A Concise Introduction to Logic Craig Delancey SUNY Oswego

Total Page:16

File Type:pdf, Size:1020Kb

A Concise Introduction to Logic Craig Delancey SUNY Oswego SUNY Geneseo KnightScholar Open SUNY Textbooks Open Educational Resources 2017 A Concise Introduction to Logic Craig DeLancey SUNY Oswego Follow this and additional works at: https://knightscholar.geneseo.edu/oer-ost Part of the Philosophy Commons This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Recommended Citation DeLancey, Craig, "A Concise Introduction to Logic" (2017). Open SUNY Textbooks. 4. https://knightscholar.geneseo.edu/oer-ost/4 This Book is brought to you for free and open access by the Open Educational Resources at KnightScholar. It has been accepted for inclusion in Open SUNY Textbooks by an authorized administrator of KnightScholar. For more information, please contact [email protected]. A Concise Introduction to Logic A Concise Introduction to Logic Craig DeLancey Open SUNY Textbooks © 2017 Craig DeLancey ISBN: 978-1-942341-42-0 ebook 978-1-942341-43-7 print This publication was made possible by a SUNY Innovative Instruction Technology Grant (IITG). IITG is a competitive grants program open to SUNY faculty and support staff across all disciplines. IITG encourages development of innovations that meet the Power of SUNY’s transformative vision. Published by Open SUNY Textbooks Milne Library State University of New York at Geneseo Geneseo, NY 14454 This book was produced using Pressbooks.com, and PDF rendering was done by PrinceXML. A Concise Introduction to Logic by Craig DeLancey is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted. Dedication For my mother Contents About the Textbook Reviewer's Notes Adam Kovach 0. Introduction 1 Part I: Propositional Logic 1. Developing a Precise Language 7 2. “If…then….” and “It is not the case that….” 15 3. Good Arguments 29 4. Proofs 45 5. “And” 55 6. Conditional Derivations 69 7. “Or” 79 8. Reductio ad Absurdum 89 9. “… if and only if …”, Using Theorems 99 10. Summary of Propositional Logic 113 Part II: First Order Logic 11. Names and predicates 119 12. “All” and “some” 127 13. Reasoning with quantifiers 139 14. Universal derivation 147 15. Relations, functions, identity, and multiple quantifiers 159 16. Summary of first order logic 173 Part III: A Look Forward 17. Some advanced topics in logic 181 Bibliography 209 About the Author 210 About Open SUNY Textbooks 211 About the Textbook A Concise Introduction to Logic is an introduction to formal logic suitable for undergraduates taking a general education course in logic or critical thinking, and is accessible and useful to any interested in gaining a basic understanding of logic. This text takes the unique approach of teaching logic through intellectual history; the author uses examples from important and celebrated arguments in philosophy to illustrate logical principles. The text also includes a basic introduction to findings of advanced logic. As indicators of where the student could go next with logic, the book closes with an overview of advanced topics, such as the axiomatic method, set theory, Peano arithmetic, and modal logic. Throughout, the text uses brief, concise chapters that readers will find easy to read and to review. Reviewer's Notes Adam Kovach True to its name, A Concise Introduction to Logic, by Craig DeLancey, surveys propositional logic and predicate logic and goes on to introduce selected advanced topics, in little over 200 pages. The book provides an integrated presentation of basic syntactic and semantic concepts and methods of logic. Part I starts with the concept of a formal language. The concept of valid inference, truth tables and proofs are introduced immediately after the first two propositional connectives. Connectives and inference rules are introduced in alternation, to develop a complete simple natural deduction system for propositional logic. Part II, adds the apparatus of quantification and proof rules for a complete predicate logic. The text covers the logic of relations, sentences with multiple quantifiers and Russell’s theory of definite descriptions. The presentation of concepts and principles is orderly, clear and thought provoking. Many topics are introduced with examples of philosophical arguments drawn from classic sources, adding depth of knowledge to an introductory course. The first two parts end with systematic overviews. The focus is on formal deductive logic throughout. Informal fallacies and traditional syllogistic logic are not covered. Advanced topics covered in the final part of the text include an axiomatic approach to logic, mathematical induction, a deduction theorem for propositional logic, and brief introductions to set theory, modal logic and number theory. The reviewer, Adam Kovach, is Associate Professor of Philosophy at Marymount University in Arlington, VA, where he teaches courses in many subjects including logic. 0. Introduction 0.1 Why study logic? Logic is one of the most important topics you will ever study. “How could you say such a thing?” you might well protest. And yet, consider: logic teaches us many things, and one of these is how to recognize good and bad arguments. Not just arguments about logic—any argument. Nearly every undertaking in life will ultimately require that you evaluate an argument, perhaps several. You are confronted with a question: Should I buy this car or that car? Should I go to this college or that college? Did that scientific experiment show what the scientist claims it did? Should I vote for the candidate who promises to lower taxes, or for the one who says she might raise them? And so on. Our lives are a long parade of choices. When we try to answer such questions, in order to make the best choices, we often have only one tool: an argument. We listen to the reasons for and against various options, and must choose between them. And so, the ability to evaluate arguments is an ability that is very useful in everything that you will do—in your work, your personal life, your deepest reflections. If you are a student, note that nearly every discipline, be it a science, one of the humanities, or a study like business, relies upon arguments. Evaluating arguments is the most fundamental skill common to math, physics, psychology, literary studies, and any other intellectual endeavor. Logic alone tells you how to evaluate the arguments of any discipline. The alternative to developing these logical skills is to be always at the mercy of bad reasoning and, as a result, you will make bad choices. Worse, you will always be manipulated by deceivers. Speaking in Canandaigua, New York, on August 3, 1857, the escaped slave and abolitionist leader Frederick Douglass observed that: Power concedes nothing without a demand. It never did and it never will. Find out just what any people will quietly submit to and you have found out the exact measure of injustice and wrong which will be imposed upon them, and these will continue till they are resisted with either words or blows, or with both. The limits of tyrants are prescribed by the endurance of those whom they oppress.[1] We can add to Frederick Douglass’s words that: find out just how much a person can be deceived, and that is just how far she will be deceived. The limits of tyrants are also prescribed by the reasoning abilities of those they aim to oppress. And what logic teaches you is how to demand and recognize good reasoning, and so how to avoid deceit. You are only as free as your powers of reasoning enable. 0.2 What is logic? Some philosophers have argued that one cannot define “logic”. Instead, one can only show logic, by doing it and teaching others how to do it. I am inclined to agree. But it is easy to describe the benefits of logic. For example, in this book, you will learn how to: 1 • Identify when an argument is good, and when it is bad; • Construct good arguments; • Evaluate reasons, and know when they should, and should not, be convincing; • Describe things with a precision that avoids misunderstanding; • Get a sense of how one can construct the foundations of arithmetic; • Begin to describe the meaning of “possibility” and “necessity”. That is by no means a complete list of the many useful things that logic can provide. Some of us believe that logic and mathematics are ultimately the same thing, two endeavors with the same underlying structure distinguished only by different starting assumptions. On such a view, we can also think of logic as the study of the ultimate foundations of mathematics. (This is a reasonable characterization of logic, but those afraid of mathematics need not fear: logic must become quite advanced before its relation to mathematics becomes evident.) Ultimately, the only way to reveal the beauty and utility of logic is to get busy and do some logic. In this book, we will approach the study of logic by building several precise logical languages and seeing how we can best reason with these. The first of these languages is called “the propositional logic”. 0.3 A note to students Logic is a skill. The only way to get good at understanding logic and at using logic is to practice. It is easy to watch someone explain a principle of logic, and easier yet to watch someone do a proof. But you must understand a principle well enough to be able to apply it to new cases, and you must be able to do new proofs on your own. Practice alone enables this. The good news is that logic is easy. The very goal of logic is to take baby steps, small and simple and obvious, and after we do this for a long while we find ourselves in a surprising and unexpected new place. Each step on the way will be easy to take.
Recommended publications
  • Section 1.4: Predicate Logic
    Section 1.4: Predicate Logic January 22, 2021 Abstract We now consider the logic associated with predicate wffs, including a new set of derivation rules for demonstrating validity (the analogue of tautology in the propositional calculus) – that is, for proving theorems! 1 Derivation rules • First of all, all the rules of propositional logic still hold. Whew! Propositional wffs are simply boring, variable-less predicate wffs. • Our author suggests the following “general plan of attack”: – strip off the quantifiers – work with the separate wffs – insert quantifiers as necessary Now, how may we legitimately do so? Consider the classic syllo- gism: a. (All) Humans are mortal. b. Socrates is human. Therefore Socrates is mortal. The way we reason is that the rule “Humans are mortal” applies to the specific example “Socrates”; hence this Socrates is mortal. We might write this as a. (∀x)(H(x) → M(x)) b. H(s) Therefore M(s). It seems so obvious! But how do we justify that in a proof se- quence? • New rules for predicate logic: in the following, you should un- derstand by the symbol x in P (x) an expression with free variable x, possibly containing other (quantified) variables: e.g. P (x) ≡ (∀y)(∃z)Q(x,y,z) (1) – Universal Instantiation: from (∀x)P (x) deduce P (t). Caveat: t must not already appear as a variable in the ex- pression for P (x): in the equation above, (1), it would not do to deduce P (y) or P (z), as those variables appear in the expression (in a quantified fashion) already.
    [Show full text]
  • Logic and Proof
    CS2209A 2017 Applied Logic for Computer Science Lecture 11, 12 Logic and Proof Instructor: Yu Zhen Xie 1 Proofs • What is a theorem? – Lemma, claim, etc • What is a proof? – Where do we start? – Where do we stop? – What steps do we take? – How much detail is needed? 2 The truth 3 Theories and theorems • Theory: axioms + everything derived from them using rules of inference – Euclidean geometry, set theory, theory of reals, theory of integers, Boolean algebra… – In verification: theory of arrays. • Theorem: a true statement in a theory – Proved from axioms (usually, from already proven theorems) Pythagorean theorem • A statement can be a theorem in one theory and false in another! – Between any two numbers there is another number. • A theorem for real numbers. False for integers! 4 Axioms example: Euclid’s postulates I. Through 2 points a line segment can be drawn II. A line segment can be extended to a straight line indefinitely III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centre IV. All right angles are congruent V. Parallel postulate 5 Some axioms for propositional logic • For any formulas A, B, C: – A ∨ ¬ – . – . – A • Also, like in arithmetic (with as +, as *) – , – Same holds for ∧. – Also, • And unlike arithmetic – ( ) 6 Counterexamples • To disprove a statement, enough to give a counterexample: a scenario where it is false – To disprove that • Take = ", = #, • Then is false, but B is true. – To disprove that if %& '( ) &, ( , then '( %& ) &, ( , • Set the domain of x and y to be {0,1} • Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
    [Show full text]
  • Philosophy 109, Modern Logic Russell Marcus
    Philosophy 240: Symbolic Logic Hamilton College Fall 2014 Russell Marcus Reference Sheeet for What Follows Names of Languages PL: Propositional Logic M: Monadic (First-Order) Predicate Logic F: Full (First-Order) Predicate Logic FF: Full (First-Order) Predicate Logic with functors S: Second-Order Predicate Logic Basic Truth Tables - á á @ â á w â á e â á / â 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 Rules of Inference Modus Ponens (MP) Conjunction (Conj) á e â á á / â â / á A â Modus Tollens (MT) Addition (Add) á e â á / á w â -â / -á Simplification (Simp) Disjunctive Syllogism (DS) á A â / á á w â -á / â Constructive Dilemma (CD) (á e â) Hypothetical Syllogism (HS) (ã e ä) á e â á w ã / â w ä â e ã / á e ã Philosophy 240: Symbolic Logic, Prof. Marcus; Reference Sheet for What Follows, page 2 Rules of Equivalence DeMorgan’s Laws (DM) Contraposition (Cont) -(á A â) W -á w -â á e â W -â e -á -(á w â) W -á A -â Material Implication (Impl) Association (Assoc) á e â W -á w â á w (â w ã) W (á w â) w ã á A (â A ã) W (á A â) A ã Material Equivalence (Equiv) á / â W (á e â) A (â e á) Distribution (Dist) á / â W (á A â) w (-á A -â) á A (â w ã) W (á A â) w (á A ã) á w (â A ã) W (á w â) A (á w ã) Exportation (Exp) á e (â e ã) W (á A â) e ã Commutativity (Com) á w â W â w á Tautology (Taut) á A â W â A á á W á A á á W á w á Double Negation (DN) á W --á Six Derived Rules for the Biconditional Rules of Inference Rules of Equivalence Biconditional Modus Ponens (BMP) Biconditional DeMorgan’s Law (BDM) á / â -(á / â) W -á / â á / â Biconditional Modus Tollens (BMT) Biconditional Commutativity (BCom) á / â á / â W â / á -á / -â Biconditional Hypothetical Syllogism (BHS) Biconditional Contraposition (BCont) á / â á / â W -á / -â â / ã / á / ã Philosophy 240: Symbolic Logic, Prof.
    [Show full text]
  • Predicate Logic
    Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers. Let a predicate P: Z -> Prop be given by P(x) = x>3. The predicate itself is neither true or false. However, for any given integer the predicate evaluates to a truth value. For example, P(4) is true and P(2) is false Universal Quantifier (1) Let P be a predicate with domain D. The statement “P(x) holds for all x in D” can be written shortly as ∀xP(x). Universal Quantifier (2) Suppose that P(x) is a predicate over a finite domain, say D={1,2,3}. Then ∀xP(x) is equivalent to P(1)⋀P(2)⋀P(3). Universal Quantifier (3) Let P be a predicate with domain D. ∀xP(x) is true if and only if P(x) is true for all x in D. Put differently, ∀xP(x) is false if and only if P(x) is false for some x in D. Existential Quantifier The statement P(x) holds for some x in the domain D can be written as ∃x P(x) Example: ∃x (x>0 ⋀ x2 = 2) is true if the domain is the real numbers but false if the domain is the rational numbers. Logical Equivalence (1) Two statements involving quantifiers and predicates are logically equivalent if and only if they have the same truth values no matter which predicates are substituted into these statements and which domain is used.
    [Show full text]
  • Chapter 4, Propositional Calculus
    ECS 20 Chapter 4, Logic using Propositional Calculus 0. Introduction to Discrete Mathematics. 0.1. Discrete = Individually separate and distinct as opposed to continuous and capable of infinitesimal change. Integers vs. real numbers, or digital sound vs. analog sound. 0.2. Discrete structures include sets, permutations, graphs, trees, variables in computer programs, and finite-state machines. 0.3. Five themes: logic and proofs, discrete structures, combinatorial analysis, induction and recursion, algorithmic thinking, and applications and modeling. 1. Introduction to Logic using Propositional Calculus and Proof 1.1. “Logic” is “the study of the principles of reasoning, especially of the structure of propositions as distinguished from their content and of method and validity in deductive reasoning.” (thefreedictionary.com) 2. Propositions and Compound Propositions 2.1. Proposition (or statement) = a declarative statement (in contrast to a command, a question, or an exclamation) which is true or false, but not both. 2.1.1. Examples: “Obama is president.” is a proposition. “Obama will be re-elected.” is not a proposition. 2.1.2. “This statement is false.” is a paradox that many would not consider a proposition. 2.1.3. For ECS 20, we will use p, q, and r to symbolize propositions, subpropositions, or logical variables which take true or false values. 2.2. Compound Proposition = a proposition that has its truth value completely determined by the truth values of two or more subpropositions and the operators (also called connectives) connecting them. 3. Basic Logical Operations 3.1. Conjunction = = “and.” If both p and q are true, then p q is true, otherwise p q is false.
    [Show full text]
  • Formal Logic: Quantifiers, Predicates, and Validity
    Formal Logic: Quantifiers, Predicates, and Validity CS 130 – Discrete Structures Variables and Statements • Variables: A variable is a symbol that stands for an individual in a collection or set. For example, the variable x may stand for one of the days. We may let x = Monday, x = Tuesday, etc. • We normally use letters at the end of the alphabet as variables, such as x, y, z. • A collection of objects is called the domain of objects. For the above example, the days in the week is the domain of variable x. CS 130 – Discrete Structures 55 Quantifiers • Propositional wffs have rather limited expressive power. E.g., “For every x, x > 0”. • Quantifiers: Quantifiers are phrases that refer to given quantities, such as "for some" or "for all" or "for every", indicating how many objects have a certain property. • Two kinds of quantifiers: – Universal Quantifier: represented by , “for all”, “for every”, “for each”, or “for any”. – Existential Quantifier: represented by , “for some”, “there exists”, “there is a”, or “for at least one”. CS 130 – Discrete Structures 56 Predicates • Predicate: It is the verbal statement which describes the property of a variable. Usually represented by the letter P, the notation P(x) is used to represent some unspecified property or predicate that x may have. – P(x) = x has 30 days. – P(April) = April has 30 days. – What is the truth value of (x)P(x) where x is all the months and P(x) = x has less than 32 days • Combining the quantifier and the predicate, we get a complete statement of the form (x)P(x) or (x)P(x) • The collection of objects is called the domain of interpretation, and it must contain at least one object.
    [Show full text]
  • How to Adopt a Logic
    How to adopt a logic Daniel Cohnitz1 & Carlo Nicolai2 1Utrecht University 2King’s College London Abstract What is commonly referred to as the Adoption Problem is a challenge to the idea that the principles of logic can be rationally revised. The argument is based on a reconstruction of unpublished work by Saul Kripke. As the reconstruction has it, Kripke essentially extends the scope of Willard van Orman Quine’s regress argument against conventionalism to the possibility of adopting new logical principles. In this paper we want to discuss the scope of this challenge. Are all revisions of logic subject to the regress problem? If not, are there interesting cases of logical revision that are subject to the regress problem? We will argue that both questions should be answered negatively. 1 Introduction What is commonly referred to as the Adoption Problem1 is often considered a challenge to the idea that the principles for logic can be rationally revised. The argument is based on a reconstruction of unpublished work by Saul Kripke.2 As the reconstruction has it, Kripke essentially extends the scope of William van Orman Quine’s regress argument (Quine, 1976) against conventionalism to the possibility of adopting new logical principles or rules. According to the reconstruction, the Adoption Problem is that new logical rules cannot be adopted unless one already can infer with these rules, in which case the adoption of the rules is unnecessary (Padro, 2015, 18). In this paper we want to discuss the scope of this challenge. Are all revisions of logic subject to the regress problem? If not, are there interesting cases of logical revision that are subject to the regress problem? We will argue that both questions should be answered negatively.
    [Show full text]
  • The Logic of Quantified Statements the Logic of Quantified Statements
    CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS Copyright © Cengage Learning. All rights reserved. SECTION 3.4 Arguments with Quantified Statements Copyright © Cengage Learning. All rights reserved. Arguments with Quantified Statements The rule of universal instantiation (in-stan-she-AY-shun) says the following: Universal instantiation is the fundamental tool of deductive reasoning. Mathematical formulas, definitions, and theorems are like general templates that are used over and over in a wide variety of particular situations. 3 Arguments with Quantified Statements A given theorem says that such and such is true for all things of a certain type. If, in a given situation, you have a particular object of that type, then by universal instantiation, you conclude that such and such is true for that particular object. You may repeat this process 10, 20, or more times in a single proof or problem solution. 4 Universal Modus Ponens 5 Universal Modus Ponens The rule of universal instantiation can be combined with modus ponens to obtain the valid form of argument called universal modus ponens . 6 Universal Modus Ponens Note that the first, or major, premise of universal modus ponens could be written “All things that make P(x) true make Q(x) true,” in which case the conclusion would follow by universal instantiation alone. However, the if-then form is more natural to use in the majority of mathematical situations. 7 Example 1 – Recognizing Universal Modus Ponens Rewrite the following argument using quantifiers, variables, and predicate symbols. Is this argument valid? Why? If an integer is even, then its square is even.
    [Show full text]
  • UI) Existential Instantiation (EI
    Existential instantiation (EI) For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base: Inference in first-order logic ∃ v α Subst({v/k}, α) E.g., ∃ x Crown(x) ∧ OnHead(x, John) yields Chapter 9 Crown(C1) ∧ OnHead(C1, John) provided C1 is a new constant symbol, called a Skolem constant Another example: from ∃ x d(xy)/dy = xy we obtain d(ey)/dy = ey provided e is a new constant symbol Chapter 9 1 Chapter 9 4 Outline Existential instantiation contd. ♦ Reducing first-order inference to propositional inference UI can be applied several times to add new sentences; the new KB is logically equivalent to the old ♦ Unification EI can be applied once to replace the existential sentence; ♦ Generalized Modus Ponens the new KB is not equivalent to the old, ♦ Forward and backward chaining but is satisfiable iff the old KB was satisfiable ♦ Resolution Chapter 9 2 Chapter 9 5 Universal instantiation (UI) Reduction to propositional inference Every instantiation of a universally quantified sentence is entailed by it: Suppose the KB contains just the following: ∀ v α ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) Subst({v/g}, α) King(John) Greedy(John) for any variable v and ground term g Brother(Richard,John) E.g., ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) yields Instantiating the universal sentence in all possible ways, we have King(John) ∧ Greedy(John) ⇒ Evil(John) King(John) ∧ Greedy(John) ⇒ Evil(John) King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) King(F ather(John)) ∧ Greedy(F ather(John)) ⇒ Evil(F ather(John)) King(John) .
    [Show full text]
  • Vagueness and the Logic of the World
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Philosophy Dissertations, Theses, & Student Research Philosophy, Department of Spring 4-19-2020 Vagueness and the Logic of the World Zack Garrett University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/philosophydiss Part of the Metaphysics Commons, and the Philosophy of Language Commons Garrett, Zack, "Vagueness and the Logic of the World" (2020). Philosophy Dissertations, Theses, & Student Research. 13. https://digitalcommons.unl.edu/philosophydiss/13 This Article is brought to you for free and open access by the Philosophy, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Philosophy Dissertations, Theses, & Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VAGUENESS AND THE LOGIC OF THE WORLD by Zack Garrett A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Philosophy Under the Supervision of Professor Reina Hayaki Lincoln, Nebraska May, 2020 VAGUENESS AND THE LOGIC OF THE WORLD Zack Garrett, Ph.D. University of Nebraska, 2020 Advisor: Reina Hayaki In this dissertation, I argue that vagueness is a metaphysical phenomenon—that properties and objects can be vague—and propose a trivalent theory of vagueness meant to account for the vagueness in the world. In the first half, I argue against the theories that preserve classical logic. These theories include epistemicism, con- textualism, and semantic nihilism. My objections to these theories are independent of considerations of the possibility that vagueness is a metaphysical phenomenon.
    [Show full text]
  • Nested Quantifiers and Rules of Inference
    PK 1.5 & 1.6 Nested Quantifiers and Rules of Inference By: Emily B and David R What Are Nested ● They are quantifiers within the scope of another quantifier. Quantifiers?? ● ∀x∃y(x + y = 0) ⇔ ∀xQ(x), where Q(x) = ∃y(x + y = 0). ● They come, but are not limited, in the following flavors: ○ ∀x ∀yQ(x,y) ○ ∀x ∃yQ(x,y) ○ ∃x ∀yQ(x,y) ○ ∃x ∃yQ(x,y) ○ ∀x ∀y ∃zQ(x,y,z) ○ Yada yada yada Order Matters! ● In all cases unless the type of quantification are the same ○ ∀x ∀yQ(x,y) ⇔ ∀y ∀xQ(x,y) ○ ∃x ∃yQ(x,y) ⇔ ∃y ∃xQ(x,y) ● Other than that, the order of quantifiers will affect the truth of the quantification ○ ∀x ∃yQ(x,y) != ∃y ∀xQ(x,y) ● Can be thought of as loops with the left most quantifier being the outer loop until the rightmost inner loop. ○ For example, in ∀x∃y(x + y = 0), you would loop through ALL the elements in the domain for x, searching for AT LEAST one element for y that satisfies the statement. ○ In ∃x∀yQ(x,y), you would loop through the domain, testing Work? every x until you find ONE x that satisfies the statement for ALL y How Do They A neat observation: ● After going through some observations, the book concludes that: ○ if ∃y∀xP(x, y) is true, then ∀x∃yP(x, y) must also be true ○ However, if ∀x∃yP(x, y) is true, it is not necessary for ∃y∀xP(x, y) to be true Table on how to read these quantifications Turning Sentences into Logical Expressions ● “The sum of two positive integers is always positive” x & y ϵ Z.
    [Show full text]
  • Commonly Used Laws, Properties & Definitions
    COMMONLY USED LAWS, PROPERTIES & DEFINITIONS: LOGIC & SETS CMSC 250 Logic Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences hold: 1. Commutative laws: p ^ q ≡ q ^ p p _ q ≡ q _ p 2. Associative laws: (p ^ q) ^ r ≡ p ^ (q ^ r) (p _ q) _ r ≡ p _ (q _ r) 3. Distributive laws: p ^ (q _ r) ≡ (p ^ q) _ (p ^ r) p _ (q ^ r) ≡ (p _ q) ^ (p _ r) 4. Identity laws: p ^ t ≡ p p _ c ≡ p 5. Negation laws: p _:p ≡ t p ^ :p ≡ c 6. Double Negative law: :(:p) ≡ p 7. Idempotent laws: p ^ p ≡ p p _ p ≡ p 8. DeMorgan's laws: :(p ^ q) ≡ :p _:q :(p _ q) ≡ :p ^ :q 9. Universal bounds laws: p _ t ≡ t p ^ c ≡ c 10. Absorption laws: p _ (p ^ q) ≡ p p ^ (p _ q) ≡ p 11. Negations of t and c: :t ≡ c :c ≡ t Modus Ponens Modus Tollens Disjunctive p _ q p _ q p ! q p ! q Syllogism :q :p p :q Therefore p Therefore q Therefore q Therefore :p Conjunctive p Hypothetical p ! q Addition q Syllogism q ! r Therefore p ^ q Therefore p ! r Disjunctive p q Dilemma: p _ q Addition Therefore p _ q Therefore p _ q Proof by p ! r Division q ! r into Cases Therefore r Conjunctive p ^ q p ^ q Rule of :p ! c Simplification Therefore p Therefore q Contradiction Therefore p Closing C.W. jp Assumed Closing C.W.
    [Show full text]