leaves of the plant are nice as well, ranging from 4-5.5 cm long and about 3 cm wide. The leaf shape is oblong egg-shaped with the rounded end distal from the central growth point. The color of the leaves ranges from pale green with burgundy tinting and margins to muted burgundy with green undertones. The margins of the leaf are slightly upturned.
    [Show full text]
  • Widespread Paleopolyploidy, Gene Tree Conflict, and Recalcitrant Relationships Among the 3 Carnivorous Caryophyllales1 4 5 Joseph F
    bioRxiv preprint doi: https://doi.org/10.1101/115741; this version posted March 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the 3 carnivorous Caryophyllales1 4 5 Joseph F. Walker*,2, Ya Yang2,5, Michael J. Moore3, Jessica Mikenas3, Alfonso Timoneda4, Samuel F. 6 Brockington4 and Stephen A. Smith*,2 7 8 2Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, 9 Ann Arbor, MI 48109-1048, USA 10 3Department of Biology, Oberlin College, Science Center K111, 119 Woodland St., Oberlin, Ohio 44074- 11 1097 USA 12 4Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom 13 5 Department of Plant Biology, University of Minnesota-Twin Cities. 1445 Gortner Avenue, St. Paul, MN 14 55108 15 CORRESPONDING AUTHORS: Joseph F. Walker; [email protected] and Stephen A. Smith; 16 [email protected] 17 18 1Manuscript received ____; revision accepted ______. bioRxiv preprint doi: https://doi.org/10.1101/115741; this version posted March 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 ABSTRACT 20 • The carnivorous members of the large, hyperdiverse Caryophyllales (e.g.
    [Show full text]
  • Universidade Estadual Paulista Câmpus De
    Campus de Botucatu UNESP - UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE BOTUCATU INSTITUTO DE BIOCIÊN CIAS GENÔMICA ORGANELAR E EVOLUÇÃO DE GENLISEA E UTRICULARIA (LENTIBULARIACEAE) SAURA RODRIGUES DA SILVA Tese apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, para obtenção do título de Doutor em Ciências Biológicas (Botânica) BOTUCATU - SP - 2018 - Insti tuto de Biociências – Departamento de Botânica Distrito de Rubião Júnior s/n CEP 18618 - 000 Botucatu SP Brasil Tel 14 3811 6265/6053 fax 14 3815 3744 [email protected] Campus de Botucatu UNESP - UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE BOTUCATU INSTITUTO DE BIOCIÊN CIAS GENÔMICA ORGANELAR E EVOLUÇÃO DE GENLISEA E UTRICULARIA (LENTIBULARIACEAE) SAUR A RODRIGUES DA SILVA PROF. DR. VITOR FERN ANDES OLIVEIRA DE MI RANDA ORIENTADOR PROF. DR. ALESSANDRO DE MEL L O VARANI Coorientador Tese apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, para obtenção do título de Doutor em Ciên cias Biológicas (Botânica) BOTUCATU - SP - 2018 - Instituto de Biociências – Departamento de Botânica Distrito de Rubião Júnior s/n CEP 18618 - 000 Botucatu SP Brasil Tel 14 3811 6265/6053 fax 14 3815 3744 [email protected] 2 Campus de Botucatu FICHA CATALOGRÁFIC A ELABORADA PELA SEÇÃO TÉCNICA DE AQUISIÇÃO E TRATAMENTO DA INFORMAÇÃO DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP Silva, Saura Rodrigues. Genômica organelar e evolução d e Genlisea e Utricularia (Lentibulariaceae) / Saura Rodrigues da Silva. – 2018. Tese (doutorado) – Universidade Estadual Paulista, Instituto de Biociências de Botucatu, 2018. Orientador: Vitor Fernandes Oliveira de Miranda Co - orientador: Alessandro de Mello Varani Assunto CAPES: 1. Sistemática Vegetal CDD 581.1 Palavras - c have: Utricularia ; Genlisea ; genômica de organelas; ndhs; Evolução de organelas.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Carniflora News, April 2019 (PDF)
    THE AUSTRALASIAN CARNIVOROUS PLANTS SOCIETY INC. CARNIFLORA NEWS A.B.N. 65 467 893 226 APRIL 2019 Nepenthes hamata (upper pitcher). Photographed by David Colbourn. Grand Champion at the 2016 Royal Easter Show Welcome to Carniflora News, a newsletter produced by the Australasian Carnivorous CALENDAR Plants Society Inc. that documents the meetings, news and events of the Society. APRIL 5th April 2019 - AUSCPS meeting - Brisbane The current committee of the Australasian Carnivorous Plant Society Inc. comprises: 5th April 2019 - AUSCPS meeting - Canberra featuring Dionaea 6-7th April 2019 - Collectors’ Plant Fair, Clarendon, N.S.W. 12th April 2019 - AUSCPS meeting - Sydney featuring Nepenthes COMMITTEE 22nd April 2019 - Royal Easter Show - Carnivorous Plant Competition MAY President - Wesley Fairhall 3rd May 2019 - AUSCPS meeting - Brisbane 3rd May 2019 - AUSCPS meeting - Canberra featuring Byblis, Drosophyllum and Roridula 10th May 2019 - AUSCPS meeting - Sydney featuring Cephalotus and Heliamphora Vice President - David Colbourn JUNE [email protected] 7th June 2019 - AUSCPS meeting - Brisbane 7th June 2019 - AUSCPS meeting - Canberra focusing on greenhouse management Treasurer - David Colbourn 14th June 2019 - AUSCPS meeting - Sydney featuring Carnivorous bromeliads [email protected] JULY 5th July 2019 - AUSCPS meeting - Brisbane Secretary - Kirk ‘Füzzy’ Hirsch 5th July 2019 - AUSCPS meeting - Canberra featuring bog gardens and winter plant maintenance [email protected] 12th July 2019 - AUSCPS meeting - Sydney & AGM featuring Winter growing Drosera General Committee Member - Barry Bradshaw AUGUST 2nd August 2019 - AUSCPS meeting - Brisbane 2nd August 2019 - AUSCPS meeting - Canberra featuring Cephalotus and Heliamphora 9th August 2019 - AUSCPS meeting - Sydney featuring Pinguicula SEPTEMBER 6th September 2019 - AUSCPS meeting - Brisbane DELEGATES 6th September 2019 - AUSCPS meeting - Canberra featuring Pinguicula and Utricularia 13th September 2019 - AUSCPS meeting - Sydney featuring Nepenthes Journal Editor - Dr.
    [Show full text]
  • (±)-Dioncophyllacine A, a Naphthylisoquinoline Alkaloid with a 4-Methoxy Substituent from the Leaves of Triphyophyllum Peltatum*
    Phytochemistry, Vo\. 31, No. 11, pp. 40154018,1992 0031-9422/92 $5.00 + 0.00 Printed in Great Britain. (!'J 1992 Pergamon Press Lld (±)-DIONCOPHYLLACINE A, A NAPHTHYLISOQUINOLINE ALKALOID WITH A 4-METHOXY SUBSTITUENT FROM THE LEAVES OF TRIPHYOPHYLLUM PELTATUM* GERHARD BRINGMANNt, THOMAS ORTMANN, RAINER ZAGST, BERND ScH6NER, LAURENT AKE ASSIt and CHRISTIAN BURSCHKA§ Institute of Organic Chemistry, University of Wiirzburg, Am Hubland, 0-8700 Wiirzburg, Germany; ~Centre National de Floristique (Conservatoire et Jardin Botaniques), Universite d'Abidjan, 22 b.p. 582 Abidjan 22, Ivory Coast; §Institute of Inorganic Chemistry, University of Wiirzburg, Am Hubland, D-8700 Wiirzburg, Germany (Received 31 January 1992) Key Word Index-Triphyophyl/um peltaturn; Dioncophyllaceae; leaves; (± )-dioncophyllacine A; naphthylisoquino­ line alkaloids; biaryls, naturally occurring; structure elucidation. Abstract-The isolation and structure elucidation of rac-dioncophyllacine A from the leaves of Triphyophyllwn peltatum, is described. Unlike all other naphthylisoquinoline alkaloids, this fully dehydrogenated representative has an additional methoxy group at C-4, the position of which is deduced from NOE results. Dioncophyllacine A has a 7,1'­ site of the biaryl axis, as in dioncophylline A. Its constitution is confirmed by an X-ray structure analysis, which shows that the crystalline form of this new alkaloid is racemic. INTRODUCTION RESULTS AND DISCUSSION The genus Triphyophyllum with its only species The leaves of T. peltatum were extracted with di­ T. peltatum Airy Shaw belongs to the family of the chloromethane. The early fractions obtained on CC of the Dioncophyllaceae, a very small group of African medi­ extract yielded a nitrogen-containing crystalline solid cinal plants [2], the taxonomical position of which in the (130 mg).
    [Show full text]
  • Ancistrocladus Benomensis (Ancistrocladaceae): a New Species from Peninsular Malaysia
    BLUMEA 50: 357–365 Published on 14 July 2005 http://dx.doi.org/10.3767/000651905X623021 ANCISTROCLADUS BENOMENSIS (ANCISTROCLADACEAE): A NEW SPECIES FROM PENINSULAR MALAYSIA H. RISCHER1,2,5, G. HEUBL3, H. MEIMBERG3, M. DREYER2, H.A. HADI 4 & G. BRINGMANN1,5 SUMMARY Ancistrocladus benomensis Rischer & G. Bringmann, a new species from Gunung Benom, Malaysia is described and illustrated. Diagnostic notes concerning morphology, occurrence of specific naphthyl­ isoquinoline alkaloids, and support from molecular analyses are provided. Key words: Ancistrocladus benomensis, Ancistrocladaceae, Gunung Benom, Malaysia. INTRODUCTION The monotypic genus Ancistrocladus Wall. (Ancistrocladaceae) comprises approxi­ mately 20 species (Gereau, 1997) and is characterized by a disjunct distribution in the palaeotropics with two areas of speciation, one in tropical West and Central Africa and one in South East Asia. All taxa are scandent shrubs or woody lianas with tendril­ like modified shoots provided with characteristic circinate woody hooks as climbing devices. Recently a synoptic revision of the African taxa of the genus Ancistrocladus has been presented by Cheek (2000), with an identification key and detailed information concerning taxonomy, distribution, and ecology of the 13 species recognized. For the Asian taxa an equivalent comprehensive study is still lacking and there is much uncertainty in the delimitation of taxa as well as on ecological preferences, seed set, pollination, and flowering rhythm. Concerning taxonomy one has to refer to a synopsis presented by Gilg (1925) and to an annotated checklist of species which was compiled by Gereau (1997) based on a survey of local floras. In this latter overview a detailed account on the typification for 25 binominals is presented, including 12 valid species recognized by the author for South East Asia: A.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]