Under the Direction of Jonathan M

Total Page:16

File Type:pdf, Size:1020Kb

Under the Direction of Jonathan M ABSTRACT SIMMONS, STEVEN O’NEAL. Biochemical and Functional Analysis of Homeoprotein Nkx3.1. (Under the direction of Jonathan M. Horowitz.) Nkx3.1 is a homeodomain-containing transcription factor that plays an important role in the development and differentiation of prostatic epithelia. Loss of Nkx3.1 protein expression is often an early event in prostate tumorigenesis, and the abundance of Nkx3.1- negative epithelial cells increases with disease progression. Herein I report that Nkx3.1 collaborates with Sp-family members in the regulation of prostate specific antigen (PSA) in prostate-derived cells. Nkx3.1 forms protein complexes with Sp proteins dependent on their respective DNA-binding domains and an amino-terminal segment of Nkx3.1, and negatively regulates Sp-mediated transcription via Trichostatin A-sensitive and –insensitive mechanisms. Nkx3.1 DNA-binding activity is not required for trans-repression of Sp proteins, suggesting that Nkx3.1 regulates Sp-mediated transcription via direct protein/protein interactions. I report that Nkx3.1 homeodomain encodes at least one nuclear localization signal (NLS) as well as sequences that facilitate the association of Nkx3.1 with the nuclear matrix. I show further that a functionally intact homeodomain is not required for nuclear localization but is required for the association of Nkx3.1 with the nuclear matrix. In contrast to many transcription factors, I show that Nkx3.1 is associated with mitotic chromatin throughout most, if not all, of mitosis and that a functionally intact Nkx3.1 homeodomain is sufficient to facilitate inclusion within mitotic chromosomes. Finally, I report my efforts to identify Nkx3.1 target genes using a genome-wide approach. This genome-wide screen for putative Nkx3.1 target genes yielded 42 clones containing novel, human genomic DNA. Ten of these clones harbored unique genomic fragments, while the remaining 32 clones carried sequences that were isolated repeatedly and could be subdivided into three sequence classes. Many of the recovered sequences mapped to locations that are within or near known genes and most carried one or more consensus Nkx3.1 DNA-binding sites. Further work must be performed to corroborate that the results from this genome-wide screen represent in vivo Nkx3.1 targets. Biochemical and Functional Analysis of Homeoprotein Nkx3.1 by Steven O. Simmons A dissertation submitted to the Graduate Faculty of North Carolina State University In partial fulfillment of the Requirements for the degree of Doctor of Philosophy Toxicology Raleigh, NC 2006 Approved by: Jonathan M. Horowitz Robert C. Smart James Mahaffey Gregg Dean BIOGRAPHY Steven O. Simmons born August 5, 1974 Orange, Texas Education: 1999-Present North Carolina State University, Raleigh, North Carolina Department of Toxicology Laboratory of Jonathan M. Horowitz, Ph.D. Program in Molecular and Cellular Toxicology 1992-1997 Lamar University, Beaumont, Texas B.S. Biology, 1997 Publications: Spengler M.L., Kennett S.B., Moorefield K.S., Simmons S.O., Brattain M.G., Horowitz J.M. (2005). Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism. Cell Signal. 17, 153-166. Simmons S.O., Horowitz J.M. (2006). Nkx3.1 binds and negatively regulates the transcriptional activity of Sp-family members in prostate-derived cells. Biochem. J. 393, 397-409. Moorefield K.S., Yin H., Nichols T.D., Cathcart C., Simmons S.O., Horowitz J.M. (2006). Sp2 localizes to subnuclear foci associated with the nuclear matrix. Mol. Biol. Cell. 17, 1711-1722. ii ACKNOWLEDGMENTS I wish to acknowledge all of the individuals without whom I could not have completed this entire process. First and foremost I wish to thank my wife, Deidra, for her tireless work to keep the bills paid and food on the table in addition to her support as a loving wife. I would not have survived six years of graduate school without her constant encouragement and unconditional love. She has in every sense earned this honor more than me. I would like to also acknowledge the support of my son, Tanner, who more than anyone on earth has helped to realize what is truly important in life. My son loves me with that special unconditional love that only a son has for his dad, and that love has further transformed my life. Tanner has taught me more in two short years about the nature of God and of life itself than I will ever be able to teach him in ten lifetimes, and for that I am eternally indebted. I wish to thank my parents Steven Sr. and Kathyrn for their love, encouragement and support over the past six years. Having the opportunity to make my parents proud has no doubt been an additional motivation for me to finish graduate school. I wish my father, who had invested his whole life into me, was alive today to see that investment come to fruition. My mother provided me with a personal example of achievement, and taught me that I could be anything in spite of whatever circumstances in which I found myself. I also need to acknowledge the support of my mother- and father-in-law, Carolyn and Damon. Carolyn made countless trips to Raleigh during our six plus years here, and that made home seem a lot closer for my family, especially for my son who loves his iii grandparents so much. My father-in-law was instrumental in leading me to Christ before I matriculated to graduate school and has served a spiritual anchor in my life ever since. I wish to extend a special acknowledgement to my advisor, Dr. Jonathan Horowitz. Jon took a big risk in bringing me into his laboratory since I did not have the best credentials upon arriving at NCSU. Despite my background, Jon provided me with an intellectually rigorous environment that challenged me daily, even through these final days. Jon’s superior grantsmanship insured that funding interruptions never occurred in my six years in his laboratory, no small feat in today’s academic climate. Jon gave my project much needed direction when all hope seemed lost. He also challenged me to excel beyond graduate school, and I intend to work diligently beyond his tutelage to honor his enormous investment in my life. I would like to thank Dr. Robert Smart, who provided me with much needed advice and encouragement along the way. Dr. Smart was extremely helpful in seeking and finding the right postdoctoral appointment to further my career, and I could not have completed this passage without his support. Additionally I would like to thank my committee members Drs. James Mahaffey and Gregg Dean who have made themselves very available to me. Their participation on my graduate committee is much appreciated. I would also like to extend a special thanks to my fellow members of the Horowitz laboratory throughout these years, especially Dr. Scott Moorefield who took virtually every step of this journey with me. All of you provided invaluable fellowship and advice throughout my tenure in the Horowitz laboratory and served as a well of encouragement and support. All of you made coming to work everyday fun for me. iv Most importantly, I wish to acknowledge my personal Lord and Savior, Jesus Christ. He not only took my place on Calvary’s cross to pay my sin debt and enable me to fellowship eternally with God, but He also is the central force of my life. Christ renews my mind and replenishes my spirit daily and teaches me to keep a heavenly, not earthly perspective. Lord, forgive me for not making the absolute most of my opportunity here at NCSU, for not always serving as a lantern reflecting Your love to those whom I could influence, for not living perfectly as You do, for not being worthy of Your mercy or Your grace. I thank you, Lord, for these individuals whom you placed in my path to help me through this stage of my life. I pray that you would richly bless them for having invested so much of their time, their talent and their treasure into one of your humble servants. In Your holy name, Amen. v TABLE OF CONTENTS List of Tables ............................................................................................................................x List of Figures......................................................................................................................... xi List of Abbreviations ........................................................................................................... xiv Chapter I: Nkx3.1 and Prostate Cancer ................................................................................1 1.1 Prostate cancer .....................................................................................................................2 1.2 Prostate anatomy and tumor classification ..........................................................................3 1.3 Prostate cancer initiation and progression ...........................................................................7 1.4 Genes involved in hereditary prostate cancers.....................................................................9 1.5 Genes involved in sporadic prostate cancers .....................................................................14 1.6 Cloning and characterization of Nkx3.1 ............................................................................25 1.7 Nkx3.1: Roles in development...........................................................................................29 1.8 Functional analysis of Nkx3.1 ...........................................................................................36 1.9 Nkx3.1 and prostate cancer................................................................................................44
Recommended publications
  • IN COLON CANCER a Dissertation by SATYA SREEHARI PATHI Su
    MECHANISMS OF ACTION OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) IN COLON CANCER A Dissertation by SATYA SREEHARI PATHI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2012 Major Subject: Toxicology MECHANISMS OF ACTION OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) IN COLON CANCER A Dissertation by SATYA SREEHARI PATHI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Stephen H. Safe Committee Members, Robert C. Burghardt Timothy Phillips Yanan Tian Interdisciplinary Faculty Chair of Toxicology, Weston Porter August 2012 Major Subject: Toxicology iii ABSTRACT Mechanisms of Action of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Colon Cancer. (August 2012) Satya Sreehari Pathi, B.V.M., Acharya N. G. Ranga Agricultural University, India; M.S., Texas A&M University, Kingsville Chair of Advisory Committee: Dr. Stephen H. Safe Non-steroidal anti-inflammatory drugs (NSAIDs) and their NO derivatives (NO- NSAIDs), and synthetic analogs are highly effective as anticancer agents that exhibit relatively low toxicity compared to most clinically used drugs. However, the mechanisms of action for NSAIDs and NO-NSAIDs are not well defined and this has restricted their clinical applications and applications for combined therapies. Earlier studies from our laboratory reported that specificity protein (Sp) transcription factors (Sp1, Sp3 and Sp4) are overexpressed in several types of human cancers including colon cancer and many Sp-regulated genes are pro-oncogenic and individual targets for cancer chemotherapy.
    [Show full text]
  • Identification of Novel Pathways That Promote Anoikis Through Genome-Wide Screens
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2016-10-14 Identification of Novel Pathways that Promote Anoikis through Genome-wide Screens Victoria E. Pedanou University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Biology Commons, and the Cancer Biology Commons Repository Citation Pedanou VE. (2016). Identification of Novel Pathways that Promote Anoikis through Genome-wide Screens. GSBS Dissertations and Theses. https://doi.org/10.13028/M27G6D. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/889 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. i TITLE PAGE IDENTIFICATION OF NOVEL PATHWAYS THAT PROMOTE ANOIKIS THROUGH GENOME-WIDE SCREENS A Dissertation Presented By VICTORIA ELIZABETH PEDANOU Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY OCTOBER 14TH, 2016 CANCER BIOLOGY ii SIGNATURE PAGE IDENTIFICATION OF NOVEL PATHWAYS THAT PROMOTE ANOIKIS THROUGH GENOME-WIDE SCREENS A Dissertation Presented By VICTORIA ELIZABETH PEDANOU This work was undertaken in the Graduate School of Biomedical Sciences Cancer Biology The signature of the Thesis Advisor signifies validation of Dissertation content ___________________________ Michael R. Green, Thesis Advisor The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation __________________________________ Eric H.
    [Show full text]
  • Supplementary Table 4
    Li et al. mir-30d in human cancer Table S4. The probe list down-regulated in MDA-MB-231 cells by mir-30d mimic transfection Gene Probe Gene symbol Description Row set 27758 8119801 ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10 15497 8101675 ABCG2 ATP-binding cassette, sub-family G (WHITE), member 2 18536 8158725 ABL1 c-abl oncogene 1, receptor tyrosine kinase 21232 8058591 ACADL acyl-Coenzyme A dehydrogenase, long chain 12466 7936028 ACTR1A ARP1 actin-related protein 1 homolog A, centractin alpha (yeast) 18102 8056005 ACVR1 activin A receptor, type I 20790 8115490 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 15688 7979904 ADAM21 ADAM metallopeptidase domain 21 14937 8054254 AFF3 AF4/FMR2 family, member 3 23560 8121277 AIM1 absent in melanoma 1 20209 7921434 AIM2 absent in melanoma 2 19272 8136336 AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) 18013 7954777 ALG10 asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog (S. pombe) 30049 7954789 ALG10B asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog B (yeast) 28807 7962579 AMIGO2 adhesion molecule with Ig-like domain 2 5576 8112596 ANKRA2 ankyrin repeat, family A (RFXANK-like), 2 23414 7922121 ANKRD36BL1 ankyrin repeat domain 36B-like 1 (pseudogene) 29782 8098246 ANXA10 annexin A10 22609 8030470 AP2A1 adaptor-related protein complex 2, alpha 1 subunit 14426 8107421 AP3S1 adaptor-related protein complex 3, sigma 1 subunit 12042 8099760 ARAP2 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 30227 8059854 ARL4C ADP-ribosylation factor-like 4C 32785 8143766 ARP11 actin-related Arp11 6497 8052125 ASB3 ankyrin repeat and SOCS box-containing 3 24269 8128592 ATG5 ATG5 autophagy related 5 homolog (S.
    [Show full text]
  • Identification of Candidate Biomarkers and Pathways Associated with Type 1 Diabetes Mellitus Using Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447531; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447531; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were then performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway.
    [Show full text]
  • Target Gene Gene Description Validation Diana Miranda
    Supplemental Table S1. Mmu-miR-183-5p in silico predicted targets. TARGET GENE GENE DESCRIPTION VALIDATION DIANA MIRANDA MIRBRIDGE PICTAR PITA RNA22 TARGETSCAN TOTAL_HIT AP3M1 adaptor-related protein complex 3, mu 1 subunit V V V V V V V 7 BTG1 B-cell translocation gene 1, anti-proliferative V V V V V V V 7 CLCN3 chloride channel, voltage-sensitive 3 V V V V V V V 7 CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like V V V V V V V 7 DUSP10 dual specificity phosphatase 10 V V V V V V V 7 MAP3K4 mitogen-activated protein kinase kinase kinase 4 V V V V V V V 7 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) V V V V V V V 7 PPP2R5C protein phosphatase 2, regulatory subunit B', gamma V V V V V V V 7 PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) V V V V V V V 7 EZR ezrin V V V V V V 6 FOXO1 forkhead box O1 V V V V V V 6 ANKRD13C ankyrin repeat domain 13C V V V V V V 6 ARHGAP6 Rho GTPase activating protein 6 V V V V V V 6 BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 V V V V V V 6 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like V V V V V V 6 BRMS1L breast cancer metastasis-suppressor 1-like V V V V V V 6 CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) V V V V V V 6 CTDSP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1 V V V V V V 6 DCX doublecortin V V V V V V 6 ENAH enabled homolog (Drosophila) V V V V V V 6 EPHA4 EPH receptor A4 V V V V V V 6 FOXP1 forkhead box P1 V
    [Show full text]
  • Supp Data.Pdf
    Supplementary Methods Verhaak sub-classification The Verhaak called tumor subtype was assigned as determined in the Verhaak et al. manuscript, for those TCGA tumors that were included at the time. TCGA data for expression (Affymetrix platform, level 1) and methylation (Infinium platform level 3) were downloaded from the TCGA portal on 09/29/2011. Affymetrix data were processed using R and Biocondutor with a RMA algorithm using quantile normalization and custom CDF. Level 3 methylation data has already been processed and converted to a beta-value. The genes that make up the signature for each of the 4 Verhaak groups (i.e. Proneural, Neural, Mesenchymal, and Classical) were downloaded. For each tumor, the averaged expression of the 4 genes signatures was calculated generating 4 ‘metagene’ scores, one for each subtype, (Colman et al.2010) for every tumor. Then each subtype metagene score was z-score corrected to allow comparison among the 4 metagenes. Finally, for each tumor the subtype with the highest metagene z-score among the four was used to assign subtype. Thus by this method, a tumor is assigned to the group to which it has the strongest expression signature. The shortcoming is that if a tumor has a ‘dual personality’ – for instance has strong expression of both classical and mesenchymal signature genes, there is some arbitrariness to the tumor’s assignment. Western Blot Analysis and cell fractionation Western blot analysis was performed using standard protocols. To determine protein expression we used the following antibodies: TAZ (Sigma and BD Biosciences), YAP (Santa Cruz Biotechnology), CD44 (Cell Signaling), FN1 (BD Biosciences), TEAD1, TEAD2, TEAD3, TEAD4 (Santa Cruz Biotechnology), MST1, p-MST1, MOB1, LATS1, LATS2, 14-3-3-, 1 ACTG2, (Cell Signaling), p-LATS1/2 (Abcam), Flag (Sigma Aldrich), Actin (Calbiochem), CAV2 (BD Biosciences), CTGF (Santa Cruz), RUNX2 (Sigma Aldrich), Cylin A, Cyclin E, Cyclin B1, p-cdk1, p-cdk4 (Cell Signaling Technologies).
    [Show full text]
  • 1 SUPPLEMENTAL DATA Figure S1. Poly I:C Induces IFN-Β Expression
    SUPPLEMENTAL DATA Figure S1. Poly I:C induces IFN-β expression and signaling. Fibroblasts were incubated in media with or without Poly I:C for 24 h. RNA was isolated and processed for microarray analysis. Genes showing >2-fold up- or down-regulation compared to control fibroblasts were analyzed using Ingenuity Pathway Analysis Software (Red color, up-regulation; Green color, down-regulation). The transcripts with known gene identifiers (HUGO gene symbols) were entered into the Ingenuity Pathways Knowledge Base IPA 4.0. Each gene identifier mapped in the Ingenuity Pathways Knowledge Base was termed as a focus gene, which was overlaid into a global molecular network established from the information in the Ingenuity Pathways Knowledge Base. Each network contained a maximum of 35 focus genes. 1 Figure S2. The overlap of genes regulated by Poly I:C and by IFN. Bioinformatics analysis was conducted to generate a list of 2003 genes showing >2 fold up or down- regulation in fibroblasts treated with Poly I:C for 24 h. The overlap of this gene set with the 117 skin gene IFN Core Signature comprised of datasets of skin cells stimulated by IFN (Wong et al, 2012) was generated using Microsoft Excel. 2 Symbol Description polyIC 24h IFN 24h CXCL10 chemokine (C-X-C motif) ligand 10 129 7.14 CCL5 chemokine (C-C motif) ligand 5 118 1.12 CCL5 chemokine (C-C motif) ligand 5 115 1.01 OASL 2'-5'-oligoadenylate synthetase-like 83.3 9.52 CCL8 chemokine (C-C motif) ligand 8 78.5 3.25 IDO1 indoleamine 2,3-dioxygenase 1 76.3 3.5 IFI27 interferon, alpha-inducible
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano Et Al
    US 20090269772A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano et al. (43) Pub. Date: Oct. 29, 2009 (54) SYSTEMS AND METHODS FOR Publication Classification IDENTIFYING COMBINATIONS OF (51) Int. Cl. COMPOUNDS OF THERAPEUTIC INTEREST CI2O I/68 (2006.01) CI2O 1/02 (2006.01) (76) Inventors: Andrea Califano, New York, NY G06N 5/02 (2006.01) (US); Riccardo Dalla-Favera, New (52) U.S. Cl. ........... 435/6: 435/29: 706/54; 707/E17.014 York, NY (US); Owen A. (57) ABSTRACT O'Connor, New York, NY (US) Systems, methods, and apparatus for searching for a combi nation of compounds of therapeutic interest are provided. Correspondence Address: Cell-based assays are performed, each cell-based assay JONES DAY exposing a different sample of cells to a different compound 222 EAST 41ST ST in a plurality of compounds. From the cell-based assays, a NEW YORK, NY 10017 (US) Subset of the tested compounds is selected. For each respec tive compound in the Subset, a molecular abundance profile from cells exposed to the respective compound is measured. (21) Appl. No.: 12/432,579 Targets of transcription factors and post-translational modu lators of transcription factor activity are inferred from the (22) Filed: Apr. 29, 2009 molecular abundance profile data using information theoretic measures. This data is used to construct an interaction net Related U.S. Application Data work. Variances in edges in the interaction network are used to determine the drug activity profile of compounds in the (60) Provisional application No. 61/048.875, filed on Apr.
    [Show full text]
  • Cell Cycle Arrest Through Indirect Transcriptional Repression by P53: I Have a DREAM
    Cell Death and Differentiation (2018) 25, 114–132 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Review Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM Kurt Engeland1 Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV.Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia.
    [Show full text]
  • Systems Genetics Identifies a Role for Cacna2d1 Regulation in Elevated
    Supplementary Dataset 1: Gene set enrichment analysis (GSEA) input Gene Symbol Gene name Score Cacna2d1 calcium channel, voltage-dependent, alpha 2/delta subunit 1 1 Pten phosphatase and tensin homolog (mutated in multiple advanced cancers 1) 0.8113829 Rora RAR-related orphan receptor A 0.7830256 Nfia nuclear factor I/A 0.77796155 Plxna2 plexin A2 0.7689365 Rwdd4a RWD domain containing 4A 0.75700486 Znf608 zinc finger protein 608 0.7334024 Huwe1 HECT, UBA and WWE domain containing 1 0.73015225 Prkg1 protein kinase, cGMP-dependent, type I 0.7254574 Rab39b RAB39B, member RAS oncogene family 0.71763426 St3gal2 ST3 beta-galactoside alpha-2,3-sialyltransferase 2 0.70345706 Lpgat1 lysophosphatidylglycerol acyltransferase 1 0.7029922 potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia Kcna1 0.7010396 with myokymia) Ppp2ca protein phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform 0.69497764 Maoa monoamine oxidase A 0.6936078 Socs6 suppressor of cytokine signaling 6 0.6922545 Abcc5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 0.6845195 Hspa4 heat shock 70kDa protein 4 0.6812371 Dctn4 dynactin 4 (p62) 0.68075943 Lats2 LATS, large tumor suppressor, homolog 2 (Drosophila) 0.67761165 Lin7a lin-7 homolog A (C. elegans) 0.673076 Itga9 integrin, alpha 9 0.6707624 Isoc1 isochorismatase domain containing 1 0.6701377 Cyfip2 cytoplasmic FMR1 interacting protein 2 0.6698394 Asip agouti signaling protein, nonagouti homolog (mouse) 0.6682124 Trpm7 transient receptor potential cation channel, subfamily M,
    [Show full text]
  • Differentially Expressed Genes Using Genomic Expression Profiles An
    Downloaded from genome.cshlp.org on July 13, 2011 - Published by Cold Spring Harbor Laboratory Press An Efficient and Robust Statistical Modeling Approach to Discover Differentially Expressed Genes Using Genomic Expression Profiles Jeffrey G. Thomas, James M. Olson, Stephen J. Tapscott, et al. Genome Res. 2001 11: 1227-1236 Access the most recent version at doi:10.1101/gr.165101 References This article cites 78 articles, 33 of which can be accessed free at: http://genome.cshlp.org/content/11/7/1227.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/11/7/1227.full.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on July 13, 2011 - Published by Cold Spring Harbor Laboratory Press Methods An Efficient and Robust Statistical Modeling Approach to Discover Differentially Expressed Genes Using Genomic Expression Profiles Jeffrey G. Thomas,1 James M. Olson,2 Stephen J. Tapscott,2 and Lue Ping Zhao1,3 1Division of Public Health Sciences and 2Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA We have developed a statistical regression modeling approach to discover genes that are differentially expressed between two predefined sample groups in DNA microarray experiments. Our model is based on well-defined assumptions, uses rigorous and well-characterized statistical measures, and accounts for the heterogeneity and genomic complexity of the data.
    [Show full text]
  • Supplementary Figure S1 A
    Supplementary Figure S1 A B C 1 4 1 3 1 2 1 2 1 0 1 1 (Normalized signal values)] 2 (Normalized signal values) (Normalized 8 2 10 Log 6 AFFX-BioC AFFX-BioB AFFX-BioDn AFFX-CreX hDFs [Log 6 8 10 12 14 hOFs [Log2 (Normalized signal values)] Supplementary Figure S2 GLYCOLYSIS PENTOSE-PHOSPHATE PATHWAY Glucose Purine/pyrimidine Glucose-6-phosphate metabolism AMINO ACID Fluctose-6-phosphate AMPK METABOLISM TIGAR PFKFB2 methylgloxal GloI Ser, Gly, Thr Glyceraldehyde-3-phosphate ALDH Lactate PYRUVATE LDH METABOLISM acetic acid Ethanol Pyruvate GLYCOSPHINGOLIPID NADH BIOSYNTHESIS Ala, Cys DLD PDH PDK3 DLAT Fatty acid Lys, Trp, Leu, Acetyl CoA ACAT2 Ile, Tyr, Phe β-OXIDATION ACACA Citrate Asp, Asn Citrate Acetyl CoA Oxaloacetate Isocitrate MDH1 IDH1 Glu, Gln, His, ME2 TCA Pro, Arg 2-Oxoglutarate MDH1 CYCLE Pyruvate Malate ME2 GLUTAMINOLYSIS FH Succinyl-CoA Fumalate SUCLA2 Tyr, Phe Var, Ile, Met Supplementary Figure S3 Entrez Gene Symbol Gene Name hODs hDFs hOF-iPSCs GeneID 644 BLVRA biliverdin reductase A 223.9 259.3 253.0 3162 HMOX1 heme oxygenase 1 1474.2 2698.0 452.3 9365 KL klotho 54.1 44.8 36.5 nicotinamide 10135 NAMPT 827.7 626.2 2999.8 phosphoribosyltransferase nuclear factor (erythroid- 4780 NFE2L2 2134.5 1331.7 1006.2 derived 2) related factor 2 peroxisome proliferator- 5467 PPARD 1534.6 1352.9 330.8 activated receptor delta peroxisome proliferator- 5468 PPARG 524.4 100.8 63.0 activated receptor gamma 5621 PRNP prion protein 4059.0 3134.1 1065.5 5925 RB1 retinoblastoma 1 882.9 805.8 739.3 23411 SIRT1 sirtuin 1 231.5 216.8 1676.0 7157 TP53
    [Show full text]