Footprint of the Dynamical Amplifier of Global Warming and Attribution of Models' Uncertainties Christelle Clémence Castet
Total Page:16
File Type:pdf, Size:1020Kb
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 Footprint of the Dynamical Amplifier of Global Warming and Attribution of Models' Uncertainties Christelle Clémence Castet Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FOOTPRINT OF THE DYNAMICAL AMPLIFIER OF GLOBAL WARMING AND ATTRIBUTION OF MODELS’ UNCERTAINTIES By Christelle Clémence Castet A Thesis submitted to the Department of Meteorology In particular fulfillment of the Requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2005 The members of the Committee approve the thesis of Christelle Clémence Castet defended on June 28th 2005 ________________________ Ming Cai Professor Directing Thesis ________________________ Kwang-Yul Kim Committee Member ________________________ Paul H. Ruscher Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii I would like to dedicate my work to my parents, Francis and Marie-Claire Castet, and my twin sister Carine for believing in me, their love, and support all the way from France. iii ACKNOWLEDGEMENTS I would like to express my deepest appreciation to my major professor Dr Cai, who made this work possible and gave me endless support and guidance throughout my research. I am also thankful to my committee members, Dr Kim and Dr Rusher, for the time and help they offered me. Finally, I would like to thank everyone in my lab, especially Dr Lim for his valuable programming assistance. iv TABLE OF CONTENTS List of Tables ....................................................................................................................VII List of Figures...................................................................................................................VIII Abstract.............................................................................................................................X 1.0 INTRODUCTION ...................................................................................................1 1.1 Background on global warming .................................................................................1 1.2 Observed Warming and its impacts............................................................................3 1.3 State of understanding the large high latitude warming ..............................................4 1.4 Warming projections .................................................................................................5 1.5 Thesis objective and outline.......................................................................................6 2.0 THEORY .................................................................................................................8 2.1 Theory review ...........................................................................................................8 2.2 Theoretical evidences ................................................................................................9 3.0 DATA.......................................................................................................................13 3.1 Reanalysis fluxes.......................................................................................................13 3.2 Climate models fluxes ...............................................................................................13 4.0 METHODOLOGY ..................................................................................................16 4.1 Validation of the dynamical amplifier theory .............................................................16 4.1.1 Energy balance at the top of the atmosphere 4.1.2 Energy balance of the atmosphere 4.2 Assessment of models’ uncertainties..........................................................................18 v 5.0 RESULTS ................................................................................................................20 5.1 Validation of the dynamical amplifier of global warming...........................................20 5.1.1 Reanalysis 5.1.2 IPCC climate models – Ocean and Atmospheric Transport 5.1.3 IPCC climate models – Atmospheric Transport 5.2 Understanding Model’s Uncertainties........................................................................34 5.2.1 Model Warming Projections Versus Change in Poleward Heat Transport 5.2.2 Model Warming Projections Versus strength of the (unperturbed) models’ mean circulation 6.0 CONCLUSION........................................................................................................43 6.1 Validation of the Dynamical Amplifier Theory..........................................................43 6.2 Evaluation of Model’s Uncertainties..........................................................................44 6.3 Future Work ..............................................................................................................44 APPENDIX......................................................................................................................46 REFERENCES................................................................................................................48 BIOGRAPHICAL SKETCH ..........................................................................................50 vi LIST OF TABLES 1. Definition of the variables .............................................................................................14 2. IPCC models IDs and available time periods .................................................................15 3. Summary of the correlation, variance explained and sensitivity .....................................39 4. Summary of the correlation, variance explained and sensitivity .....................................42 vii LIST OF FIGURES 1. Increase of CO2 concentration in the atmosphere. (a) Direct measurements of atmospheric CO2 concentration. (b) CO2 concentration record from Antarctic ice cores and at Mauna Loa (Houghton et al. 2001). ...................................2 2. Earth’s annual global mean energy budget (after Kiehl and Trenberth 1997) .................2 3. ERA40 Reanalysis Atmospheric temperature change. Zonal averaged difference between the mean of august /1992-July/2002 and the mean of August/1982-July/1992..........................................................................................4 4. Time evolution of the globally averaged temperature change relative to the control run of the CMIP2 simulations (units C). (Houghton et al. 2001).....................6 5. Physics of dynamical amplifier. From Cai (2005), personal communication..............9 6. (a) High latitude surface warming versus the strength of the poleward heat transport in the unperturbed climate state, and (b) global surface warming. From Cai (2005), personal communication ..............................................11 7. Surface Warming versus (a) the strength of the change in poleward heat transport, and (b) the strength of the mean circulation. From Cai (2005), personal communication .........................................................................................12 8. Change in the long-time averaged zonal mean net radiation at the top of the atmosphere. The difference is taken between the August/1992- July/2002 mean and the August/1982-July/1992 mean derived from the ERA40 reanalysis ................................................................................................21 9. Difference of the long-time averaged net radiation flux at the TOA in Wm-2 between the 2CO2 run and the control run derived from 14 IPCC AR4 model simulations (Wm-2)....................................................................................................24 10. Difference of the long-time averaged net radiation flux at the TOA in between the 2CO2 run and the control run derived from 14 IPCC AR4 model simulations. (a) Zonal average. (b) Area average difference for each model...............29 11. IPCC models’ divergence of poleward atmospheric heat transport (Wm-2). Red is divergence, blue is convergence.................................................................................31 viii 12. Area averaged divergence of atmospheric heat flux (Wm-2).........................................33 13. Temperature change at the surface (CO2 – Control run) from the year 1930 to 2000 using 3 CGCM models : a) GFDL-CM2.0, b) MIROC3.2(medres), c) MRI-CGCM2.3.2 ..................................................................................................35 14. Model warming projections versus changes in the poleward heat transport (DCI) in the same models. (a) Global average, (b) northern hemisphere average, (c) southern hemisphere average................................................................................37 15. Model warming projections versus changes in the poleward heat transport (DCI) in the same models. (a) Northern hemisphere high latitude average, (b) southern hemisphere high latitude average...............................................................................38 16. Models’ warming projections versus the strength of the unperturbed model’s mean circulation (MCI). (a) Global average, (b) northern hemisphere average, (c) southern hemisphere average................................................................................40 17. Models’ warming projections versus the strength of the unperturbed model’s mean