An Argument for a Neutral Free Logic Daniel Yeakel Wayne State University

Total Page:16

File Type:pdf, Size:1020Kb

An Argument for a Neutral Free Logic Daniel Yeakel Wayne State University Wayne State University Wayne State University Dissertations 1-1-2015 An Argument For A Neutral Free Logic Daniel Yeakel Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Yeakel, Daniel, "An Argument For A Neutral Free Logic" (2015). Wayne State University Dissertations. Paper 1177. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. AN ARGUMENT FOR A NEUTRAL FREE LOGIC by DANIEL YEAKEL Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2015 MAJOR: PHILOSOPHY Approved by: Advisor Date DEDICATION For James and Kathryn ii ACKNOWLEDGMENTS Whatever humble benefits might follow from the completion of this thesis are not solely my responsibility to claim. I owe a debt to the members of my committee, Robert Bruner, Greg Novack, Larry Powers, Susan Vineberg, and especially Mike McKinsey. I also owe a great deal to the many others who provided me with help, advice and encouragement: Dan Blaser, John Burn, Marcus Cooper, Mike Gavin, Mark Huston, Herb Granger, Gwen Gordon, Lin Harris, Eric Hiddleston, Renee Hurcomb, Katherine Kim, Sloan Lee, Drew Matzke, Kevin Mowrer, Mark Reynolds, Phyllis Seals, Patrick Smith, Sean Stidd, Bill Stine, Sean Tilson, Bob Yanal, my sister Sarah Yeakel, Jim and Linda Zielke, Matt Zuckero, and Bill from the MHRFC. I am also especially thankful for the support and patience of my parents and my wife Jessica. iii TABLE OF CONTENTS DEDICATION ii ACKNOWLEDGMENTS iii Introduction: Master Argument, Chapter Summaries, and Closure 1 Motivation and Explanation of NFL 1 Chapter Summaries 5 Closure of the A Priori 29 Chapter One: The Existential Quantifier and Ontological Commitment 39 Paraphrase and Ontology 39 Avoiding Ontological Commitment 41 Sentences Meeting I-III are Best Represented by an Objectual Quantifier 45 Sentences Meeting I-III are Univocal 53 Sentences Meeting I-III are Heavyweight 57 Objection One: The Triviality Argument 59 Objection Two: From the Relative Strengths of Realist Claims 61 Objection Three: Ambiguous Domain 66 Two kinds of Sentence that Satisfy I-III 68 Chapter Two: Positive Free Logic 72 Bivalent PFL and the Prototype Schema 72 An Appeal to Authority 74 Ambiguous Quantifiers Again? 78 Non-bivalent PFL: Supervaluations 87 Introduction to SVS 87 The Utility Defense of SVS 92 iv Criticisms of SVS 98 Accounting for CLTs with Corresponding Arguments 112 Saving Contingent Truths 122 Chapter Three: Negative Free Logic 128 Introduction to Negative Free Logic 129 Three Criticisms of Negative Free Logic 131 Three Arguments for Negative Free Logic 134 Bivalence 138 Williamson‘s Argument for Bivalence 139 Another Defense of Bivalence: Argument from the T—Scheme 146 The Law of Excluded Middle 149 Defenses of LEM 150 Criticisms of LEM 152 Chapter Four: Neutral Free Logic 158 Choices for a Neutral Free Logic 158 Domain 158 Identity 162 Relations and Symbols 164 Quantifiers 166 Logical Properties 170 The Semantic Rules 173 Criticism: Hedging 177 General problems 177 v Pryor‘s account 180 Use and Mention 185 BIBLIOGRAPHY 188 ABSTRACT 197 AUTOBIGRAPHICAL STATEMENT 199 vi 1 INTRODUCTION: MASTER ARGUMENT, CHAPTER SUMMARIES AND CLOSURE I will argue that the appropriate semantics for natural language is a neutral free semantics with weak Kleene tables and trivalent quantifiers. The general pattern of my project will be to present an argument with an absurd conclusion and consider the options for avoiding the absurdity. I will try to show that all but one of these options are unacceptable. In the introduction I will present the argument, lay out the possible ways of criticizing it, and explain the approach I endorse. After that, I will summarize the arguments of the following chapters and provide an argument for a premise of the master argument that does not fit neatly elsewhere. Motivation and Explanation of Neutral Free Logic—The Master Argument Call a sentence of the form ‗c exists‘ a simple existence claim. If an appropriate symbolization of a simple existence claim is ‗∃푥 푥 = 푐 ‘ then it is a problem for classical logic that it regards all simple existence claims as logically true. Logical truths are knowable a priori and simple existence claims are not. Michael McKinsey (in conversation) and James Pryor1 have suggested an argument similar to what I will call the ‗master argument:‘ 1. It is logically true that Powers is Powers 2. Logical truths are a priori knowable. 3. So, it is a priori knowable that Powers is Powers. 4. That Powers is Powers logically entails that Powers exists. 5. What is logically entailed by a priori knowable truths is a priori knowable. 2 1 James Pryor, "XIII--Hyper-Reliability and Apriority," Meeting of the Aristotelian Society, (2006): 335-6. Pryor does not formalize his argument, but a rough paraphrase of it would be: ‗Jack is self-identical‘ implies that ‗Jack exists.‘ Since the latter seems not to be knowable a priori, the former is not either. Since logical truths are knowable a priori, ‗Jack is self-identical‘ must not be one. 2 This is just a weakened version of Michael McKinsey‘s principle: Closure of Apriority under Logical Implication (CA) from his ―Forms of externalism and privileged access,‖ Philosophical Perspectives 16, (2002): 207. His is prefixed with ‗necessarily‘ and uses a ‗knows a priori‘ relation between people and propositions instead of my ‗a 2 6. So, it is a priori knowable that Powers exists. The conclusion is absurd even supposing that ‗Powers‘ refers to Larry Powers, the erstwhile professor of philosophy at Wayne State University and author of Non-contradiction. The alternatives are: to accept the absurd conclusion, to reject the validity of the argument from 1 and 2 to 3 or of the argument from 3, 4, and 5 to 6, or to reject a premise (either 1, 2, 4, or 5). The first two of these options are disastrous. Since ‗Powers‘ in the argument above could be replaced with any name, accepting the conclusion is accepting that all simple existence claims are knowable a priori. With a few faintly possible exceptions, it is plausible that no simple existence claims are knowable a priori. The second option is equally undesirable; the inferences are intuitively valid. So much so that any view that rejects them is dubious, for that reason alone. Both inferences are of the form All A are B; x is an A; so, x is a B. For a defense of the validity of this argument form see Chapter Two, on positive free logic. So the remaining options are to reject 1, 2, 4, or 5. First consider premise 2. That logical truths are knowable a priori has its own motivation: logic is the study of correct inferences, and determinations of correct inferences are purely mental activities; so, logic is a priori. However, 2 follows from 5; so it needs no defense above that of 5. Since all logical truths follow from all truths, including a priori-knowable truths, the closure principle 5 implies that all logical truths are knowable a priori. At the conclusion of this introduction, I will briefly offer a pair of arguments for 5 and defend them from criticism. If those arguments are successful then the only remaining options are to reject 1 or reject 4. My defense of premise 4 comes from two premises and the transitivity of logical entailment: priori knowable‘ operator. The reductio argument above is very similar to the reductio argument for which McKinsey uses (CA) in that paper and elsewhere. 3 (EG) That Powers is Powers logically entails that something is Powers. (OC) That something is Powers logically entails that Powers exists. A rejection of premise 4 is a rejection of Existential Generalization or of the ontological commitment of simple existentially quantified claims. In chapter one I will defend (OC) by arguing that certain simple existentially quantified claims are ontologically committed. In chapter two I will consider two ways of denying the validity of (EG): positive free logic and supervaluational logic. Both allow that some statements containing non-referring individual constants can be true. I will argue that both of those views are inadequate and I will suggest that any acceptable semantics will disallow the truth of statements with empty constants. Since not all instances of the schema ‗푥 = 푥‘ are true, ‗푎 = 푎‘ is not a logical truth. So 1 must be rejected. Premise 1 follows from ‗∀푥(푥 = 푥)‘ by an application of Universal Instantiation. So a rejection of 1 will also be a rejection of the universally quantified claim or of UI. There are two ways to reject ‗푎 = 푎‘. We could say that simple statements with empty names are false or that they are neither true nor false. A logic that regards those statements as false is a negative free logic (NgFL); one that makes ‗푎 = 푎‘ neither true nor false (when ‗a‘ is empty) is a neutral free logic (NFL). Notably, on a negative free logic ‗푃푎 ∨ ~푃푎‘ remains logically true but a neutral free logic loses that and all other classical tautologies containing individual constants. My particular NFL, because of its treatment of the empty domain, loses all logical truths, but that result is not required of NFL in general. If there are persuasive arguments for bivalence then a negative free logic would be preferable to one allowing a lack of truth value. In chapter three I will consider arguments for 4 bivalence; most notably, I will consider Timothy Williamson‘s.3 I will also try to justify the loss of the Law of the Excluded Middle (LEM) by NFL.
Recommended publications
  • Automating Free Logic in HOL, with an Experimental Application in Category Theory
    Noname manuscript No. (will be inserted by the editor) Automating Free Logic in HOL, with an Experimental Application in Category Theory Christoph Benzm¨uller and Dana S. Scott Received: date / Accepted: date Abstract A shallow semantical embedding of free logic in classical higher- order logic is presented, which enables the off-the-shelf application of higher- order interactive and automated theorem provers for the formalisation and verification of free logic theories. Subsequently, this approach is applied to a selected domain of mathematics: starting from a generalization of the standard axioms for a monoid we present a stepwise development of various, mutually equivalent foundational axiom systems for category theory. As a side-effect of this work some (minor) issues in a prominent category theory textbook have been revealed. The purpose of this article is not to claim any novel results in category the- ory, but to demonstrate an elegant way to “implement” and utilize interactive and automated reasoning in free logic, and to present illustrative experiments. Keywords Free Logic · Classical Higher-Order Logic · Category Theory · Interactive and Automated Theorem Proving 1 Introduction Partiality and undefinedness are prominent challenges in various areas of math- ematics and computer science. Unfortunately, however, modern proof assistant systems and automated theorem provers based on traditional classical or intu- itionistic logics provide rather inadequate support for these challenge concepts. Free logic [24,25,30,32] offers a theoretically appealing solution, but it has been considered as rather unsuited towards practical utilization. Christoph Benzm¨uller Freie Universit¨at Berlin, Berlin, Germany & University of Luxembourg, Luxembourg E-mail: [email protected] Dana S.
    [Show full text]
  • Mathematical Logic. Introduction. by Vilnis Detlovs And
    1 Version released: May 24, 2017 Introduction to Mathematical Logic Hyper-textbook for students by Vilnis Detlovs, Dr. math., and Karlis Podnieks, Dr. math. University of Latvia This work is licensed under a Creative Commons License and is copyrighted © 2000-2017 by us, Vilnis Detlovs and Karlis Podnieks. Sections 1, 2, 3 of this book represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). With kind permission of Dr. Detlovs. Vilnis Detlovs. Memorial Page In preparation – forever (however, since 2000, used successfully in a real logic course for computer science students). This hyper-textbook contains links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. 2 Table of Contents References..........................................................................................................3 1. Introduction. What Is Logic, Really?.............................................................4 1.1. Total Formalization is Possible!..............................................................5 1.2. Predicate Languages.............................................................................10 1.3. Axioms of Logic: Minimal System, Constructive System and Classical System..........................................................................................................27 1.4. The Flavor of Proving Directly.............................................................40
    [Show full text]
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • Section 1.4: Predicate Logic
    Section 1.4: Predicate Logic January 22, 2021 Abstract We now consider the logic associated with predicate wffs, including a new set of derivation rules for demonstrating validity (the analogue of tautology in the propositional calculus) – that is, for proving theorems! 1 Derivation rules • First of all, all the rules of propositional logic still hold. Whew! Propositional wffs are simply boring, variable-less predicate wffs. • Our author suggests the following “general plan of attack”: – strip off the quantifiers – work with the separate wffs – insert quantifiers as necessary Now, how may we legitimately do so? Consider the classic syllo- gism: a. (All) Humans are mortal. b. Socrates is human. Therefore Socrates is mortal. The way we reason is that the rule “Humans are mortal” applies to the specific example “Socrates”; hence this Socrates is mortal. We might write this as a. (∀x)(H(x) → M(x)) b. H(s) Therefore M(s). It seems so obvious! But how do we justify that in a proof se- quence? • New rules for predicate logic: in the following, you should un- derstand by the symbol x in P (x) an expression with free variable x, possibly containing other (quantified) variables: e.g. P (x) ≡ (∀y)(∃z)Q(x,y,z) (1) – Universal Instantiation: from (∀x)P (x) deduce P (t). Caveat: t must not already appear as a variable in the ex- pression for P (x): in the equation above, (1), it would not do to deduce P (y) or P (z), as those variables appear in the expression (in a quantified fashion) already.
    [Show full text]
  • Existence and Reference in Medieval Logic
    GYULA KLIMA EXISTENCE AND REFERENCE IN MEDIEVAL LOGIC 1. Introduction: Existential Assumptions in Modern vs. Medieval Logic “The expression ‘free logic’ is an abbreviation for the phrase ‘free of existence assumptions with respect to its terms, general and singular’.”1 Classical quantification theory is not a free logic in this sense, as its standard formulations commonly assume that every singular term in every model is assigned a referent, an element of the universe of discourse. Indeed, since singular terms include not only singular constants, but also variables2, standard quantification theory may be regarded as involving even the assumption of the existence of the values of its variables, in accordance with Quine’s famous dictum: “to be is to be the value of a variable”.3 But according to some modern interpretations of Aristotelian syllogistic, Aristotle’s theory would involve an even stronger existential assumption, not shared by quantification theory, namely, the assumption of the non-emptiness of common terms.4 Indeed, the need for such an assumption seems to be supported not only by a number of syllogistic forms, which without this assumption appear to be invalid, but also by the doctrine of Aristotle’s De Interpretatione concerning the logical relationships among categorical propositions, commonly summarized in the Square of Opposition. For example, Aristotle’s theory states that universal affirmative propositions imply particular affirmative propositions. But if we formalize such propositions in quantification theory, we get formulae between which the corresponding implication does not hold. So, evidently, there is some discrepancy between the ways Aristotle and quantification theory interpret these categoricals.
    [Show full text]
  • Logic and Proof
    CS2209A 2017 Applied Logic for Computer Science Lecture 11, 12 Logic and Proof Instructor: Yu Zhen Xie 1 Proofs • What is a theorem? – Lemma, claim, etc • What is a proof? – Where do we start? – Where do we stop? – What steps do we take? – How much detail is needed? 2 The truth 3 Theories and theorems • Theory: axioms + everything derived from them using rules of inference – Euclidean geometry, set theory, theory of reals, theory of integers, Boolean algebra… – In verification: theory of arrays. • Theorem: a true statement in a theory – Proved from axioms (usually, from already proven theorems) Pythagorean theorem • A statement can be a theorem in one theory and false in another! – Between any two numbers there is another number. • A theorem for real numbers. False for integers! 4 Axioms example: Euclid’s postulates I. Through 2 points a line segment can be drawn II. A line segment can be extended to a straight line indefinitely III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centre IV. All right angles are congruent V. Parallel postulate 5 Some axioms for propositional logic • For any formulas A, B, C: – A ∨ ¬ – . – . – A • Also, like in arithmetic (with as +, as *) – , – Same holds for ∧. – Also, • And unlike arithmetic – ( ) 6 Counterexamples • To disprove a statement, enough to give a counterexample: a scenario where it is false – To disprove that • Take = ", = #, • Then is false, but B is true. – To disprove that if %& '( ) &, ( , then '( %& ) &, ( , • Set the domain of x and y to be {0,1} • Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
    [Show full text]
  • Saving the Square of Opposition∗
    HISTORY AND PHILOSOPHY OF LOGIC, 2021 https://doi.org/10.1080/01445340.2020.1865782 Saving the Square of Opposition∗ PIETER A. M. SEUREN Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands Received 19 April 2020 Accepted 15 December 2020 Contrary to received opinion, the Aristotelian Square of Opposition (square) is logically sound, differing from standard modern predicate logic (SMPL) only in that it restricts the universe U of cognitively constructible situations by banning null predicates, making it less unnatural than SMPL. U-restriction strengthens the logic without making it unsound. It also invites a cognitive approach to logic. Humans are endowed with a cogni- tive predicate logic (CPL), which checks the process of cognitive modelling (world construal) for consistency. The square is considered a first approximation to CPL, with a cognitive set-theoretic semantics. Not being cognitively real, the null set Ø is eliminated from the semantics of CPL. Still rudimentary in Aristotle’s On Interpretation (Int), the square was implicitly completed in his Prior Analytics (PrAn), thereby introducing U-restriction. Abelard’s reconstruction of the logic of Int is logically and historically correct; the loca (Leak- ing O-Corner Analysis) interpretation of the square, defended by some modern logicians, is logically faulty and historically untenable. Generally, U-restriction, not redefining the universal quantifier, as in Abelard and loca, is the correct path to a reconstruction of CPL. Valuation Space modelling is used to compute
    [Show full text]
  • Philosophy 109, Modern Logic Russell Marcus
    Philosophy 240: Symbolic Logic Hamilton College Fall 2014 Russell Marcus Reference Sheeet for What Follows Names of Languages PL: Propositional Logic M: Monadic (First-Order) Predicate Logic F: Full (First-Order) Predicate Logic FF: Full (First-Order) Predicate Logic with functors S: Second-Order Predicate Logic Basic Truth Tables - á á @ â á w â á e â á / â 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 Rules of Inference Modus Ponens (MP) Conjunction (Conj) á e â á á / â â / á A â Modus Tollens (MT) Addition (Add) á e â á / á w â -â / -á Simplification (Simp) Disjunctive Syllogism (DS) á A â / á á w â -á / â Constructive Dilemma (CD) (á e â) Hypothetical Syllogism (HS) (ã e ä) á e â á w ã / â w ä â e ã / á e ã Philosophy 240: Symbolic Logic, Prof. Marcus; Reference Sheet for What Follows, page 2 Rules of Equivalence DeMorgan’s Laws (DM) Contraposition (Cont) -(á A â) W -á w -â á e â W -â e -á -(á w â) W -á A -â Material Implication (Impl) Association (Assoc) á e â W -á w â á w (â w ã) W (á w â) w ã á A (â A ã) W (á A â) A ã Material Equivalence (Equiv) á / â W (á e â) A (â e á) Distribution (Dist) á / â W (á A â) w (-á A -â) á A (â w ã) W (á A â) w (á A ã) á w (â A ã) W (á w â) A (á w ã) Exportation (Exp) á e (â e ã) W (á A â) e ã Commutativity (Com) á w â W â w á Tautology (Taut) á A â W â A á á W á A á á W á w á Double Negation (DN) á W --á Six Derived Rules for the Biconditional Rules of Inference Rules of Equivalence Biconditional Modus Ponens (BMP) Biconditional DeMorgan’s Law (BDM) á / â -(á / â) W -á / â á / â Biconditional Modus Tollens (BMT) Biconditional Commutativity (BCom) á / â á / â W â / á -á / -â Biconditional Hypothetical Syllogism (BHS) Biconditional Contraposition (BCont) á / â á / â W -á / -â â / ã / á / ã Philosophy 240: Symbolic Logic, Prof.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Existence and Identity in Free Logic: a Problem for Inferentialism?
    Existence and Identity in Free Logic: A Problem for Inferentialism? Abstract Peter Milne (2007) poses two challenges to the inferential theorist of meaning. This study responds to both. First, it argues that the method of natural deduction idealizes the essential details of correct informal deductive reasoning. Secondly, it explains how rules of inference in free logic can determine unique senses for the existential quantifier and the identity predicate. The final part of the investigation brings out an underlying order in a basic family of free logics. 1. Background 1.1 Free v. unfree logic Standard, unfree logic has among its rules of natural deduction the following (see, for example, the system in the classic monograph Prawitz 1965). : ϕ where a does not occur in any Universal Introduction (∀-I) assumption on which ϕ depends a ∀xϕ x Universal Elimination (∀-E) ∀xϕ x ϕ t x Existential Introduction (∃-I) ϕ t ∃xϕ (i) x ϕ a where a does not occur in ∃xϕ, or in ψ, x Existential Elimination (∃-E) : or in any assumption, other than ϕ a, on ∃xϕ ψ (i) which the upper occurrence of ψ depends ψ Reflexivity of identity t=t Substitutivity of identity t=u ϕ (t) ϕ(u) Let t be any term, not necessarily closed. Then ∃!t is short for ∃x x=t, where x is alphabetically the first variable not free in t. In unfree logic we have, for every closed term t, – ∃!t. We also have – ∃x x=x. So unfree logic is committed to a denotation for every closed term, and to the existence of at least one thing.
    [Show full text]
  • Predicate Logic
    Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers. Let a predicate P: Z -> Prop be given by P(x) = x>3. The predicate itself is neither true or false. However, for any given integer the predicate evaluates to a truth value. For example, P(4) is true and P(2) is false Universal Quantifier (1) Let P be a predicate with domain D. The statement “P(x) holds for all x in D” can be written shortly as ∀xP(x). Universal Quantifier (2) Suppose that P(x) is a predicate over a finite domain, say D={1,2,3}. Then ∀xP(x) is equivalent to P(1)⋀P(2)⋀P(3). Universal Quantifier (3) Let P be a predicate with domain D. ∀xP(x) is true if and only if P(x) is true for all x in D. Put differently, ∀xP(x) is false if and only if P(x) is false for some x in D. Existential Quantifier The statement P(x) holds for some x in the domain D can be written as ∃x P(x) Example: ∃x (x>0 ⋀ x2 = 2) is true if the domain is the real numbers but false if the domain is the rational numbers. Logical Equivalence (1) Two statements involving quantifiers and predicates are logically equivalent if and only if they have the same truth values no matter which predicates are substituted into these statements and which domain is used.
    [Show full text]
  • Parts, Wholes, and Part-Whole Relations: the Prospects of Mereotopology
    PARTS, WHOLES, AND PART-WHOLE RELATIONS: THE PROSPECTS OF MEREOTOPOLOGY Achille C. Varzi Department of Philosophy, Columbia University (New York) (Published in Data and Knowledge Engineering 20 (1996), 259–286.) 1. INTRODUCTION This is a brief overview of formal theories concerned with the study of the notions of (and the relations between) parts and wholes. The guiding idea is that we can dis- tinguish between a theory of parthood (mereology) and a theory of wholeness (holology, which is essentially afforded by topology), and the main question exam- ined is how these two theories can be combined to obtain a unified theory of parts and wholes. We examine various non-equivalent ways of pursuing this task, mainly with reference to its relevance to spatio-temporal reasoning. In particular, three main strategies are compared: (i) mereology and topology as two independent (though mutually related) theories; (ii) mereology as a general theory subsuming topology; (iii) topology as a general theory subsuming mereology. This is done in Sections 4 through 6. We also consider some more speculative strategies and directions for further research. First, however, we begin with some preliminary outline of mereol- ogy (Section 2) and of its natural bond with topology (Section 3). 2. MEREOLOGY: A REVIEW The analysis of parthood relations (mereology, from the Greek meroV, ‘part’) has for a long time been a major focus of philosophical investigation, beginning as early as with atomists and continuing throughout the writings of ancient and medieval ontologists. It made its way into contemporary philosophy through the work of Brentano and of his pupils, most notably Husserl’s third Logical Investigation, and it has been subjected to formal treatment from the very first decades of this century.
    [Show full text]